1
|
Barrantes FJ. Cognitive synaptopathy: synaptic and dendritic spine dysfunction in age-related cognitive disorders. Front Aging Neurosci 2024; 16:1476909. [PMID: 39420927 PMCID: PMC11484076 DOI: 10.3389/fnagi.2024.1476909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive impairment is a leading component of several neurodegenerative and neurodevelopmental diseases, profoundly impacting on the individual, the family, and society at large. Cognitive pathologies are driven by a multiplicity of factors, from genetic mutations and genetic risk factors, neurotransmitter-associated dysfunction, abnormal connectomics at the level of local neuronal circuits and broader brain networks, to environmental influences able to modulate some of the endogenous factors. Otherwise healthy older adults can be expected to experience some degree of mild cognitive impairment, some of which fall into the category of subjective cognitive deficits in clinical practice, while many neurodevelopmental and neurodegenerative diseases course with more profound alterations of cognition, particularly within the spectrum of the dementias. Our knowledge of the underlying neuropathological mechanisms at the root of this ample palette of clinical entities is far from complete. This review looks at current knowledge on synaptic modifications in the context of cognitive function along healthy ageing and cognitive dysfunction in disease, providing insight into differential diagnostic elements in the wide range of synapse alterations, from those associated with the mild cognitive changes of physiological senescence to the more profound abnormalities occurring at advanced clinical stages of dementia. I propose the term "cognitive synaptopathy" to encompass the wide spectrum of synaptic pathologies associated with higher brain function disorders.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA), Argentine Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Chen PY, Shen M, Cai SQ, Tang ZW. Association Between Atopic Dermatitis and Aging: Clinical Observations and Underlying Mechanisms. J Inflamm Res 2024; 17:3433-3448. [PMID: 38828054 PMCID: PMC11144009 DOI: 10.2147/jir.s467099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
As one of the most prevalent chronic inflammatory skin diseases, atopic dermatitis (AD) increasingly affects the aging population. Amid the ongoing global aging trend, it's essential to recognize the intricate relationship between AD and aging. This paper reviews existing knowledge, summarizing clinical observations of associations between AD and aging-related diseases in various systems, including endocrine, cardiovascular, and neurological. Additionally, it discusses major theories explaining the correlation, encompassing skin-mucosal barriers, systemic inflammation and stress, genes, signal transduction, and environmental and behavioral factors. The association between AD and aging holds significant importance, both in population and basic perspectives. While further research is warranted, this paper aims to inspire deeper exploration of inflammation/allergy-aging dynamics and the timely management of elderly patients with AD.
Collapse
Affiliation(s)
- Peng-Yu Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease; Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Changsha, 410008, People’s Republic of China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, People’s Republic of China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Zhen-Wei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| |
Collapse
|
3
|
de Magalhães JP, Abidi Z, dos Santos GA, Avelar RA, Barardo D, Chatsirisupachai K, Clark P, De-Souza EA, Johnson EJ, Lopes I, Novoa G, Senez L, Talay A, Thornton D, To P. Human Ageing Genomic Resources: updates on key databases in ageing research. Nucleic Acids Res 2024; 52:D900-D908. [PMID: 37933854 PMCID: PMC10767973 DOI: 10.1093/nar/gkad927] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
Ageing is a complex and multifactorial process. For two decades, the Human Ageing Genomic Resources (HAGR) have aided researchers in the study of various aspects of ageing and its manipulation. Here, we present the key features and recent enhancements of these resources, focusing on its six main databases. One database, GenAge, focuses on genes related to ageing, featuring 307 genes linked to human ageing and 2205 genes associated with longevity and ageing in model organisms. AnAge focuses on ageing, longevity, and life-history across animal species, containing data on 4645 species. DrugAge includes information about 1097 longevity drugs and compounds in model organisms such as mice, rats, flies, worms and yeast. GenDR provides a list of 214 genes associated with the life-extending benefits of dietary restriction in model organisms. CellAge contains a catalogue of 866 genes associated with cellular senescence. The LongevityMap serves as a repository for genetic variants associated with human longevity, encompassing 3144 variants pertaining to 884 genes. Additionally, HAGR provides various tools as well as gene expression signatures of ageing, dietary restriction, and replicative senescence based on meta-analyses. Our databases are integrated, regularly updated, and manually curated by experts. HAGR is freely available online (https://genomics.senescence.info/).
