1
|
Chandra A, Law SF, Pignolo RJ. Changing landscape of hematopoietic and mesenchymal cells and their interactions during aging and in age-related skeletal pathologies. Mech Ageing Dev 2025; 225:112059. [PMID: 40220914 PMCID: PMC12103995 DOI: 10.1016/j.mad.2025.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Aging profoundly impacts mesenchymal and hematopoietic lineage cells, including their progenitors-the skeletal stem cells (SSCs) and hematopoietic stem cells (HSCs), respectively. SSCs are crucial for skeletal development, homeostasis, and regeneration, maintaining bone integrity by differentiating into osteoblasts, adipocytes, and other lineages that contribute to the bone marrow (BM) microenvironment. Meanwhile, HSCs sustain hematopoiesis and immune function. With aging, SSCs and HSCs undergo significant functional decline, partly driven by cellular senescence-a hallmark of aging characterized by irreversible growth arrest, secretion of pro-inflammatory factors (senescence associated secretory phenotype, SASP), and impaired regenerative potential. In SSCs, senescence skews lineage commitment toward adipogenesis at the expense of osteogenesis, contributing to increased bone marrow adiposity , reduced bone quality, and osteoporosis. Similarly, aged HSCs exhibit diminished self-renewal, biased differentiation, and heightened inflammation, compromising hematopoietic output and immune function. In this review, we examine the age-related cellular and molecular changes in SSCs and HSCs, their lineage decisions in the aging microenvironment, and the interplay between skeletal and hematopoietic compartments. We also discuss the role of senescence-driven alterations in BM homeostasis and how targeting cellular aging mechanisms may offer therapeutic strategies for mitigating age-related skeletal and hematopoietic decline.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, USA; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology, USA; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN, USA.
| | - Susan F Law
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN, USA
| | - Robert J Pignolo
- Department of Physiology and Biomedical Engineering, USA; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology, USA; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Zhang W, Kong D, Zhang X, Hu L, Nian Y, Shen Z. T cell aging and exhaustion: Mechanisms and clinical implications. Clin Immunol 2025; 275:110486. [PMID: 40120658 DOI: 10.1016/j.clim.2025.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
T cell senescence and exhaustion represent critical aspects of adaptive immune system dysfunction, with profound implications for health and the development of disease prevention and therapeutic strategies. These processes, though distinct, are interconnected at the molecular level, leading to impaired effector functions and reduced proliferative capacity of T cells. Such impairments increase susceptibility to diseases and diminish the efficacy of vaccines and treatments. Importantly, T cell senescence and exhaustion can dynamically influence each other, particularly in the context of chronic diseases. A deeper understanding of the molecular mechanisms underlying T cell senescence and exhaustion, as well as their interplay, is essential for elucidating the pathogenesis of related diseases and restoring dysfunctional immune responses. This knowledge will pave the way for the development of targeted therapeutic interventions and strategies to enhance immune competence. This review aims to summarize the characteristics, mechanisms, and disease associations of T cell senescence and exhaustion, while also delineating the distinctions and intersections between these two states to enhance our comprehension.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Xiaohan Zhang
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China.
| | - Lu Hu
- Tianjin Medical University First Central Clinical College, Tianjin, China.
| | - Yeqi Nian
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China; Department of Kidney Transplant, Tianjin First Central Hospital, Tianjin, China.
| | - Zhongyang Shen
- School of Medicine, Nankai University, Tianjin, China; Research Institute of Transplant Medicine, Nankai University, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Science, Tianjin, China.
| |
Collapse
|
3
|
Wang Q, Gao Y, Song J, Taiwaikuli D, Ding H, Yang X, Tang B, Zhou X. DNA methylation-based telomere length is more strongly associated with cardiovascular disease and long-term mortality than quantitative polymerase chain reaction-based telomere length: evidence from the NHANES 1999-2002. Clin Epigenetics 2024; 16:177. [PMID: 39633416 PMCID: PMC11619434 DOI: 10.1186/s13148-024-01795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Telomere length (TL) serves as a pivotal gauge of cellular aging, with shorter TL linked to various age-related ailments. Recently, a DNA methylation-based TL estimator, known as DNAmTL, has emerged as a novel TL measurement tool. Our current investigation scrutinized the correlation between DNAmTL and the risks of cardiovascular disease (CVD) and enduring mortality among middle-aged and elderly individuals. METHODS We enrolled a nationwide, population-based cohort of subjects from the National Health and Nutrition Examination Survey spanning 1999 to 2002, possessing data on both DNAmTL and quantitative polymerase chain reaction-based TL (qPCRTL). Logistic regression models and Cox proportional hazards models were employed to evaluate the associations of DNAmTL with CVD risk and mortality, respectively. RESULTS The cohort comprised 2532 participants, with a weighted CVD prevalence of 19.06%. Notably, each one-kilobase increase in DNAmTL was linked to a 53% diminished CVD risk [odds ratio (OR): 0.47, 95% confidence interval (CI): 0.23-0.95, P = 0.035]. Over a median follow-up period of 206 months, 1361 deaths were recorded (53.75%), with 590 (23.30%) ascribable to CVD. Individuals with the lengthiest DNAmTL exhibited a 36% lower risk of all-cause mortality (hazard ratio (HR): 0.64, 95% CI: 0.49-0.85, P = 0.002) and a 35% decrease in CVD mortality (HR: 0.65, 95% CI: 0.43-0.98, P = 0.044) compared to those with shortest DNAmTL. Notably, a stronger association with age was observed for DNAmTL compared to qPCRTL (r = -0.58 vs. r = - 0.25). Analysis of receiver operating characteristic (ROC) curves suggested superior predictive performance of DNAmTL over qPCRTL for CVD (area under curve (AUC): 0.63 vs. 0.55, P < 0.001), all-cause (AUC: 0.74 vs. 0.62, P < 0.001), and CVD mortality (AUC: 0.75 vs. 0.64, P < 0.001). CONCLUSION Longer DNAmTL was positively correlated with reduced CVD risk and long-term mortality in middle-aged and elderly cohorts. Notably, DNAmTL outperformed qPCRTL as an aging biomarker in the stratification of CVD risks and mortality.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuanfeng Gao
- Department of Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Song
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dilare Taiwaikuli
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huanhuan Ding
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinchun Yang
- Department of Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Baopeng Tang
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xianhui Zhou
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
4
|
Wu H, Li J, Zhang Z, Zhang Y. Characteristics and mechanisms of T-cell senescence: A potential target for cancer immunotherapy. Eur J Immunol 2024; 54:e2451093. [PMID: 39107923 DOI: 10.1002/eji.202451093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 11/08/2024]
Abstract
Immunosenescence, the aging of the immune system, leads to functional deficiencies, particularly in T cells, which undergo significant changes. While numerous studies have investigated age-related T-cell phenotypes in healthy aging, senescent T cells have also been observed in younger populations during pathological conditions like cancer. This review summarizes the recent advancements in age-associated alterations and markers of T cells, mechanisms, and the relationship between senescent T cells and the tumor microenvironment. We also discuss potential strategies for targeting senescent T cells to prevent age-related diseases and enhance tumor immunotherapy efficacy.
Collapse
Affiliation(s)
- Han Wu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junru Li
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Lyu Y, Zhao H, Zeng G, Yang J, Shao Q, Wu H. Mapping the evolving trend of research on leukocyte telomere length: a text-mining study. Hum Genomics 2024; 18:117. [PMID: 39468654 PMCID: PMC11520877 DOI: 10.1186/s40246-024-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Substantial evidence indicates that measuring leukocyte telomere length (LTL) is a useful tool that may be considered as a valuable biomarker of individual biological age, correlating with numerous chronic disorders. However, to date, there has been a lack of in-depth understanding regarding the current landscape and forthcoming developments in the LTL field. Therefore, this study aimed to utilize bibliometric methods to summarize the knowledge structure, current focus, and emerging directions in this field. METHOD Scientific publications on LTL spanning the period from 2000 to 2022 were acquired from the Web of Science Core Collection database. Several bibliometric tools including CiteSpace, VOSviewer, and an online website were utilized for bibliometric analysis. The primary evaluations encompassed investigating the major contributors and their collaborative relationships among countries/regions, institutions, and authors, conducting co-citation analyses of authors, journals, as well as reference, examining reference bursts, as well as performing co-occurrence analyses of keywords. RESULTS There are 1818 papers with 66,668 citations identified. Both the annual publication and citation counts on LTL exhibited significant upward trends. The United States emerged as the most prominent contributor, as evidenced by the greatest volume of papers and the highest H-index value. University of California San Francisco and Aviv A were identified as the most productive institution and author in this domain, respectively. Reference analysis revealed that longitudinal study and mendelian randomization study are the most concerned research method in this field recently. Keywords analysis showed that the most concerned diseases in LTL fields were aging, inflammation, cardiovascular diseases, endocrine diseases, neurological and psychiatric diseases, and cancers. In addition, the following research directions such as "COPD", "mendelian randomization", "adiposity", "colorectal cancer", "National Health and Nutrition Examination Survey (NHNES)", "telomerase reverse transcriptase", "pregnancy" have garnered increasing attention in recent times and hold the potential to evolve into research foci in the foreseeable future. CONCLUSION This is the first bibliometric study that provides comprehensive overview of LTL research. The findings of this study could become valuable references for investigators to explore and address the current and emerging challenges in LTL research.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hongjie Zhao
- Department of Oncology, Tianjin Medical University Baodi Hospital, Tianjin, China
| | - Guiping Zeng
- Department of Orthopaedic Surgery, Yangxin People's Hospital, Yangxin, 435200, Hubei, China
| | - Jia Yang
- Department of Orthopaedics, Jincheng General Hospital, Jincheng, 048006, Shanxi Province, China
| | - Qipeng Shao
- Department of Orthopaedics, Ganzhou People's Hospital, Ganzhou, China.
| | - Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Geng D, Liu H, Wang H, Wang H. Telomere length exhibits inverse association with migraine among Americans aged 20-50 years, without implications beyond age 50: a cross-sectional study. Sci Rep 2024; 14:22597. [PMID: 39349547 PMCID: PMC11443084 DOI: 10.1038/s41598-024-72675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Migraine, common in individuals under 50 years, is linked to oxidative stress. The association between telomere length shortening and migraine, along with potential age-related influences, has not been comprehensively studied. This cross-sectional study included data from 6169 participants in the National Health and Nutrition Survey (NHANES) from 1999 to 2002, encompassing information on peripheral blood leukocyte telomere length, severe headache or migraine, and potential confounders. Stratifying by age (20-50 years, > 50 years), we employed multivariable logistic regression, restricted cubic splines and interaction test to investigate age-influenced telomere length in relation to migraine. In participants aged 20-50 years, the odds ratio (OR) for migraine in the shortest telomere length group T1 (0.39-0.89) was 1.35 (95% confidence interval [95% CI] 1.01, 1.79) compared to the longest group T3 (1.10-9.42), whereas in those aged > 50 years, the OR of T1 was 0.93 (95% CI 0.60, 1.43). Additionally, telomere length and age interacted in the development of migraine (p for interaction: 0.010). In individuals aged 20-50, an L-shaped relationship was found between telomere length and migraine, with an inflection point at 1.02T/S ratio. The OR was 9.34 (95% CI 1.56, 55.99) for telomere lengths < 1.02T/S ratio. These findings suggest age influences the association between telomere length and migraine in U.S. adults.
