1
|
Braden DC, Adbel-Salam MAL, Asan A, Skoko J, Lu H, Conrads TP, Freeman BA, Schopfer FJ, Saini I, Kuper J, Kisker C, Uboveja A, Tangudu NK, Aird KM, Davis AJ, Neumann CA. Chemoproteomic analysis reveals RECQL4 as a mediator of nitroalkene-dependent double-strand break repair inhibition in cancer. RESEARCH SQUARE 2025:rs.3.rs-6141403. [PMID: 40196015 PMCID: PMC11975020 DOI: 10.21203/rs.3.rs-6141403/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Nitroalkenes are endogenous products generated by the metabolism of unsaturated fatty acids. They are generated under oxidative stress conditions, mediating important anti-inflammatory signaling activities through covalent modification of protein cysteine thiols. Despite being cytoprotective in benign tissue, nitroalkenes display single-agent anti-proliferative activity in breast cancer cells and sensitize them to multiple DNA-damaging agents. Initial mechanistic evidence suggested that nitroalkene anti-cancer activities are partially mediated by inhibition of homologous recombination (HR) through the recombinase RAD51 at Cys319. However, nitroalkenes are multi-target agents, and thus, it is likely that other important DNA repair targets beyond RAD51 are modified by nitroalkenes, contributing to their anti-cancer effects. We, therefore, conducted a global proteomics analysis to address this question. This analysis led to the identification of the recQ helicase RECQL4 with a nitro-alkylation at Cys1052. This modification was further confirmed by click chemistry-based chemoproteomics and determined to be DNA damage-dependent. Functional analyses demonstrated that nitroalkene modification inhibits RECQL4 ATP-dependent helicase activity and disrupts DSB end resection and downstream homology-dependent repair. Furthermore, experiments with C1052S mutant RECQL4 revealed that RECQL4 is a major mediator of nitroalkene effects on end resection, DSB formation, and repair. The evidence presented here denotes RECQL4 as an important nitroalkene target conferring DSB repair inhibition and supports further evaluation of nitroalkenes as therapeutic agents in RECQL4-amplified cancers.
Collapse
Affiliation(s)
- Dennis C Braden
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Mostafa A L Adbel-Salam
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Alparslan Asan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - John Skoko
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Huiming Lu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX75390, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA; Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Annandale, VA 22003, United States; Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M) University of Pittsburgh, Pittsburgh, PA, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M) University of Pittsburgh, Pittsburgh, PA, USA
| | - Ishu Saini
- Rudolf-Virchow-Zentrum-Center for Integrative and Translational Bioimaging Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Jochen Kuper
- Rudolf-Virchow-Zentrum-Center for Integrative and Translational Bioimaging Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf-Virchow-Zentrum-Center for Integrative and Translational Bioimaging Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Apoorva Uboveja
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Naveen K Tangudu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Katherine M Aird
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX75390, USA
| | - Carola A Neumann
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| |
Collapse
|
2
|
Xu X, Chang CW, Li M, Liu C, Liu Y. Molecular Mechanisms of the RECQ4 Pathogenic Mutations. Front Mol Biosci 2021; 8:791194. [PMID: 34869606 PMCID: PMC8637615 DOI: 10.3389/fmolb.2021.791194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022] Open
Abstract
The human RECQ4 gene encodes an ATP-dependent DNA helicase that contains a conserved superfamily II helicase domain located at the center of the polypeptide. RECQ4 is one of the five RECQ homologs in human cells, and its helicase domain is flanked by the unique amino and carboxyl termini with sequences distinct from other members of the RECQ helicases. Since the identification of the RECQ4 gene in 1998, multiple RECQ4 mutations have been linked to the pathogenesis of three clinical diseases, which are Rothmund-Thomson syndrome, Baller-Gerold syndrome, and RAPADILINO. Patients with these diseases show various developmental abnormalities. In addition, a subset of RECQ4 mutations are associated with high cancer risks, especially for osteosarcoma and/or lymphoma at early ages. The discovery of clinically relevant RECQ4 mutations leads to intriguing questions: how is the RECQ4 helicase responsible for preventing multiple clinical syndromes? What are the mechanisms by