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Zoya Abidi
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Gabriel Arantes dos Santos
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Diogo Barardo
- NOVOS Labs, 100 Park Avenue, 16th Fl, New York, NY 10017, USA
| | - Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Peter Clark
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Evandro A De-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Emily J Johnson
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Guy Novoa
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Ludovic Senez
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Angelo Talay
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Daniel Thornton
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Paul Ka Po To
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| |
Collapse
|
4
|
Ni X, Zhao H, Li R, Su H, Jiao J, Yang Z, Lv Y, Pang G, Sun M, Hu C, Yuan H. Development of a model for the prediction of biological age. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107686. [PMID: 37421874 DOI: 10.1016/j.cmpb.2023.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Rates of aging vary markedly among individuals, and biological age serves as a more reliable predictor of current health status than does chronological age. As such, the ability to predict biological age can support appropriate and timely active interventions aimed at improving coping with the aging process. However, the aging process is highly complex and multifactorial. Therefore, it is more scientific to construct a prediction model for biological age from multiple dimensions systematically. METHODS Physiological and biochemical parameters were evaluated to gage individual health status. Then, age-related indices were screened for inclusion in a model capable of predicting biological age. For subsequent modeling analyses, samples were divided into training and validation sets for subsequent deep learning model-based analyses (e.g. linear regression, lasso model, ridge regression, bayesian ridge regression, elasticity network, k-nearest neighbor, linear support vector machine, support vector machine, and decision tree models, and so on), with the model exhibiting the best ability to predict biological age thereby being identified. RESULTS First, we defined the individual biological age according to the individual health status. Then, after 22 candidate indices (DNA methylation, leukocyte telomere length, and specific physiological and biochemical indicators) were screened for inclusion in a model capable of predicting biological age, 14 age-related indices and gender were used to construct a model via the Bagged Trees method, which was found to be the most reliable qualitative prediction model for biological age (accuracy=75.6%, AUC=0.84) by comparing 30 different classification algorithm models. The most reliable quantitative predictive model for biological age was found to be the model developed using the Rational Quadratic method (R2=0.85, RMSE=8.731 years) by comparing 24 regression algorithm models. CONCLUSIONS Both qualitative model and quantitative model of biological age were successfully constructed from a multi-dimensional and systematic perspective. The predictive performance of our models was similar in both smaller and larger datasets, making it well-suited to predicting a given individual's biological age.
Collapse
Affiliation(s)
- Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Hanqing Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, 071000, PR China
| | - Rongqiao Li
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, PR China
| | - Huabin Su
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, PR China
| | - Juan Jiao
- Clinical Lab, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100700, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Yuan Lv
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, PR China
| | - Guofang Pang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, PR China
| | - Meiqi Sun
- College of Traditional Chinese Medicine, Hebei University, Baoding, 071000, PR China
| | - Caiyou Hu
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, PR China.
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China.