Collapse
Affiliation(s)
- Dandan Geng
- Department of Neurology, Hebei General Hospital affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huanxian Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Haoyuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital affiliated to Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Cerebral Network and Cognitive Disorders, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
7
|
Vasantharekha R, Priyanka HP, Nair RS, Hima L, Pratap UP, Srinivasan AV, ThyagaRajan S. Alterations in Immune Responses Are Associated with Dysfunctional Intracellular Signaling in Peripheral Blood Mononuclear Cells of Men and Women with Mild Cognitive Impairment and Alzheimer's disease. Mol Neurobiol 2024; 61:2964-2977. [PMID: 37957423 DOI: 10.1007/s12035-023-03764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Deficits in the neuroendocrine-immune network in the periphery associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer's disease (AD) have not been extensively studied. The present study correlatively examines the association between cell-mediated immune responses, stress hormones, amyloid precursor protein (APP) expression, peripheral blood mononuclear cells (PBMC), and intracellular signaling molecules in the pathophysiology of MCI and AD compared to adults. Serum APP, lymphocyte proliferation, total cholinesterase (TChE), butyrylcholinesterase (BChE) activities, cytokines (IL-2, IFN-γ, IL-6, and TNF-α), and intracellular signaling molecules (p-ERK, p-CREB, and p-Akt) were measured in the PBMCs of adult, old, MCI, and AD men and women initially and after 3 years in the same population. An age- and disease-associated decline in mini-mental state examination (MMSE) scores and lymphocyte proliferation of MCI and AD men and women were observed. An age- and disease-related increase in serum APP, cortisol levels, and TChE activity were observed in men and women. Enhanced production of Th1 cytokine, IL-2, pro-inflammatory cytokines, and suppressed intracellular transcription factors may promote the inflammatory environment in MCI and AD patients. The expression of CREB and Akt was lower in MCI and AD men, while the expression of p-ERK was higher, and p-CREB was lower in MCI and AD women after 3 years. These results suggest that changes in specific intracellular signaling pathways may influence alterations in cell-mediated immunity to promote disease progression in MCI and AD patients.
Collapse
Affiliation(s)
- Ramasamy Vasantharekha
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Hannah P Priyanka
- Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai, Tamil Nadu, India
| | - Rahul S Nair
- Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai, Tamil Nadu, India
| | - Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India
| | | | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
8
|
Wolf SE, Hastings WJ, Ye Q, Etzel L, Apsley AT, Chiaro C, Heim CC, Heller T, Noll JG, Schreier HMC, Shenk CE, Shalev I. Cross-tissue comparison of telomere length and quality metrics of DNA among individuals aged 8 to 70 years. PLoS One 2024; 19:e0290918. [PMID: 38386656 PMCID: PMC10883573 DOI: 10.1371/journal.pone.0290918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Telomere length (TL) is an important biomarker of cellular aging, yet its links with health outcomes may be complicated by use of different tissues. We evaluated within- and between-individual variability in TL and quality metrics of DNA across five tissues using a cross-sectional dataset ranging from 8 to 70 years (N = 197). DNA was extracted from all tissue cells using the Gentra Puregene DNA Extraction Kit. Absolute TL (aTL) in kilobase pairs was measured in buccal epithelial cells, saliva, dried blood spots (DBS), buffy coat, and peripheral blood mononuclear cells (PBMCs) using qPCR. aTL significantly shortened with age for all tissues except saliva and buffy coat, although buffy coat was available for a restricted age range (8 to 15 years). aTL did not significantly differ across blood-based tissues (DBS, buffy coat, PBMC), which had significantly longer aTL than buccal cells and saliva. Additionally, aTL was significantly correlated for the majority of tissue pairs, with partial Spearman's correlations controlling for age and sex ranging from ⍴ = 0.18 to 0.51. We also measured quality metrics of DNA including integrity, purity, and quantity of extracted DNA from all tissues and explored whether controlling for DNA metrics improved predictions of aTL. We found significant tissue variation: DNA from blood-based tissues had high DNA integrity, more acceptable A260/280 and A260/230 values, and greater extracted DNA concentrations compared to buccal cells and saliva. Longer aTL was associated with lower DNA integrity, higher extracted DNA concentrations, and higher A260/230, particularly for saliva. Model comparisons suggested that incorporation of quality DNA metrics improves models of TL, although relevant metrics vary by tissue. These findings highlight the merits of using blood-based tissues and suggest that incorporation of quality DNA metrics as control variables in population-based studies can improve TL predictions, especially for more variable tissues like buccal and saliva.
Collapse
Affiliation(s)
- Sarah E. Wolf
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, United States of America
| | - Waylon J. Hastings
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, United States of America
- Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Qiaofeng Ye
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, United States of America
| | - Laura Etzel
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, United States of America
| | - Abner T. Apsley
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, United States of America
| | - Christopher Chiaro
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, United States of America
| | - Christine C. Heim
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Medical Psychology, Berlin, Germany
| | - Thomas Heller
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, United States of America
| | - Jennie G. Noll
- Department of Psychology, University of Rochester, Rochester, NY, United States of America
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States of America
| | - Hannah M. C. Schreier
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, United States of America
| | - Chad E. Shenk
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States of America
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
9
|
Rehkopf DH, Wojcicki JM, Haydel KF, Lin J, Smith DL, Kapphahn KI, Robinson TN. Changes in leukocyte telomere length among children with obesity participating in a behavioural weight control program. Pediatr Obes 2023; 18:e13082. [PMID: 37873898 PMCID: PMC10843039 DOI: 10.1111/ijpo.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE To examine changes in leukocyte telomere length (LTL) during and after a behavioural weight control program for children with obesity. METHODS We measured LTL among a cohort of 158 children 8-12 years of age with a body mass index greater than or equal to the 95th percentile for age and sex. Children were 55% female, 29% white, 52% Latinx, 8% Asian and 11% Pacific Islander, other or multiethnic. All children participated in a 6-month, family-based, group behavioural weight control program and were assessed before treatment, after treatment and 1 year after the end of treatment. To test the sample population slope of LTL over the intervention and maintenance time periods, we fit spline mixed-effect regression models. RESULTS LTL increased an average of 0.09 T/S units per year (95% confidence interval [CI] 0.04 to 0.13; p = 0.0001) during the weight control program intervention period, followed by an average decline of -0.05 T/S units per year (95% CI -0.08 to -0.03; p < 0.0001) during the 1 year of follow-up after the completion of the intervention. Among 26 social, psychological, behavioural and physiological factors we examined, we did not find any predictors of these changes. CONCLUSIONS LTL increased in response to a behavioural weight control program among children with obesity, suggesting an impact on biological health and cellular aging from participation in a behavioural weight control intervention. LTL may be a useful biomarker for assessing changes in response to behavioural interventions.
Collapse
Affiliation(s)
- David H Rehkopf
- Departments of Epidemiology and Population Health, Medicine, Pediatrics and Sociology, Stanford University
| | - Janet M. Wojcicki
- Departments of Pediatrics and Epidemiology and Biostatistics, University of California San Francisco
| | | | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco
| | - Dana L. Smith
- Department of Biochemistry and Biophysics, University of California San Francisco
| | | | - Thomas N. Robinson
- Departments of Pediatrics and Medicine and by courtesy Epidemiology and Population Health, Stanford University
| |
Collapse
|
10
|
Martinez S, Jones JD. A pilot study examining the relationship between chronic heroin use and telomere length among individuals of African ancestry. Pharmacol Biochem Behav 2023; 231:173631. [PMID: 37689117 PMCID: PMC10545475 DOI: 10.1016/j.pbb.2023.173631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Prior research has suggested a possible link between heroin use and shortened telomere length (TL), a marker of cellular aging and genomic stability. We sought to replicate these findings by examining the relationship between TL and heroin use among individuals of African ancestry. METHODS This cross-sectional study examined TL among 57 participants [17.5 % female; mean age 48.0 (±6.80) years] of African ancestry with Opioid Use Disorder (OUD) and a mean heroin use duration of 18.2 (±10.7) years. Quantitative polymerase chain reaction (qPCR) was used to calculate TL as the ratio between telomere repeat copy number (T) and a single-copy gene, copy number (S). The primary dependent variable was TL (T/S Ratio) measured in kilobase pairs. Covariates included heroin use years and personality traits. Using a hybrid approach, multiple linear regression and Bayesian linear regression examined the association of chronological age, heroin use years and personality traits with TL. RESULTS The multiple linear regression model fit the data well, R2 = 0.265, F(7,49) = 2.53, p < .026. Chronological age (β = -0.36, p = .017), neuroticism (β = 0.46, p = .044), and conscientiousness (β = 0.52, p = .040) were significant predictors of TL. Bayesian linear regression provided moderate support for the alternate hypothesis that chronological age and TL are associated, BF10 = 5.77, R2 = 0.120. The posterior summary of the coefficient was M = 0.719 (SD = 0.278, 95 % credible interval [-1.28, -0.163]). CONCLUSIONS Contrary to prior studies, these findings suggest that heroin use duration may not be significantly associated with TL among individuals of African ancestry, highlighting the need for more rigorous research to elucidate the complexity of this relationship.