which the RECQ4 disease mutations cause tissue abnormalities and drive cancer formation? Furthermore, RECQ4 is highly overexpressed in many cancer types, raising the question whether RECQ4 acts not only as a tumor suppressor but also an oncogene that can be a potential new therapeutic target. Defining the molecular dysfunctions of different RECQ4 disease mutations is imperative to improving our understanding of the complexity of RECQ4 clinical phenotypes and the dynamic roles of RECQ4 in cancer development and prevention. We will review recent progress in examining the molecular and biochemical properties of the different domains of the RECQ4 protein. We will shed light on how the dynamic roles of RECQ4 in human cells may contribute to the complexity of RECQ4 clinical phenotypes.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Chou-Wei Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Min Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Chao Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
3
|
Rogers CM, Simmons Iii RH, Fluhler Thornburg GE, Buehler NJ, Bochman ML. Fanconi anemia-independent DNA inter-strand crosslink repair in eukaryotes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 158:33-46. [PMID: 32877700 DOI: 10.1016/j.pbiomolbio.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
DNA inter-strand crosslinks (ICLs) are dangerous lesions that can be caused by a variety of endogenous and exogenous bifunctional compounds. Because covalently linking both strands of the double helix locally disrupts DNA replication and transcription, failure to remove even a single ICL can be fatal to the cell. Thus, multiple ICL repair pathways have evolved, with the best studied being the canonical Fanconi anemia (FA) pathway. However, recent research demonstrates that different types of ICLs (e.g., backbone distorting vs. non-distorting) can be discriminated by the cell, which then mounts a specific repair response using the FA pathway or one of a variety of FA-independent ICL repair pathways. This review focuses on the latter, covering current work on the transcription-coupled, base excision, acetaldehyde-induced, and SNM1A/RecQ4 ICL repair pathways and highlighting unanswered questions in the field. Answering these questions will provide mechanistic insight into the various pathways of ICL repair and enable ICL-inducing agents to be more effectively used as chemotherapeutics.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Robert H Simmons Iii
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Gabriella E Fluhler Thornburg
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Nicholas J Buehler
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, 212 S. Hawthorne Dr., Simon Hall MSB1 room 405B, Bloomington, IN, 47405, USA.
| |
Collapse
|
4
|
Colombo EA, Locatelli A, Cubells Sánchez L, Romeo S, Elcioglu NH, Maystadt I, Esteve Martínez A, Sironi A, Fontana L, Finelli P, Gervasini C, Pecile V, Larizza L. Rothmund-Thomson Syndrome: Insights from New Patients on the Genetic Variability Underpinning Clinical Presentation and Cancer Outcome. Int J Mol Sci 2018; 19:E1103. [PMID: 29642415 PMCID: PMC5979380 DOI: 10.3390/ijms19041103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022] Open
Abstract
Biallelic mutations in RECQL4 gene, a caretaker of the genome, cause Rothmund-Thomson type-II syndrome (RTS-II) and confer increased cancer risk if they damage the helicase domain. We describe five families exemplifying clinical and allelic heterogeneity of RTS-II, and report the effect of pathogenic RECQL4 variants by in silico predictions and transcripts analyses. Complete phenotype of patients #39 and #42 whose affected siblings developed osteosarcoma correlates with their c.[1048_1049del], c.[1878+32_1878+55del] and c.[1568G>C;1573delT], c.[3021_3022del] variants which damage the helicase domain. Literature survey highlights enrichment of these variants affecting the helicase domain in patients with cancer outcome raising the issue of strict oncological surveillance. Conversely, patients #29 and #19 have a mild phenotype and carry, respectively, the unreported homozygous c.3265G>T and c.3054A>G variants, both sparing the helicase domain. Finally, despite matching several criteria for RTS clinical diagnosis, patient #38 is heterozygous for c.2412_2414del; no pathogenic CNVs out of those evidenced by high-resolution CGH-array, emerged as contributors to her phenotype.
Collapse
Affiliation(s)
- Elisa A Colombo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Andrea Locatelli
- UO Dermatologia e Venereologia, Asst Papa Giovanni XXIII, 24127 Bergamo, Italy.
| | - Laura Cubells Sánchez
- Department of Dermatology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain.
| | - Sara Romeo
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK.