| |
Collapse
|
5
|
Wang S, Liu H, Yang P, Wang Z, Ye P, Xia J, Chen S. A role of inflammaging in aortic aneurysm: new insights from bioinformatics analysis. Front Immunol 2023; 14:1260688. [PMID: 37744379 PMCID: PMC10511768 DOI: 10.3389/fimmu.2023.1260688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Aortic aneurysms (AA) are prevalent worldwide with a notable absence of drug therapies. Thus, identifying potential drug targets is of utmost importance. AA often presents in the elderly, coupled with consistently raised serum inflammatory markers. Given that ageing and inflammation are pivotal processes linked to the evolution of AA, we have identified key genes involved in the inflammaging process of AA development through various bioinformatics methods, thereby providing potential molecular targets for further investigation. Methods The transcriptome data of AA was procured from the datasets GSE140947, GSE7084, and GSE47472, sourced from the NCBI GEO database, whilst gene data of ageing and inflammation were obtained from the GeneCards Database. To identify key genes, differentially expressed analysis using the "Limma" package and WGCNA were implemented. Protein-protein intersection (PPI) analysis and machine learning (ML) algorithms were employed for the screening of potential biomarkers, followed by an assessment of the diagnostic value. Following the acquisition of the hub inflammaging and AA-related differentially expressed genes (IADEGs), the TFs-mRNAs-miRNAs regulatory network was established. The CIBERSORT algorithm was utilized to investigate immune cell infiltration in AA. The correlation of hub IADEGs with infiltrating immunocytes was also evaluated. Lastly, wet laboratory experiments were carried out to confirm the expression of hub IADEGs. Results 342 and 715 AA-related DEGs (ADEGs) recognized from GSE140947 and GSE7084 datasets were procured by intersecting the results of "Limma" and WGCNA analyses. After 83 IADEGs were obtained, PPI analysis and ML algorithms pinpointed 7 and 5 hub IADEGs candidates respectively, and 6 of them demonstrated a high diagnostic value. Immune cell infiltration outcomes unveiled immune dysregulation in AA. In the wet laboratory experiments, 3 hub IADEGs, including BLNK, HLA-DRA, and HLA-DQB1, finally exhibited an expression trend in line with the bioinformatics analysis result. Discussion Our research identified three genes - BLNK, HLA-DRA, and HLA-DQB1- that play a significant role in promoting the development of AA through inflammaging, providing novel insights into the future understanding and therapeutic intervention of AA.
Collapse
Affiliation(s)
- Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Stasiak M, Zawadzka-Starczewska K, Tymoniuk B, Stasiak B, Lewiński A. Associations between Lipid Profiles and Graves' Orbitopathy can Be HLA-Dependent. Genes (Basel) 2023; 14:1209. [PMID: 37372389 DOI: 10.3390/genes14061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The risk of Graves' orbitopathy (GO) is related to the human leukocyte antigen (HLA) profile and was demonstrated to be increased in patients with elevated total cholesterol (TC) and/or low-density lipoprotein (LDL) cholesterol. We hypothesized that there were some HLA alleles that were related to both GO and TC and/or LDL levels. Therefore, the aim of the study was to compare the TC/LDL results in patients in whom GO-related HLA alleles were present to those in whom they did not occur. HLA classes were genotyped using a next-generation sequencing method in 118 patients with Graves' disease (GD), including 63 and 55 patients with and without GO, respectively. Lipid profiles were assessed at the time of the GD diagnosis. A significant correlation between the presence of GO high-risk alleles (HLA-B*37:01 and C*03:02) and higher TC/LDL levels was found. Additionally, the presence of alleles associated with non-GO GD (HLA-C*17:01 and B*08:01), as well as alleles in linkage disequilibrium with B*08:01 (i.e., HLA-DRB1*03:01 and DQB1*02:01), was correlated with lower TC levels. These results further confirm the significance of TC/LDL in the risk of GO development and provide evidence that associations between TC/LDL and GO can be HLA-dependent.