Collapse
Affiliation(s)
- Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
11
|
Jones JD, Martinez S, Gonzalez I, Odom GJ, Comer SD. No evidence of accelerated epigenetic aging among black heroin users: A case vs control analysis. ADDICTION NEUROSCIENCE 2023; 7:100096. [PMID: 37388854 PMCID: PMC10305791 DOI: 10.1016/j.addicn.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
This study sought to assess the association between illicit opioid use and accelerated epigenetic aging (A.K.A. DNAm Age) among people of African ancestry who use heroin. DNA was obtained from participants with opioid use disorder (OUD) who confirmed heroin as their primary drug of choice. Clinical inventories of drug use included: the Addiction Severity Index (ASI) Drug-Composite Score (range: 0-1), and Drug Abuse Screening Test (DAST-10; range: 0-10). A control group of participants of African ancestry who did not use heroin was recruited and matched to heroin users on sex, age, socioeconomic level, and smoking status. Methylation data were assessed in an epigenetic clock to determined and compare Epigenetic Age to Chronological Age (i.e., age acceleration or deceleration). Data were obtained from 32 controls [mean age 36.3 (±7.5) years] and 64 heroin users [mean age 48.1 (±6.6) years]. The experimental group used heroin for an average of 18.1 (±10.6) years, reported use of 6.4 (±6.1) bags of heroin/day, with a mean DAST-10 score of 7.0 (±2.6) and ASI Score of 0.33 (±0.19). Mean age acceleration for heroin users [+0.56 (± 9.5) years] was significantly (p< 0.05) lower than controls [+5.19 (± 9.1) years]. This study did not find evidence that heroin use causes epigenetic age acceleration.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Ingrid Gonzalez
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Gabriel J. Odom
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Sandra D. Comer
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
12
|
Doherty T, Dempster E, Hannon E, Mill J, Poulton R, Corcoran D, Sugden K, Williams B, Caspi A, Moffitt TE, Delany SJ, Murphy TM. A comparison of feature selection methodologies and learning algorithms in the development of a DNA methylation-based telomere length estimator. BMC Bioinformatics 2023; 24:178. [PMID: 37127563 PMCID: PMC10152624 DOI: 10.1186/s12859-023-05282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The field of epigenomics holds great promise in understanding and treating disease with advances in machine learning (ML) and artificial intelligence being vitally important in this pursuit. Increasingly, research now utilises DNA methylation measures at cytosine-guanine dinucleotides (CpG) to detect disease and estimate biological traits such as aging. Given the challenge of high dimensionality of DNA methylation data, feature-selection techniques are commonly employed to reduce dimensionality and identify the most important subset of features. In this study, our aim was to test and compare a range of feature-selection methods and ML algorithms in the development of a novel DNA methylation-based telomere length (TL) estimator. We utilised both nested cross-validation and two independent test sets for the comparisons. RESULTS We found that principal component analysis in advance of elastic net regression led to the overall best performing estimator when evaluated using a nested cross-validation analysis and two independent test cohorts. This approach achieved a correlation between estimated and actual TL of 0.295 (83.4% CI [0.201, 0.384]) on the EXTEND test data set. Contrastingly, the baseline model of elastic net regression with no prior feature reduction stage performed less well in general-suggesting a prior feature-selection stage may have important utility. A previously developed TL estimator, DNAmTL, achieved a correlation of 0.216 (83.4% CI [0.118, 0.310]) on the EXTEND data. Additionally, we observed that different DNA methylation-based TL estimators, which have few common CpGs, are associated with many of the same biological entities. CONCLUSIONS The variance in performance across tested approaches shows that estimators are sensitive to data set heterogeneity and the development of an optimal DNA methylation-based estimator should benefit from the robust methodological approach used in this study. Moreover, our methodology which utilises a range of feature-selection approaches and ML algorithms could be applied to other biological markers and disease phenotypes, to examine their relationship with DNA methylation and predictive value.
Collapse
Affiliation(s)
- Trevor Doherty
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland.
- SFI Centre for Research Training in Machine Learning, Technological University Dublin, Dublin, Ireland.
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Richie Poulton
- Department of Psychology, University of Otago, Dunedin, 9016, New Zealand
| | - David Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Ben Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Avshalom Caspi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Terrie E Moffitt
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Sarah Jane Delany
- School of Computer Science, Technological University Dublin, Dublin, Ireland
| | - Therese M Murphy
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Drewelies J, Hueluer G, Duezel S, Vetter VM, Pawelec G, Steinhagen-Thiessen E, Wagner GG, Lindenberger U, Lill CM, Bertram L, Gerstorf D, Demuth I. Using blood test parameters to define biological age among older adults: association with morbidity and mortality independent of chronological age validated in two separate birth cohorts. GeroScience 2022; 44:2685-2699. [PMID: 36151431 PMCID: PMC9768057 DOI: 10.1007/s11357-022-00662-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023] Open
Abstract
Biomarkers defining biological age are typically laborious or expensive to assess. Instead, in the current study, we identified parameters based on standard laboratory blood tests across metabolic, cardiovascular, inflammatory, and kidney functioning that had been assessed in the Berlin Aging Study (BASE) (n = 384) and Berlin Aging Study II (BASE-II) (n = 1517). We calculated biological age using those 12 parameters that individually predicted mortality hazards over 26 years in BASE. In BASE, older biological age was associated with more physician-observed morbidity and higher mortality hazards, over and above the effects of chronological age, sex, and education. Similarly, in BASE-II, biological age was associated with physician-observed morbidity and subjective health, over and above the effects of chronological age, sex, and education as well as alternative biomarkers including telomere length, DNA methylation age, skin age, and subjective age but not PhenoAge. We discuss the importance of biological age as one indicator of aging.
Collapse
Affiliation(s)
- Johanna Drewelies
- Humboldt University of Berlin, Berlin, Germany.
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | | | - Sandra Duezel
- Max Planck Institute for Human Development, Berlin, Germany
| | - Valentin Max Vetter
- Humboldt University of Berlin, Berlin, Germany
- Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Graham Pawelec
- University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | | | - Gert G Wagner
- Max Planck Institute for Human Development, Berlin, Germany
- German Institute for Economic Research (DIW Berlin), Berlin, Germany
| | - Ulman Lindenberger
- Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany
- Ageing and Epidemiology Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Denis Gerstorf
- Humboldt University of Berlin, Berlin, Germany
- German Institute for Economic Research (DIW Berlin), Berlin, Germany
| | - Ilja Demuth
- Charite - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Jung J, McCartney DL, Wagner J, Rosoff DB, Schwandt M, Sun H, Wiers CE, de Carvalho LM, Volkow ND, Walker RM, Campbell A, Porteous DJ, McIntosh AM, Marioni RE, Horvath S, Evans KL, Lohoff FW. Alcohol use disorder is associated with DNA methylation-based shortening of telomere length and regulated by TESPA1: implications for aging. Mol Psychiatry 2022; 27:3875-3884. [PMID: 35705636 PMCID: PMC9708583 DOI: 10.1038/s41380-022-01624-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Chronic heavy alcohol consumption is associated with increased mortality and morbidity and often leads to premature aging; however, the mechanisms of alcohol-associated cellular aging are not well understood. In this study, we used DNA methylation derived telomere length (DNAmTL) as a novel approach to investigate the role of alcohol use on the aging process. DNAmTL was estimated by 140 cytosine phosphate guanines (CpG) sites in 372 individuals with alcohol use disorder (AUD) and 243 healthy controls (HC) and assessed using various endophenotypes and clinical biomarkers. Validation in an independent sample of DNAmTL on alcohol consumption was performed (N = 4219). Exploratory genome-wide association studies (GWAS) on DNAmTL were also performed to identify genetic variants contributing to DNAmTL shortening. Top GWAS findings were analyzed using in-silico expression quantitative trait loci analyses and related to structural MRI hippocampus volumes of individuals with AUD. DNAmTL was 0.11-kilobases shorter per year in AUD compared to HC after adjustment for age, sex, race, and blood cell composition (p = 4.0 × 10-12). This association was partially attenuated but remained significant after additionally adjusting for BMI, and smoking status (0.06 kilobases shorter per year, p = 0.002). DNAmTL shortening was strongly associated with chronic heavy alcohol use (ps < 0.001), elevated gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) (ps < 0.004). Comparison of DNAmTL with PCR-based methods of assessing TL revealed positive correlations (R = 0.3, p = 2.2 × 10-5), highlighting the accuracy of DNAmTL as a biomarker. The GWAS meta-analysis identified a single nucleotide polymorphism (SNP), rs4374022 and 18 imputed ones in Thymocyte Expressed, Positive Selection Associated 1(TESPA1), at the genome-wide level (p = 3.75 × 10-8). The allele C of rs4374022 was associated with DNAmTL shortening, lower hippocampus volume (p < 0.01), and decreased mRNA expression in hippocampus tissue (p = 0.04). Our study demonstrates DNAmTL-related aging acceleration in AUD and suggests a functional role for TESPA1 in regulating DNAmTL length, possibly via the immune system with subsequent biological effects on brain regions negatively affected by alcohol and implicated in aging.
Collapse
Affiliation(s)
- Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Melanie Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hui Sun
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Luana Martins de Carvalho
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Pearce EE, Alsaggaf R, Katta S, Dagnall C, Aubert G, Hicks BD, Spellman SR, Savage SA, Horvath S, Gadalla SM. Telomere length and epigenetic clocks as markers of cellular aging: a comparative study. GeroScience 2022; 44:1861-1869. [PMID: 35585300 DOI: 10.1007/s11357-022-00586-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Telomere length (TL) and DNA methylation-based epigenetic clocks are markers of biological age, but the relationship between the two is not fully understood. Here, we used multivariable regression models to evaluate the relationships between leukocyte TL (LTL; measured by qPCR [n = 635] or flow FISH [n = 144]) and five epigenetic clocks (Hannum, DNAmAge pan-tissue, PhenoAge, SkinBlood, or GrimAge clocks), or their epigenetic age acceleration measures in healthy adults (age 19-61 years). LTL showed statistically significant negative correlations with all clocks (qPCR: r = - 0.26 to - 0.32; flow FISH: r = - 0.34 to - 0.49; p < 0.001 for all). Yet, models adjusted for age, sex, and race revealed significant associations between three of five clocks (PhenoAge, GrimAge, and Hannum clocks) and LTL by flow FISH (p < 0.01 for all) or qPCR (p < 0.001 for all). Significant associations between age acceleration measures for the same three clocks and qPCR or flow FISH TL were also found (p < 0.01 for all). Additionally, LTL (by qPCR or flow FISH) showed significant associations with extrinsic epigenetic age acceleration (EEAA: p < 0.0001 for both), but not intrinsic epigenetic age acceleration (IEAA; p > 0.05 for both). In conclusion, the relationships between LTL and epigenetic clocks were limited to clocks reflecting phenotypic age. The observed association between LTL and EEAA reflects the ability of both measures to detect immunosenescence. The observed modest correlations between LTL and epigenetic clocks highlight a possible benefit from incorporating both measures in understanding disease etiology and prognosis.