- MRC London Institute of Medical Sciences, Imperial College London, W12 0NN London, UK.
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, 34890 Istanbul, Turkey.
- Department of Pediatrics, Eastern Mediterranean University, Mersin 10 Cyprus, Turkey.
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, 6041 Charleroi (Gosselies), Belgium.
| | - Altea Esteve Martínez
- Department of Dermatology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain.
| | - Alessandra Sironi
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy.
| | - Laura Fontana
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy.
| | - Cristina Gervasini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Vanna Pecile
- Institute for Maternal and Child Health, Foundation IRCCS Burlo Garofolo Institute, 34137 Trieste, Italy.
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy.
| |
Collapse
|
5
|
Lu L, Jin W, Wang LL. Aging in Rothmund-Thomson syndrome and related RECQL4 genetic disorders. Ageing Res Rev 2017; 33:30-35. [PMID: 27287744 DOI: 10.1016/j.arr.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 01/21/2023]
Abstract
Rothmund-Thomson Syndrome (RTS) is a rare autosomal recessive disease which manifests several clinical features of accelerated aging. These findings include atrophic skin and pigment changes, alopecia, osteopenia, cataracts, and an increased incidence of cancer for patients carrying RECQL4 germline mutations. Mutations in RECQL4 are responsible for the majority of cases of RTS. RECQL4 belongs to RECQ DNA helicase family which has been shown to participate in many aspects of DNA metabolism. In the past several years, accumulated evidence indicates that RECQL4 is important not only in cancer development but also in the aging process. In this review, based on recent research data, we summarize the common aging findings in RTS patients and propose possible mechanisms to explain the aging features in these patients.
Collapse
Affiliation(s)
- Linchao Lu
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, 1102 Bates Avenue, Suite 1200, Houston, TX 77030, USA
| | - Weidong Jin
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, 1102 Bates Avenue, Suite 1200, Houston, TX 77030, USA
| | - Lisa L Wang
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, 1102 Bates Avenue, Suite 1200, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Interaction of RECQ4 and MCM10 is important for efficient DNA replication origin firing in human cells. Oncotarget 2016; 6:40464-79. [PMID: 26588054 PMCID: PMC4747346 DOI: 10.18632/oncotarget.6342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022] Open
Abstract
DNA replication is a highly coordinated process that is initiated at multiple replication origins in eukaryotes. These origins are bound by the origin recognition complex (ORC), which subsequently recruits the Mcm2-7 replicative helicase in a Cdt1/Cdc6-dependent manner. In budding yeast, two essential replication factors, Sld2 and Mcm10, are then important for the activation of replication origins. In humans, the putative Sld2 homolog, RECQ4, interacts with MCM10. Here, we have identified two mutants of human RECQ4 that are deficient in binding to MCM10. We show that these RECQ4 variants are able to complement the lethality of an avian cell RECQ4 deletion mutant, indicating that the essential function of RECQ4 in vertebrates is unlikely to require binding to MCM10. Nevertheless, we show that the RECQ4-MCM10 interaction is important for efficient replication origin firing.
Collapse
|
7
|
Lu H, Shamanna RA, Keijzers G, Anand R, Rasmussen LJ, Cejka P, Croteau DL, Bohr VA. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks. Cell Rep 2016; 16:161-173. [PMID: 27320928 DOI: 10.1016/j.celrep.2016.05.079] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/25/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023] Open
Abstract
The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4's helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4's unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.
