1
|
Yadav VK, Kumar A, Tripathi PP, Gupta J. Long noncoding RNAs in intestinal homeostasis, regeneration, and cancer. J Cell Physiol 2021; 236:7801-7813. [PMID: 33899236 DOI: 10.1002/jcp.30393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Signaling pathways that regulate homeostasis and regeneration are found to be deregulated in various human malignancies. Accordingly, attempts have been made to target them at the protein level with little success. However, studies using high-throughput sequencing technologies suggest that only about 2% of the genome translates into proteins, whereas about 75% of the genome is transcribed into noncoding RNAs. Among noncoding RNAs, long noncoding RNAs (lncRNAs) have received tremendous attention in recent years as a crucial player in the regulation of almost all cellular processes involved in tissue homeostasis as well as in the development of various malignancies, including intestinal cancer. Emerging evidence suggests that lncRNAs play an instrumental role in the regulation of intestinal stem cells, injury-induced regeneration, and initiation and progression of intestinal tumors. Here, we summarize the recently discovered lncRNAs during intestinal homeostasis, regeneration, and tumorigenesis. We further present lncRNAs as diagnostic and therapeutic markers in intestinal pathologies.
Collapse
Affiliation(s)
- Vipin K Yadav
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Amit Kumar
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Prem P Tripathi
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, India
| | - Jalaj Gupta
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
2
|
Heudobler D, Lüke F, Vogelhuber M, Klobuch S, Pukrop T, Herr W, Gerner C, Pantziarka P, Ghibelli L, Reichle A. Anakoinosis: Correcting Aberrant Homeostasis of Cancer Tissue-Going Beyond Apoptosis Induction. Front Oncol 2019; 9:1408. [PMID: 31921665 PMCID: PMC6934003 DOI: 10.3389/fonc.2019.01408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
The current approach to systemic therapy for metastatic cancer is aimed predominantly at inducing apoptosis of cancer cells by blocking tumor-promoting signaling pathways or by eradicating cell compartments within the tumor. In contrast, a systems view of therapy primarily considers the communication protocols that exist at multiple levels within the tumor complex, and the role of key regulators of such systems. Such regulators may have far-reaching influence on tumor response to therapy and therefore patient survival. This implies that neoplasia may be considered as a cell non-autonomous disease. The multi-scale activity ranges from intra-tumor cell compartments, to the tumor, to the tumor-harboring organ to the organism. In contrast to molecularly targeted therapies, a systems approach that identifies the complex communications networks driving tumor growth offers the prospect of disrupting or "normalizing" such aberrant communicative behaviors and therefore attenuating tumor growth. Communicative reprogramming, a treatment strategy referred to as anakoinosis, requires novel therapeutic instruments, so-called master modifiers to deliver concerted tumor growth-attenuating action. The diversity of biological outcomes following pro-anakoinotic tumor therapy, such as differentiation, trans-differentiation, control of tumor-associated inflammation, etc. demonstrates that long-term tumor control may occur in multiple forms, inducing even continuous complete remission. Accordingly, pro-anakoinotic therapies dramatically extend the repertoire for achieving tumor control and may activate apoptosis pathways for controlling resistant metastatic tumor disease and hematologic neoplasia.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna, Austria
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
- Anticancer Fund, Brussels, Belgium
| | - Lina Ghibelli
- Department Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|