Collapse
Affiliation(s)
- Emily E Pearce
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shilpa Katta
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Casey Dagnall
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, 55401, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
16
|
Carroll JE, Ross KM, Horvath S, Okun M, Hobel C, Rentscher KE, Coussons-Read M, Schetter CD. Postpartum sleep loss and accelerated epigenetic aging. Sleep Health 2021; 7:362-367. [PMID: 33903077 PMCID: PMC10027398 DOI: 10.1016/j.sleh.2021.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Insufficient sleep has been linked to accelerated biological aging in adults, providing a possible mechanism through which sleep may influence disease risk. In the current paper, we test the hypothesis that short sleep in postpartum would predict older biological age in women one year post birth, as indicated by accelerated epigenetic aging. METHODS As part of a larger study of pregnancy and postpartum health (Healthy Babies Before Birth, HB3), 33 mothers provided blood samples for epigenetic aging clock estimates. intrinsic epigenetic age acceleration (IEAA), extrinsic apigenetic age acceleration, phenotypic epigenetic age acceleration (PEAA), GrimAge, DNAmPAI-1, and DNAm telomere length (TL) were calculated using established protocols. Sleep duration was categorized as insufficient sleep (<7 hours per night) or healthy sleep duration (7+ hours per night). Sleep quality was determined using the Pittsburgh Sleep Quality Index (Global score >5). RESULTS Maternal postpartum sleep duration at 6 months, but not 12 months, following a birth was predictive of older 12-month IEAA, B (SE) = 3.0 (1.2), P = .02, PEAA, B (SE) = 7.3 (2.0), P = .002, and DNAmTL, B (SE) = -0.18 (0.07), P = .01, but not other indices, all P> .127. Self-reported poor sleep quality at 6 and 12 months was not significantly related to epigenetic age. CONCLUSIONS These findings suggest that insufficient sleep duration during the early postpartum period is associated with accelerated biological aging. As the sample size is small, additional research is warranted with a larger sample size to replicate these findings.
Collapse
Affiliation(s)
- Judith E Carroll
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA.
| | - Kharah M Ross
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Steve Horvath
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
| | - Michele Okun
- Department of Psychology, University of Colorado, Colorado Springs, Colorado Springs, Colorado, USA
| | - Calvin Hobel
- Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kelly E Rentscher
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Mary Coussons-Read
- Department of Psychology, University of Colorado, Colorado Springs, Colorado Springs, Colorado, USA
| | | |
Collapse
|
17
|
Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol 2021; 22:687-698. [PMID: 33986548 DOI: 10.1038/s41590-021-00927-z] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Cerveira de Baumont A, Hoffmann MS, Bortoluzzi A, Fries GR, Lavandoski P, Grun LK, Guimarães LSP, Guma FTCR, Salum GA, Barbé-Tuana FM, Manfro GG. Telomere length and epigenetic age acceleration in adolescents with anxiety disorders. Sci Rep 2021; 11:7716. [PMID: 33833304 PMCID: PMC8032711 DOI: 10.1038/s41598-021-87045-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Evidence on the relationship between genetics and mental health are flourishing. However, few studies are evaluating early biomarkers that might link genes, environment, and psychopathology. We aimed to study telomere length (TL) and epigenetic age acceleration (AA) in a cohort of adolescents with and without anxiety disorders (N = 234). We evaluated a representative subsample of participants at baseline and after 5 years (n = 76) and categorized them according to their anxiety disorder diagnosis at both time points: (1) control group (no anxiety disorder, n = 18), (2) variable group (anxiety disorder in one evaluation, n = 38), and (3) persistent group (anxiety disorder at both time points, n = 20). We assessed relative mean TL by real-time quantitative PCR and DNA methylation by Infinium HumanMethylation450 BeadChip. We calculated AA using the Horvath age estimation algorithm and analyzed differences among groups using generalized linear mixed models. The persistent group of anxiety disorder did not change TL over time (p = 0.495). The variable group had higher baseline TL (p = 0.003) but no accelerated TL erosion in comparison to the non-anxiety control group (p = 0.053). Furthermore, there were no differences in AA among groups over time. Our findings suggest that adolescents with chronic anxiety did not change telomere length over time, which could be related to a delay in neuronal development in this period of life.
Collapse
Affiliation(s)
- Angelica Cerveira de Baumont
- Anxiety Disorders Outpatient Program for Children and Adolescents, Protaia, Federal University of Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.
- Basic Research and Advanced Investigations in Neurosciences, BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.
- Serviço de Psiquiatria, Hospital de Clínicas de Porto Alegre, HCPA, Rua Ramiro Barcelos, 2350-sala 400N, Rio Branco, Porto Alegre, RS, 90035-903, Brazil.
| | - Mauricio Scopel Hoffmann
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, 97105-900, Brazil
- Care Policy and Evaluation Centre, London School of Economics and Political Science, London, UK
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes (INPD), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Porto Alegre, RS, Brazil
| | - Andressa Bortoluzzi
- Anxiety Disorders Outpatient Program for Children and Adolescents, Protaia, Federal University of Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Institute of Basic Sciences/Health, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Basic Research and Advanced Investigations in Neurosciences, BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, (UTHealth), Houston, TX, USA
| | - Patrícia Lavandoski
- Graduate Program in Biochemistry, Laboratoy of Molecular Biology and Bioinformatics, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Lucas K Grun
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Postgraduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luciano S P Guimarães
- Unit of Epidemiology and Biostatistics, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Fátima T C R Guma
- Graduate Program in Biochemistry, Laboratoy of Molecular Biology and Bioinformatics, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Giovanni Abrahão Salum
- Anxiety Disorders Outpatient Program for Children and Adolescents, Protaia, Federal University of Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes (INPD), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Porto Alegre, RS, Brazil
| | - Florencia M Barbé-Tuana
- Graduate Program in Biochemistry, Laboratoy of Molecular Biology and Bioinformatics, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Graduate Program in Cellular and Molecular Biology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Gisele G Manfro
- Anxiety Disorders Outpatient Program for Children and Adolescents, Protaia, Federal University of Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Institute of Basic Sciences/Health, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Basic Research and Advanced Investigations in Neurosciences, BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes (INPD), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Alsaggaf R, Katta S, Wang T, Hicks BD, Zhu B, Spellman SR, Lee SJ, Horvath S, Gadalla SM. Epigenetic Aging and Hematopoietic Cell Transplantation in Patients With Severe Aplastic Anemia. Transplant Cell Ther 2021; 27:313.e1-313.e8. [PMID: 33836872 PMCID: PMC8036238 DOI: 10.1016/j.jtct.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/13/2021] [Indexed: 01/17/2023]
Abstract
Cellular aging in hematopoietic cell transplantation (HCT) is important in the context of immune reconstitution and age-related complications. Recently, several DNA-methylation (DNAm)-based biomarkers of aging known as "epigenetic clocks" have been introduced as novel tools to predict cellular age. Here, we used Cox proportional hazards models to assess the possible associations of donor pre-HCT DNAm age, and its post-HCT changes, using the recently published lifespan-associated epigenetic clock known as "DNAm-GrimAge," with outcomes among patients with severe aplastic anemia (SAA). The study included 732 SAA patients from the Transplant Outcomes in Aplastic Anemia project, who underwent unrelated donor HCT and for whom a donor pre-HCT blood DNA sample was available; 41 also had a post-HCT sample collected at day 100. In multivariable analyses, we found similar associations for donor chronological age and pre-HCT DNAm-GrimAge with post-HCT survival (hazard ratio [HR] per decade = 1.13; 95% confidence interval [CI], 0.99-1.28; P = .07 and HR = 1.14; 95% CI, 0.99-1.28; P = .06, respectively). In donors with 10+ years of GrimAge acceleration (ie, deviation from expected DNAm age for chronological age), elevated risks of chronic graft versus host disease (HR = 2.4; 95% CI, 1.21-4.65; P = .01) and possibly post-HCT mortality (HR = 1.79; 95% CI, 0.96-3.33; P = .07) were observed. In the subset with post-HCT samples, we observed a significant increase in DNAm-GrimAge in the first 100 days after HCT (median change 12.5 years, range 1.4 to 26.4). Higher DNAm-GrimAge after HCT was associated with inferior survival (HR per year = 1.11; 95% CI, 1.02-1.21; P = .01), predominantly within the first year after HCT. This study highlights the possible role cellular aging may play in HCT outcomes.
Collapse
Affiliation(s)
- Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shilpa Katta
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Bin Zhu
- Biostatistics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Steve Horvath
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
20
|
Jansen R, Han LKM, Verhoeven JE, Aberg KA, van den Oord ECGJ, Milaneschi Y, Penninx BWJH. An integrative study of five biological clocks in somatic and mental health. eLife 2021; 10:e59479. [PMID: 33558008 PMCID: PMC7872513 DOI: 10.7554/elife.59479] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Biological clocks have been developed at different molecular levels and were found to be more advanced in the presence of somatic illness and mental disorders. However, it is unclear whether different biological clocks reflect similar aging processes and determinants. In ~3000 subjects, we examined whether five biological clocks (telomere length, epigenetic, transcriptomic, proteomic, and metabolomic clocks) were interrelated and associated to somatic and mental health determinants. Correlations between biological aging indicators were small (all r < 0.2), indicating little overlap. The most consistent associations of advanced biological aging were found for male sex, higher body mass index (BMI), metabolic syndrome, smoking, and depression. As compared to the individual clocks, a composite index of all five clocks showed most pronounced associations with health determinants. The large effect sizes of the composite index and the low correlation between biological aging indicators suggest that one's biological age is best reflected by combining aging measures from multiple cellular levels.