Collapse
Affiliation(s)
- Huiming Lu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Guido Keijzers
- Center for Healthy Aging and Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Roopesh Anand
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lene Juel Rasmussen
- Center for Healthy Aging and Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Center for Healthy Aging and Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
8
|
Shamanna RA, Singh DK, Lu H, Mirey G, Keijzers G, Salles B, Croteau DL, Bohr VA. RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex. Carcinogenesis 2014; 35:2415-24. [PMID: 24942867 DOI: 10.1093/carcin/bgu137] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RECQL4, a member of the RecQ helicase family, is a multifunctional participant in DNA metabolism. RECQL4 protein participates in several functions both in the nucleus and in the cytoplasm of the cell, and mutations in human RECQL4 are associated with three genetic disorders: Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. We previously reported that RECQL4 is recruited to laser-induced DNA double-strand breaks (DSB). Here, we have characterized the functional roles of RECQL4 in the non-homologous end joining (NHEJ) pathway of DSB repair. In an in vitro NHEJ assay that depends on the activity of DNA-dependent protein kinase (DNA-PK), extracts from RECQL4 knockdown cells display reduced end-joining activity on DNA substrates with cohesive and non-cohesive ends. Depletion of RECQL4 also reduced the end joining activity on a GFP reporter plasmid in vivo. Knockdown of RECQL4 increased the sensitivity of cells to γ-irradiation and resulted in accumulation of 53BP1 foci after irradiation, indicating defects in the processing of DSB. We find that RECQL4 interacts with the Ku70/Ku80 heterodimer, part of the DNA-PK complex, via its N-terminal domain. Further, RECQL4 stimulates higher order DNA binding of Ku70/Ku80 to a blunt end DNA substrate. Taken together, these results implicate that RECQL4 participates in the NHEJ pathway of DSB repair via a functional interaction with the Ku70/Ku80 complex. This is the first study to provide both in vitro and in vivo evidence for a role of a RecQ helicase in NHEJ.
Collapse
Affiliation(s)
- Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dharmendra Kumar Singh
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Huiming Lu
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gladys Mirey
- INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and
| | - Guido Keijzers
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bernard Salles
- INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA, INRA, Université de Toulouse, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Senescence induced by RECQL4 dysfunction contributes to Rothmund-Thomson syndrome features in mice. Cell Death Dis 2014; 5:e1226. [PMID: 24832598 PMCID: PMC4047874 DOI: 10.1038/cddis.2014.168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 02/07/2023]
Abstract
Cellular senescence refers to irreversible growth arrest of primary eukaryotic cells, a process thought to contribute to aging-related degeneration and disease. Deficiency of RecQ helicase RECQL4 leads to Rothmund–Thomson syndrome (RTS), and we have investigated whether senescence is involved using cellular approaches and a mouse model. We first systematically investigated whether depletion of RECQL4 and the other four human RecQ helicases, BLM, WRN, RECQL1 and RECQL5, impacts the proliferative potential of human primary fibroblasts. BLM-, WRN- and RECQL4-depleted cells display increased staining of senescence-associated β-galactosidase (SA-β-gal), higher expression of p16INK4a or/and p21WAF1 and accumulated persistent DNA damage foci. These features were less frequent in RECQL1- and RECQL5-depleted cells. We have mapped the region in RECQL4 that prevents cellular senescence to its N-terminal region and helicase domain. We further investigated senescence features in an RTS mouse model, Recql4-deficient mice (Recql4HD). Tail fibroblasts from Recql4HD showed increased SA-β-gal staining and increased DNA damage foci. We also identified sparser tail hair and fewer blood cells in Recql4HD mice accompanied with increased senescence in tail hair follicles and in bone marrow cells. In conclusion, dysfunction of RECQL4 increases DNA damage and triggers premature senescence in both human and mouse cells, which may contribute to symptoms in RTS patients.
Collapse
|
10
|
Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 2014; 83:519-52. [PMID: 24606147 DOI: 10.1146/annurev-biochem-060713-035428] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland 21224;
| | | | | | | |
Collapse
|
11
|
Abstract
The RECQ family of DNA helicases is a conserved group of enzymes that are important for maintaining genomic integrity. In humans, there are five RECQ helicase genes, and mutations in three of them-BLM, WRN, and RECQL4-are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. Importantly all three diseases are cancer predisposition syndromes. Patients with RTS are highly and uniquely susceptible to developing osteosarcoma; thus, RTS provides a good model to study the pathogenesis of osteosarcoma. The "tumor suppressor" role of RECQL4 and the other RECQ helicases is an area of active investigation. This chapter reviews what is currently known about the cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways may provide insight into avenues for novel cancer therapies in the future.
Collapse
|