Collapse
Affiliation(s)
- Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamNetherlands
| | - Laura KM Han
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamNetherlands
| | - Josine E Verhoeven
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamNetherlands
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth UniversityRichmondUnited States
| | - Edwin CGJ van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth UniversityRichmondUnited States
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamNetherlands
| | - Brenda WJH Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute and Amsterdam NeuroscienceAmsterdamNetherlands
| |
Collapse
|
21
|
Vaiserman A, Krasnienkov D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front Genet 2021; 11:630186. [PMID: 33552142 PMCID: PMC7859450 DOI: 10.3389/fgene.2020.630186] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Telomere shortening is a well-known hallmark of both cellular senescence and organismal aging. An accelerated rate of telomere attrition is also a common feature of age-related diseases. Therefore, telomere length (TL) has been recognized for a long time as one of the best biomarkers of aging. Recent research findings, however, indicate that TL per se can only allow a rough estimate of aging rate and can hardly be regarded as a clinically important risk marker for age-related pathologies and mortality. Evidence is obtained that other indicators such as certain immune parameters, indices of epigenetic age, etc., could be stronger predictors of the health status and the risk of chronic disease. However, despite these issues and limitations, TL remains to be very informative marker in accessing the biological age when used along with other markers such as indices of homeostatic dysregulation, frailty index, epigenetic clock, etc. This review article is aimed at describing the current state of the art in the field and at discussing recent research findings and divergent viewpoints regarding the usefulness of leukocyte TL for estimating the human biological age.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| | - Dmytro Krasnienkov
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| |
Collapse
|
22
|
Mathematical Connection between Short Telomere Induced Senescence Calculation and Mortality Rate Data. Int J Mol Sci 2020; 21:ijms21217959. [PMID: 33120877 PMCID: PMC7663577 DOI: 10.3390/ijms21217959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
The last 20 years have seen a surge in scientific activity and promising results in the study of aging and longevity. Many researchers have focused on telomeres, which are composed of a series of TTAGGG repeat nucleotide sequences at the ends of each chromosome. Measurements of the length of these telomere strands show that they decrease in length with increasing age, leading many authors to propose that when the length of these telomere strands decreases sufficiently, the cells enter into a state of replicative senescence, eventually leading to disease and death. These ideas are supported by evidence that short telomere length is correlated with increased mortality. In this paper, we extend this idea to make an actual calculation of the predicted mortality rate caused by short telomere length induced senescence (STLIS). We derive a simple equation for the mathematical relationship between telomere length and mortality rate. Using only three parameters based on telomere length measurement data of Canadians, we have calculated both the magnitude and the age dependence of the mortality rate for both men and women. We show that these calculated data are in good quantitative agreement with the actual number of Canadians that die. This agreement demonstrates the quantitative correlation between the mortality calculated by the STLIS model and the mortality of the major diseases of aging (e.g., cardiovascular disease, many cancers and diabetes mellitus), which dominate human mortality. This result represents significant progress in our understanding of the factors behind the cause of aging.
Collapse
|
23
|
Lee SH, Patel PC, Phan PH. Are the self-employed more stressed? New evidence on an old question. JOURNAL OF SMALL BUSINESS MANAGEMENT 2020. [DOI: 10.1080/00472778.2020.1796467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Soo Hoon Lee
- Strome College of Business, Old Dominion University, USA
| | | | | |
Collapse
|
24
|
Fries GR, Bauer IE, Scaini G, Valvassori SS, Walss-Bass C, Soares JC, Quevedo J. Accelerated hippocampal biological aging in bipolar disorder. Bipolar Disord 2020; 22:498-507. [PMID: 31746071 DOI: 10.1111/bdi.12876] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Evidence suggests accelerated aging mechanisms in bipolar disorder (BD), including DNA methylation (DNAm) aging in blood. However, it is unknown whether such mechanisms are also evident in the brain, in particular in association with other biological clocks. To investigate this, we interrogated genome-wide DNAm in postmortem hippocampus from 32 BD-I patients and 32 non-psychiatric controls group-matched for age and sex from the NIMH Human Brain Collection Core. METHODS DNAm age and epigenetic aging acceleration were estimated using the Horvath method. Telomere length (TL) and mitochondrial DNA (mtDNA) copy number were quantified by real-time PCR. Between-group differences were assessed by linear regression and univariate general linear models with age, sex, race, postmortem interval, tissue pH, smoking, and body mass index included as co-variates. RESULTS Groups did not differ for epigenetic aging acceleration when considering the entire sample. However, after splitting the sample by the median age, an epigenetic aging acceleration was detected in patients compared to controls among older subjects (P = .042). While TL did not differ between groups, a reduction in mtDNA copy number was observed in patients compared to controls (P = .047). In addition, significant correlations were observed between epigenetic aging acceleration and TL (r = -.337, P = .006), as well as between TL and mtDNA copy number (r = .274, P = .028). CONCLUSIONS Hippocampal aging may underlie neurocognitive dysfunctions observed in BD patients. Moreover, our results suggest a complex cross-talk between biological clocks in hippocampus that may underlie clinical manifestations of premature aging in BD.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Isabelle E Bauer
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jair C Soares
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| |
Collapse
|
25
|
DNA methylation-based age prediction and telomere length in white blood cells and cumulus cells of infertile women with normal or poor response to ovarian stimulation. Aging (Albany NY) 2019; 10:3761-3773. [PMID: 30530921 PMCID: PMC6326671 DOI: 10.18632/aging.101670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
An algorithm assessing the methylation levels of 353 informative CpG sites in the human genome permits accurate prediction of the chronologic age of a subject. Interestingly, when there is discrepancy between the predicted age and chronologic age (age acceleration or "AgeAccel"), patients are at risk for morbidity and mortality. Identification of infertile patients at risk for accelerated reproductive senescence may permit preventative action. This study aimed to assess the accuracy of the "epigenetic clock" concept in reproductive age women undergoing fertility treatment by applying the age prediction algorithm in peripheral (white blood cells [WBCs]) and follicular somatic cells (cumulus cells [CCs]), and to identify whether women with premature reproductive aging (diminished ovarian reserve) were at risk of AgeAccel in their age prediction. Results indicated that the epigenetic algorithm accurately predicts age when applied to WBCs but not to CCs. The age prediction of CCs was substantially younger than chronologic age regardless of the patient's age or response to stimulation. In addition, telomeres of CCs were significantly longer than that of WBCs. Our findings suggest that CCs do not demonstrate changes in methylome-predicted age or telomere-length in association with increasing female age or ovarian response to stimulation.
Collapse
|
26
|
Vetter VM, Meyer A, Karbasiyan M, Steinhagen-Thiessen E, Hopfenmüller W, Demuth I. Epigenetic Clock and Relative Telomere Length Represent Largely Different Aspects of Aging in the Berlin Aging Study II (BASE-II). J Gerontol A Biol Sci Med Sci 2019; 74:27-32. [PMID: 30137208 DOI: 10.1093/gerona/gly184] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Indexed: 01/25/2023] Open
Abstract
DNA methylation age (DNAm age; "epigenetic clock") has recently been described as highly correlated with chronological age. Several studies suggest that DNAm age reflects, at least in part, biological age. Here, we adapted a recently published methylation-sensitive single nucleotide primer extension method for epigenetic age estimation and calculated the DNAm age based on only seven cytosine-phosphate-guanine sites in 1,895 DNA samples of the Berlin Aging Study II. In a second step, we explored the relationship between this new potential measure of biological age with an established marker of biological age, relative leukocyte telomere length (rLTL), in the same cohort. Our results showed a positive and significant correlation between DNAm age estimation and chronological age (N = 1,895, Rs2 = .47), which persisted after adjustment for covariates (sex, leukocyte distribution, alcohol and smoking). We found a significant but weak negative association between DNAm age acceleration and rLTL in linear regression analysis adjusted for age, sex, alcohol and smoking (β = -0.002, p = .007). Therefore, DNAm age appears to be a promising biomarker in the analysis of phenotypes of aging, which are not (only) related to pathways associated with mitotic age as measured by rLTL.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Antje Meyer
- Center of Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), at Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Germany
| | - Mohsen Karbasiyan
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Werner Hopfenmüller
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany, Institute of Medical Biometrics and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Germany
| | - Ilja Demuth
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), at Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
27
|
Horvath S, Oshima J, Martin GM, Lu AT, Quach A, Cohen H, Felton S, Matsuyama M, Lowe D, Kabacik S, Wilson JG, Reiner AP, Maierhofer A, Flunkert J, Aviv A, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Ferrucci L, Matsuyama S, Raj K. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging (Albany NY) 2019; 10:1758-1775. [PMID: 30048243 PMCID: PMC6075434 DOI: 10.18632/aging.101508] [Citation(s) in RCA: 437] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/21/2018] [Indexed: 01/01/2023]
Abstract
DNA methylation (DNAm)-based biomarkers of aging have been developed for many tissues and organs. However, these biomarkers have sub-optimal accuracy in fibroblasts and other cell types used in ex vivo studies. To address this challenge, we developed a novel and highly robust DNAm age estimator (based on 391 CpGs) for human fibroblasts, keratinocytes, buccal cells, endothelial cells, lymphoblastoid cells, skin, blood, and saliva samples. High age correlations can also be observed in sorted neurons, glia, brain, liver, and even bone samples. Gestational age correlates with DNAm age in cord blood. When used on fibroblasts from Hutchinson Gilford Progeria Syndrome patients, this age estimator (referred to as the skin & blood clock) uncovered an epigenetic age acceleration with a magnitude that is below the sensitivity levels of other DNAm-based biomarkers. Furthermore, this highly sensitive age estimator accurately tracked the dynamic aging of cells cultured ex vivo and revealed that their proliferation is accompanied by a steady increase in epigenetic age. The skin & blood clock predicts lifespan and it relates to many age-related conditions. Overall, this biomarker is expected to become useful for forensic applications (e.g. blood or buccal swabs) and for a quantitative ex vivo human cell aging assay.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.,Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Austin Quach
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Howard Cohen
- Elizabeth House, Warlingham, Surrey CR6 9LF, United Kingdom
| | - Sarah Felton
- Department of Dermatology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LJ, United Kingdom
| | - Mieko Matsuyama
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Donna Lowe
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, United Kingdom
| | - Sylwia Kabacik
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, United Kingdom
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna Maierhofer
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Julia Flunkert
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Abraham Aviv
- Center of Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Yun Li
- Departments of Genetics, Biostatistics, Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shigemi Matsuyama
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Pathology and Pharmacology, Case Comprehensive Centre, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kenneth Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, United Kingdom
| |
Collapse
|
28
|
Lu AT, Seeboth A, Tsai PC, Sun D, Quach A, Reiner AP, Kooperberg C, Ferrucci L, Hou L, Baccarelli AA, Li Y, Harris SE, Corley J, Taylor A, Deary IJ, Stewart JD, Whitsel EA, Assimes TL, Chen W, Li S, Mangino M, Bell JT, Wilson JG, Aviv A, Marioni RE, Raj K, Horvath S. DNA methylation-based estimator of telomere length. Aging (Albany NY) 2019; 11:5895-5923. [PMID: 31422385 PMCID: PMC6738410 DOI: 10.18632/aging.102173] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
Telomere length (TL) is associated with several aging-related diseases. Here, we present a DNA methylation estimator of TL (DNAmTL) based on 140 CpGs. Leukocyte DNAmTL is applicable across the entire age spectrum and is more strongly associated with age than measured leukocyte TL (LTL) (r ~-0.75 for DNAmTL versus r ~ -0.35 for LTL). Leukocyte DNAmTL outperforms LTL in predicting: i) time-to-death (p=2.5E-20), ii) time-to-coronary heart disease (p=6.6E-5), iii) time-to-congestive heart failure (p=3.5E-6), and iv) association with smoking history (p=1.21E-17). These associations are further validated in large scale methylation data (n=10k samples) from the Framingham Heart Study, Women's Health Initiative, Jackson Heart Study, InChianti, Lothian Birth Cohorts, Twins UK, and Bogalusa Heart Study. Leukocyte DNAmTL is also associated with measures of physical fitness/functioning (p=0.029), age-at-menopause (p=0.039), dietary variables (omega 3, fish, vegetable intake), educational attainment (p=3.3E-8) and income (p=3.1E-5). Experiments in cultured somatic cells show that DNAmTL dynamics reflect in part cell replication rather than TL per se. DNAmTL is not only an epigenetic biomarker of replicative history of cells, but a useful marker of age-related pathologies that are associated with it.
Collapse
Affiliation(s)
- Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anne Seeboth
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Austin Quach
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alex P. Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Yun Li
- Departments of Genetics, Biostatistics, Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Adele Taylor
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - James D. Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Themistocles L. Assimes
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Abraham Aviv
- Center of Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Kenneth Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Han LKM, Verhoeven JE, Tyrka AR, Penninx BWJH, Wolkowitz OM, Månsson KNT, Lindqvist D, Boks MP, Révész D, Mellon SH, Picard M. Accelerating research on biological aging and mental health: Current challenges and future directions. Psychoneuroendocrinology 2019; 106:293-311. [PMID: 31154264 PMCID: PMC6589133 DOI: 10.1016/j.psyneuen.2019.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/22/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Aging is associated with complex biological changes that can be accelerated, slowed, or even temporarily reversed by biological and non-biological factors. This article focuses on the link between biological aging, psychological stressors, and mental illness. Rather than comprehensively reviewing this rapidly expanding field, we highlight challenges in this area of research and propose potential strategies to accelerate progress in this field. This effort requires the interaction of scientists across disciplines - including biology, psychiatry, psychology, and epidemiology; and across levels of analysis that emphasize different outcome measures - functional capacity, physiological, cellular, and molecular. Dialogues across disciplines and levels of analysis naturally lead to new opportunities for discovery but also to stimulating challenges. Some important challenges consist of 1) establishing the best objective and predictive biological age indicators or combinations of indicators, 2) identifying the basis for inter-individual differences in the rate of biological aging, and 3) examining to what extent interventions can delay, halt or temporarily reverse aging trajectories. Discovering how psychological states influence biological aging, and vice versa, has the potential to create novel and exciting opportunities for healthcare and possibly yield insights into the fundamental mechanisms that drive human aging.
Collapse
Affiliation(s)
- Laura K M Han
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Oldenaller 1, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Josine E Verhoeven
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Oldenaller 1, the Netherlands
| | - Audrey R Tyrka
- Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brenda W J H Penninx
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Oldenaller 1, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Owen M Wolkowitz
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Kristoffer N T Månsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden; Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Daniel Lindqvist
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden; Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA; Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - Marco P Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
| | - Dóra Révész
- Center of Research on Psychology in Somatic diseases (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands
| | - Synthia H Mellon
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA; Columbia Aging Center, Columbia University, New York, NY, USA.
| |
Collapse
|
30
|
Abstract
Identifying and validating molecular targets of interventions that extend the human health span and lifespan has been difficult, as most clinical biomarkers are not sufficiently representative of the fundamental mechanisms of ageing to serve as their indicators. In a recent breakthrough, biomarkers of ageing based on DNA methylation data have enabled accurate age estimates for any tissue across the entire life course. These 'epigenetic clocks' link developmental and maintenance processes to biological ageing, giving rise to a unified theory of life course. Epigenetic biomarkers may help to address long-standing questions in many fields, including the central question: why do we age?
Collapse
|
31
|
Banszerus VL, Vetter VM, Salewsky B, König M, Demuth I. Exploring the Relationship of Relative Telomere Length and the Epigenetic Clock in the LipidCardio Cohort. Int J Mol Sci 2019; 20:E3032. [PMID: 31234328 PMCID: PMC6628615 DOI: 10.3390/ijms20123032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/26/2022] Open
Abstract
Telomere length has been accepted widely as a biomarker of aging. Recently, a novel candidate biomarker has been suggested to predict an individual's chronological age with high accuracy: The epigenetic clock is based on the weighted DNA methylation (DNAm) fraction of a number of cytosine-phosphate-guanine sites (CpGs) selected by penalized regression analysis. Here, an established methylation-sensitive single nucleotide primer extension method was adapted, to estimate the epigenetic age of the 1005 participants of the LipidCardio Study, a patient cohort characterised by high prevalence of cardiovascular disease, based on a seven CpGs epigenetic clock. Furthermore, we measured relative leukocyte telomere length (rLTL) to assess the relationship between the established and the promising new measure of biological age. Both rLTL (0.79 ± 0.14) and DNAm age (69.67 ± 7.27 years) were available for 773 subjects (31.6% female; mean chronological age= 69.68 ± 11.01 years; mean DNAm age acceleration = -0.01 ± 7.83 years). While we detected a significant correlation between chronological age and DNAm age (n = 779, R = 0.69), we found neither evidence of an association between rLTL and the DNAm age (β = 3.00, p = 0.18) nor rLTL and the DNAm age acceleration (β = 2.76, p = 0.22) in the studied cohort, suggesting that DNAm age and rLTL measure different aspects of biological age.
Collapse
Affiliation(s)
- Verena L Banszerus
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and the Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, 13353 Berlin, Germany.
| | - Valentin M Vetter
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and the Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, 13353 Berlin, Germany.
| | - Bastian Salewsky
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and the Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, 13353 Berlin, Germany.
| | - Maximilian König
- Medizinische Klinik mit Schwerpunkt Nephrologie und Intensivmedizin, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Ilja Demuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and the Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Medicine (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
32
|
DNA Methylation Age-Environmental Influences, Health Impacts, and Its Role in Environmental Epidemiology. Curr Environ Health Rep 2019; 5:317-327. [PMID: 30047075 DOI: 10.1007/s40572-018-0203-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW DNA methylation-based aging biomarkers are valuable tools for evaluating the aging process from a molecular perspective. These epigenetic aging biomarkers can be evaluated across the lifespan and are tissue specific. This review examines the literature relating environmental exposures to DNA methylation-based aging biomarkers and also the literature evaluating these biomarkers as predictors of health outcomes. RECENT FINDINGS Multiple studies evaluated the association between air pollution and DNA methylation age and consistently observed that higher exposures are associated with elevated DNA methylation age. Psychosocial exposures, e.g., traumas and adolescent adversity, and infections are also associated with epigenetic aging. DNA methylation age has been repeatedly associated with mortality, cancer, and cognitive impairment. DNA methylation age is responsive to the environment and predictive of health outcomes. Studies are still needed to evaluate whether DNA methylation age acts as a mediator or modifier of environmental health effects and to understand the impact of factors such as race, gender, and genetics.
Collapse
|
33
|
Pilot study of DNA methylation, molecular aging markers and measures of health and well-being in aging. Transl Psychiatry 2019; 9:118. [PMID: 30886137 PMCID: PMC6423054 DOI: 10.1038/s41398-019-0446-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
Relations of DNA methylation markers to other biological aging markers and to psychosocial, behavioral, and health measures remain unclear. The sample included 23 participants (n = 11 cases with psychiatric diagnoses and n = 12 controls without current or lifetime psychiatric disorder), balanced by age and sex. Genomic DNA was extracted from blood samples; the following were performed: genome-wide DNA methylation assay using Illumina 850k methylationEPIC; PCR assays for relative telomere length (RTL) and mitochondrial DNA copy number (mtCN). Exposures were: case status; depression and anxiety symptoms; psychosocial support; subjective and objective cognition. Outcomes were: DNA methylation age (DNAm age); RTL; mtCN; extrinsic and intrinsic epigenetic age acceleration (EEAA and IEAA). Stronger correlation with chronological age was observed for DNAm age (ρ = 0.86; p < 0.0001) compared to RTL (ρ = -0.53; p < 0.01); mtCN was not correlated with age. DNAm age was more strongly correlated with behavioral and health variables than RTL or mtCN; e.g., correlations with DNAm age: body mass index (ρ = 0.36; p = 0.10); smoking pack-years (ρ = 0.37; p = 0.08); physical activity (ρ = -0.56; p = 0.01); alcohol intake (ρ = 0.56; p = 0.01). DNAm age was inversely correlated with psychosocial support (ρ = -0.42; p = 0.048) and Modified Mini-Mental State score (ρ = -0.44; p = 0.01). Anxiety, psychosocial support, and objective cognition were significantly related to accelerated aging; depression and subjective cognition were not. In conclusion, DNAm age correlated more strongly with chronological age and key psychosocial, behavioral, and health variables than RTL or mtCN. Signals for associations with epigenetic aging were observed for psychosocial and neurobehavioral variables.
Collapse
|
34
|
Mendelson MM. Epigenetic Age Acceleration: A Biological Doomsday Clock for Cardiovascular Disease? CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e002089. [PMID: 29555673 DOI: 10.1161/circgen.118.002089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael M Mendelson
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA.
| |
Collapse
|
35
|
Ward-Caviness CK, Huffman JE, Everett K, Germain M, van Dongen J, Hill WD, Jhun MA, Brody JA, Ghanbari M, Du L, Roetker NS, de Vries PS, Waldenberger M, Gieger C, Wolf P, Prokisch H, Koenig W, O'Donnell CJ, Levy D, Liu C, Truong V, Wells PS, Trégouët DA, Tang W, Morrison AC, Boerwinkle E, Wiggins KL, McKnight B, Guo X, Psaty BM, Sotoodenia N, Boomsma DI, Willemsen G, Ligthart L, Deary IJ, Zhao W, Ware EB, Kardia SLR, Van Meurs JBJ, Uitterlinden AG, Franco OH, Eriksson P, Franco-Cereceda A, Pankow JS, Johnson AD, Gagnon F, Morange PE, de Geus EJC, Starr JM, Smith JA, Dehghan A, Björck HM, Smith NL, Peters A. DNA methylation age is associated with an altered hemostatic profile in a multiethnic meta-analysis. Blood 2018; 132:1842-1850. [PMID: 30042098 PMCID: PMC6202911 DOI: 10.1182/blood-2018-02-831347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/01/2018] [Indexed: 01/25/2023] Open
Abstract
Many hemostatic factors are associated with age and age-related diseases; however, much remains unknown about the biological mechanisms linking aging and hemostatic factors. DNA methylation is a novel means by which to assess epigenetic aging, which is a measure of age and the aging processes as determined by altered epigenetic states. We used a meta-analysis approach to examine the association between measures of epigenetic aging and hemostatic factors, as well as a clotting time measure. For fibrinogen, we performed European and African ancestry-specific meta-analyses which were then combined via a random effects meta-analysis. For all other measures we could not estimate ancestry-specific effects and used a single fixed effects meta-analysis. We found that 1-year higher extrinsic epigenetic age as compared with chronological age was associated with higher fibrinogen (0.004 g/L/y; 95% confidence interval, 0.001-0.007; P = .01) and plasminogen activator inhibitor 1 (PAI-1; 0.13 U/mL/y; 95% confidence interval, 0.07-0.20; P = 6.6 × 10-5) concentrations, as well as lower activated partial thromboplastin time, a measure of clotting time. We replicated PAI-1 associations using an independent cohort. To further elucidate potential functional mechanisms, we associated epigenetic aging with expression levels of the PAI-1 protein encoding gene (SERPINE1) and the 3 fibrinogen subunit-encoding genes (FGA, FGG, and FGB) in both peripheral blood and aorta intima-media samples. We observed associations between accelerated epigenetic aging and transcription of FGG in both tissues. Collectively, our results indicate that accelerated epigenetic aging is associated with a procoagulation hemostatic profile, and that epigenetic aging may regulate hemostasis in part via gene transcription.
Collapse
Affiliation(s)
- Cavin K Ward-Caviness
- Institute of Epidemiology II, Helmholtz Center of Munich, Neuherberg, Germany
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC
| | - Jennifer E Huffman
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA
- The Framingham Heart Study, Framingham, MA
- Center for Population Genomics, Boston VA Healthcare System, Jamaica Plain, MA
| | - Karl Everett
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Marine Germain
- Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Jenny van Dongen
- Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology and
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Min A Jhun
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lei Du
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Nicholas S Roetker
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Center of Munich, Neuherberg, Germany
- Research Unit of Molecular Epidemiology and
| | | | - Petra Wolf
- Institue of Human Genetics, Helmholtz Center of Munich, Neuherberg, Germany
| | - Holger Prokisch
- Institue of Human Genetics, Helmholtz Center of Munich, Neuherberg, Germany
- Institute fur Humangenetik, Technische Univeritat Munchen, Munich, Germany
| | - Wolfgang Koenig
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Christopher J O'Donnell
- The Framingham Heart Study, Framingham, MA
- Cardiology Section Administration, Boston VA Healthcare System, West Roxbury, MA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA
- The Framingham Heart Study, Framingham, MA
| | - Chunyu Liu
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA
- The Framingham Heart Study, Framingham, MA
| | - Vinh Truong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Philip S Wells
- Department of Medicine, University of Ottawa and Ottawa Hospital Research Institute, Ottawa, Canada
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC University Paris 06, INSERM UMR_S 1166, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Weihong Tang
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Barbara McKnight
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Xiuqing Guo
- Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, Torrence, CA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology and
- Department of Health Services, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
| | - Nona Sotoodenia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
- Division of Cardiology, University of Washington, Seattle, WA
| | - Dorret I Boomsma
- Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lannie Ligthart
- Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology and
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | | | - Joyce B J Van Meurs
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - James S Pankow
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Andrew D Johnson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA
- The Framingham Heart Study, Framingham, MA
| | - France Gagnon
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Pierre-Emmanuel Morange
- Laboratory of Hematology, La Timone Hospital, Marseille, France
- INSERM UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Center for CardioVascular and Nutrition Research, Aix-Marseille University, Marseille, France
| | - Eco J C de Geus
- Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, VU Medical Center, Amsterdam, The Netherlands
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology and
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Nicholas L Smith
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Epidemiology and
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA
- Seattle Epidemiologic Research and Information Center, Office of Research and Development, Department of Veterans Affairs, Seattle, WA
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Center of Munich, Neuherberg, Germany
| |
Collapse
|
36
|
Age-related DNA methylation and hemostatic factors. Blood 2018; 132:1736. [DOI: 10.1182/blood-2018-08-867028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Connolly SL, Stoop TB, Logue MW, Orr EH, De Vivo I, Miller MW, Wolf EJ. Posttraumatic Stress Disorder Symptoms, Temperament, and the Pathway to Cellular Senescence. J Trauma Stress 2018; 31:676-686. [PMID: 30338579 PMCID: PMC6197884 DOI: 10.1002/jts.22325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 11/07/2022]
Abstract
Traumatic stress is thought to be associated with shortened telomere length (TL) in leukocytes, an age-related marker of increased risk for cellular senescence, although findings thus far have been mixed. We assessed associations between posttraumatic stress disorder (PTSD) symptom severity, temperament, and TL in a sample of 453 White, non-Hispanic, middle-aged, trauma-exposed male and female veterans and civilians. Given that prior research has suggested an association between PTSD and accelerated cellular age, we also examined associations between TL and an index of accelerated cellular age derived from DNA methylation data (DNAm age). Analyses revealed that, controlling for chronological age, PTSD was not directly associated with TL but rather this association was moderated by age, β = -.14, p = .003, ΔR2 = .02. Specifically, PTSD severity evidenced a stronger negative association with TL among relatively older participants (≥ 55 years of age). In a subset of veterans with data pertaining to temperament (n = 150), positive emotionality, and, specifically, a drive toward achievement, β = .26, p = .002, ΔR2 = .06, were positively associated with TL. There was no evidence of an association between age-adjusted TL and accelerated DNAm age. Collectively, these results indicate that older adults may be more vulnerable to the negative health effects of PTSD but that traits such as achievement, resilience, and psychological hardiness may be protective. These findings underscore the importance of identifying reliable biomarkers of cellular aging and senescence and of determining the biological mechanisms that contribute to stress-related disease and decline.
Collapse
Affiliation(s)
| | - Tawni B Stoop
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Mark W Logue
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Esther Hana Orr
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mark W Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Erika J Wolf
- National Center for PTSD at VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Verhoeven JE, Yang R, Wolkowitz OM, Bersani FS, Lindqvist D, Mellon SH, Yehuda R, Flory JD, Lin J, Abu-Amara D, Makotkine I, Marmar C, Jett M, Hammamieh R. Epigenetic Age in Male Combat-Exposed War Veterans: Associations with Posttraumatic Stress Disorder Status. MOLECULAR NEUROPSYCHIATRY 2018; 4:90-99. [PMID: 30397597 PMCID: PMC6206951 DOI: 10.1159/000491431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/30/2018] [Indexed: 12/27/2022]
Abstract
DNA methylation patterns change with age and can be used to derive an estimate of "epigenetic age," an indicator of biological age. Several studies have shown associations of posttraumatic stress disorder (PTSD) with worse somatic health and early mortality, raising the possibility of accelerated biological aging. This study examined associations between estimated epigenetic age and various variables in 160 male combat-exposed war veterans with (n = 79) and without PTSD (n = 81). DNA methylation was assessed in leukocyte genomic DNA using the Illumina 450K DNA methylation arrays. Epigenetic age was estimated using Horvath's epigenetic clock algorithm and Δage (epigenetic age-chronological age) was calculated. In veterans with PTSD (Δage = 3.2), Δage was on average lower compared to those without PTSD (Δage = 5.0; p = 0.02; Cohen's d = 0.42). This between-group difference was not explained by race/ethnicity, lifestyle factors or childhood trauma. Antidepressant use, however, explained part of the association. In the PTSD positive group, telomerase activity was negatively related to Δage (β = -0.35; p = 0.007). In conclusion, veterans with PTSD had significantly lower epigenetic age profiles than those without PTSD. Further, current antidepressant use and higher telomerase activity were related to relatively less epigenetic aging in veterans with PTSD, speculative of a mechanistic pathway that might attenuate biological aging-related processes in the context of PTSD.
Collapse
Affiliation(s)
- Josine E. Verhoeven
- Department of Psychiatry, UCSF Weill Institute for Neuroscience, University of California San Francisco, School of Medicine, San Francisco, California, USA
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ruoting Yang
- D, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Integrative Systems Biology, U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland, USA
| | - Owen M. Wolkowitz
- Department of Psychiatry, UCSF Weill Institute for Neuroscience, University of California San Francisco, School of Medicine, San Francisco, California, USA
| | - Francesco S. Bersani
- Department of Psychiatry, UCSF Weill Institute for Neuroscience, University of California San Francisco, School of Medicine, San Francisco, California, USA
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Daniel Lindqvist
- Department of Psychiatry, UCSF Weill Institute for Neuroscience, University of California San Francisco, School of Medicine, San Francisco, California, USA
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Synthia H. Mellon
- Department of OB/GYN and Reproductive Sciences, University of California San Francisco, School of Medicine, San Francisco, California, USA
| | - Rachel Yehuda
- James J. Peters Veterans Administration Medical Center Bronx, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Janine D. Flory
- James J. Peters Veterans Administration Medical Center Bronx, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, School of Medicine, San Francisco, California, USA
| | - Duna Abu-Amara
- Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury, New York, New York, USA
- Department of Psychiatry, New York University, New York, New York, USA
| | - Iouri Makotkine
- James J. Peters Veterans Administration Medical Center Bronx, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles Marmar
- Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury, New York, New York, USA
- Department of Psychiatry, New York University, New York, New York, USA
| | - Marti Jett
- Integrative Systems Biology, U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland, USA
| |
Collapse
|
39
|
Zadka Ł, Kulus MJ, Kurnol K, Piotrowska A, Glatzel-Plucińska N, Jurek T, Czuba M, Nowak A, Chabowski M, Janczak D, Dzięgiel P. The expression of IL10RA in colorectal cancer and its correlation with the proliferation index and the clinical stage of the disease. Cytokine 2018; 110:116-125. [DOI: 10.1016/j.cyto.2018.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/16/2022]
|
40
|
Nwanaji-Enwerem JC, Weisskopf MG, Baccarelli AA. Multi-tissue DNA methylation age: Molecular relationships and perspectives for advancing biomarker utility. Ageing Res Rev 2018; 45:15-23. [PMID: 29698722 PMCID: PMC6047923 DOI: 10.1016/j.arr.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/29/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
The multi-tissue DNA methylation estimator of chronological age (DNAm-age) has been associated with a wide range of exposures and health outcomes. Still, it is unclear how DNAm-age can have such broad relationships and how it can be best utilized as a biomarker. Understanding DNAm-age's molecular relationships is a promising approach to address this critical knowledge gap. In this review, we discuss the existing literature regarding DNAm-age's molecular relationships in six major categories: animal model systems, cancer processes, cellular aging processes, immune system processes, metabolic processes, and nucleic acid processes. We also present perspectives regarding the future of DNAm-age research, including the need to translate a greater number of ongoing research efforts to experimental and animal model systems.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health and MD-PhD Program, Harvard Medical School, Boston, MA, USA.
| | - Marc G Weisskopf
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
41
|
Horvath S, Stein DJ, Phillips N, Heany SJ, Kobor MS, Lin DTS, Myer L, Zar HJ, Levine AJ, Hoare J. Perinatally acquired HIV infection accelerates epigenetic aging in South African adolescents. AIDS 2018; 32:1465-1474. [PMID: 29746298 PMCID: PMC6026068 DOI: 10.1097/qad.0000000000001854] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recent studies demonstrate that infection with the HIV-1 is associated with accelerated aging effects in adults according to a highly accurate epigenetic biomarker of aging known as epigenetic clock. However, it is not yet known whether epigenetic age acceleration occurs as early as adolescence in perinatally HIV-infected (PHIV+) youth. DESIGN Observational study of PHIV and HIV-uninfected adolescents enrolled in the Cape Town Adolescent Antiretroviral Cohort Study. METHODS The Illumina EPIC array was used to generate blood DNA methylation data from 204 PHIV and 44 age-matched, uninfected (HIV-) adolescents aged 9-12 years old. The epigenetic clock software and method was used to estimate two measures of epigenetic age acceleration. Each participant completed a comprehensive neuropsychological test battery upon enrollment to Cape Town Adolescent Antiretroviral Cohort. RESULTS HIV is associated with biologically older blood in PHIV+ adolescents according to both measures of epigenetic age acceleration. One of the measures, extrinsic epigenetic age acceleration, is negatively correlated with measures of cognitive functioning (executive functioning, working memory, processing speed). CONCLUSION Overall, our results indicate that epigenetic age acceleration in blood can be observed in PHIV+ adolescents and that these epigenetic changes accompany poorer cognitive functioning.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Dan J Stein
- MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Nicole Phillips
- MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Sarah J Heany
- MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Landon Myer
- Centre for Infectious Disease Epidemiology and Research
- Division of Epidemiology and Biostatistics, School of Public Health & Family Medicine, University of Cape Town
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital
- SA-Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, South Africa
| | - Andrew J Levine
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Jacqueline Hoare
- MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| |
Collapse
|
42
|
Irvin MR, Aslibekyan S, Do A, Zhi D, Hidalgo B, Claas SA, Srinivasasainagendra V, Horvath S, Tiwari HK, Absher DM, Arnett DK. Metabolic and inflammatory biomarkers are associated with epigenetic aging acceleration estimates in the GOLDN study. Clin Epigenetics 2018; 10:56. [PMID: 29713391 PMCID: PMC5907301 DOI: 10.1186/s13148-018-0481-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Recently, epigenetic age acceleration-or older epigenetic age in comparison to chronological age-has been robustly associated with mortality and various morbidities. However, accelerated epigenetic aging has not been widely investigated in relation to inflammatory or metabolic markers, including postprandial lipids. Methods We estimated measures of epigenetic age acceleration in 830 Caucasian participants from the Genetics Of Lipid Lowering Drugs and diet Network (GOLDN) considering two epigenetic age calculations based on differing sets of 5'-Cytosine-phosphate-guanine-3' genomic site, derived from the Horvath and Hannum DNA methylation age calculators, respectively. GOLDN participants underwent a standardized high-fat meal challenge after fasting for at least 8 h followed by timed blood draws, the last being 6 h postmeal. We used adjusted linear mixed models to examine the association of the epigenetic age acceleration estimate with fasting and postprandial (0- and 6-h time points) low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels as well as five fasting inflammatory markers plus adiponectin. Results Both DNA methylation age estimates were highly correlated with chronological age (r > 0.90). We found that the Horvath and Hannum measures of epigenetic age acceleration were moderately correlated (r = 0.50). The regression models revealed that the Horvath age acceleration measure exhibited marginal associations with increased postprandial HDL (p = 0.05), increased postprandial total cholesterol (p = 0.06), and decreased soluble interleukin 2 receptor subunit alpha (IL2sRα, p = 0.02). The Hannum measure of epigenetic age acceleration was inversely associated with fasting HDL (p = 0.02) and positively associated with postprandial TG (p = 0.02), interleukin-6 (IL6, p = 0.007), C-reactive protein (C-reactive protein, p = 0.0001), and tumor necrosis factor alpha (TNFα, p = 0.0001). Overall, the observed effect sizes were small and the association of the Hannum residual with inflammatory markers was attenuated by adjustment for estimated T cell type percentages. Conclusions Our study demonstrates that epigenetic age acceleration in blood relates to inflammatory biomarkers and certain lipid classes in Caucasian individuals of the GOLDN study. Future studies should consider epigenetic age acceleration in other tissues and extend the analysis to other ethnic groups.
Collapse
Affiliation(s)
- Marguerite R Irvin
- 1Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35294 USA
| | - Stella Aslibekyan
- 1Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35294 USA
| | - Anh Do
- 1Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35294 USA
| | - Degui Zhi
- 2School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Bertha Hidalgo
- 1Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35294 USA
| | - Steven A Claas
- 3College of Public Health, University of Kentucky, Lexington, KY USA
| | | | - Steve Horvath
- 5Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA.,6Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA 90095 USA.,7Human Genetics, Gonda Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7088 USA
| | - Hemant K Tiwari
- 4Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL USA
| | - Devin M Absher
- 8HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Donna K Arnett
- 3College of Public Health, University of Kentucky, Lexington, KY USA
| |
Collapse
|
43
|
Lu AT, Xue L, Salfati EL, Chen BH, Ferrucci L, Levy D, Joehanes R, Murabito JM, Kiel DP, Tsai PC, Yet I, Bell JT, Mangino M, Tanaka T, McRae AF, Marioni RE, Visscher PM, Wray NR, Deary IJ, Levine ME, Quach A, Assimes T, Tsao PS, Absher D, Stewart JD, Li Y, Reiner AP, Hou L, Baccarelli AA, Whitsel EA, Aviv A, Cardona A, Day FR, Wareham NJ, Perry JRB, Ong KK, Raj K, Lunetta KL, Horvath S. GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nat Commun 2018; 9:387. [PMID: 29374233 PMCID: PMC5786029 DOI: 10.1038/s41467-017-02697-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/19/2017] [Indexed: 02/02/2023] Open
Abstract
DNA methylation age is an accurate biomarker of chronological age and predicts lifespan, but its underlying molecular mechanisms are unknown. In this genome-wide association study of 9907 individuals, we find gene variants mapping to five loci associated with intrinsic epigenetic age acceleration (IEAA) and gene variants in three loci associated with extrinsic epigenetic age acceleration (EEAA). Mendelian randomization analysis suggests causal influences of menarche and menopause on IEAA and lipoproteins on IEAA and EEAA. Variants associated with longer leukocyte telomere length (LTL) in the telomerase reverse transcriptase gene (TERT) paradoxically confer higher IEAA (P < 2.7 × 10-11). Causal modeling indicates TERT-specific and independent effects on LTL and IEAA. Experimental hTERT-expression in primary human fibroblasts engenders a linear increase in DNA methylation age with cell population doubling number. Together, these findings indicate a critical role for hTERT in regulating the epigenetic clock, in addition to its established role of compensating for cell replication-dependent telomere shortening.
Collapse
Affiliation(s)
- Ake T Lu
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Luting Xue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Elias L Salfati
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Brian H Chen
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- National Heart, Lung and Blood Institute, Bethesda, MD, 20824-0105, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Daniel Levy
- National Heart, Lung and Blood Institute, Bethesda, MD, 20824-0105, USA
| | - Roby Joehanes
- National Heart, Lung and Blood Institute, Bethesda, MD, 20824-0105, USA
| | - Joanne M Murabito
- Department of Medicine, Section of General Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Douglas P Kiel
- Institute for Aging Research, Hebrew SeniorLife, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, 02215, USA
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
| | - Idil Yet
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, UK
| | - Toshiko Tanaka
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Riccardo E Marioni
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia
- Centre for Cognitive Aging and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Ian J Deary
- Centre for Cognitive Aging and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Morgan E Levine
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Austin Quach
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Themistocles Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Philip S Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yun Li
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center Box 358080, WHI Clinical Coordinating Ctr/Public Health Sciences M3-A4, Seattle, WA, 98109, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, 60611, USA
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, 60611, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences Epidemiology, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Abraham Aviv
- The Center for Human Development and Aging, University of Medicine and Dentistry, New Jersey Medical School, Rutgers, Newark, NJ, 07103, USA
| | - Alexia Cardona
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0SL, UK
| | - Felix R Day
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0SL, UK
| | - Nicholas J Wareham
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0SL, UK
| | - John R B Perry
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0SL, UK
| | - Ken K Ong
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0SL, UK
- Department of Paediatrics, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0SP, UK
| | - Kenneth Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire, OX11 0RQ, UK
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|