Collapse
Affiliation(s)
- Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Katarzyna Zawadzka-Starczewska
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Bogusław Tymoniuk
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Bartłomiej Stasiak
- Institute of Information Technology, Lodz University of Technology, 215 Wolczanska St., 90-924 Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|
7
|
Exploring potential shared genetic influences between rheumatoid arthritis and blood lipid levels. Atherosclerosis 2022; 363:48-56. [PMID: 36455308 DOI: 10.1016/j.atherosclerosis.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND AIMS The association between rheumatoid arthritis (RA) and blood lipid levels has often been described as paradoxical, despite the strong association between RA and cardiovascular disease (CVD) risk. We aimed to clarify the genetic architecture that would explain the relationship between RA and blood-lipid levels, while considering inflammation as measured by C-reactive protein (CRP). METHODS Genome-wide association study (GWAS) summary statistics were collected from the CHARGE Consortium and Global Lipids Genetics Consortium. Blood-lipid levels includes HDL-C, LDL-C, triglycerides (TG), and total cholesterol (TC). Causality was examined by assessing Mendelian Randomization (MR) analysis. Pleiotropy, the identification of shared causal variants between traits, was assessed by conducting colocalization analyses. RESULTS Using the MR Egger method, RA did not appear to causally predict alterations in lipid factors, rather the MR Egger intercept revealed that the genetic relationship between RA and HDL-C, LDL-C and TC may be explained by horizontal pleiotropy (p=0.003, 0.006, and 0.018, respectively). MR was suggestive of a horizontally pleiotropic relationship between CRP and lipid factors, while a causal relationship could not be ruled out. Recurring genes arising from shared causal genetic variants between RA and varying lipid factors included NAT2/PSD3, FADS2/FADS1, SH2B3, and YDJC. CONCLUSIONS Horizontal pleiotropy appears to explain the genetic relationship between RA and blood-lipid levels. In addition, blood-lipid levels appear to suggest a horizontally pleiotropic relationship to CRP, if not mediated through RA as well. Consideration of the pleiotropic genes between RA and blood lipid levels may aid in enhancing diagnostic means to predict CVD.
Collapse
|
8
|
Xiao W, Li J, Huang X, Zhu Q, Liu T, Xie H, Deng Z, Tang Y. Mediation roles of neutrophils and high-density lipoprotein (HDL) on the relationship between HLA-DQB1 and rosacea. Ann Med 2022; 54:1530-1537. [PMID: 35622385 PMCID: PMC9891224 DOI: 10.1080/07853890.2022.2077427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Though the previous genome-wide association studies found the association between HLA alleles and rosacea in the European populations, the data is lacking among the Asians. Moreover, neutrophils are important in the immune-related mechanism of rosacea, and dyslipidemia is closely related to rosacea. We aimed to explore the association between HLA genes and rosacea in Chinese rosacea patients, as well as the mediation effect of neutrophils, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) on the relationship between HLA genes and rosacea. METHODS A total of 249 rosacea and 150 controls were ranked by the international investigator global rosacea severity scores. HLA genes, neutrophils, HDL, and LDL were detected. And their mediation effects on the relationship between HLA and rosacea risk or severity were analysed. RESULTS HLA-DQB1*03:03 allele (OR = 41.89, 95% CI: 9.80 ∼ 179.09, p = 4.7*10-7), HLA-DQB1*04:02 allele (OR = 0.16, 95% CI: 0.03 ∼ 0.81, p = 0.026) and HLA-DQB1*03:03/05:02 genotype (OR = 5.57, 95% CI: 1.13 ∼ 27.52, p = 0.0351) were significantly associated with rosacea. Moreover, HLA-DQB1*03:03 allele (b = 1.434, SE = 0.217, p = 2.0*10-10), HLA-DQB1*05:01 allele (b = 0.894, SE = 0.33520, p = 0.008) and HLA-DQB1*03:03/06:01 genotype (b = 0.998, SE = 0.472, p = 0.040) were positively associated with rosacea severity. Furthermore, we found both neutrophils and HDL, instead of LDL, have mediation effects on the relationship between HLA-DQB1*03:03 and risk or severity of rosacea. CONCLUSIONS We discovered novel susceptible HLA alleles for rosacea in the Chinese population, and disclosed the mediation effect of neutrophils and HDL on the relationship between HLA-DQB1 and rosacea, implying a possible correlation between rosacea and inflammatory or metabolic factors, providing hints for future studies in the mechanism of rosacea. Key messagesHLA-DQB1*03:03 allele, HLA-DQB1*04:02 allele and HLA-DQB1*03:03/05:02 genotype were significantly associated with rosacea.HLA-DQB1*03:03 allele, HLA-DQB1*05:01 allele and HLA-DQB1*03:03/06:01 genotype were positively associated with rosacea severity.Neutrophils and HDL have mediation effects on the relationship between HLA-DQB1*03:03 and risk or severity of rosacea.
Collapse
Affiliation(s)
- Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South Univerisity, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South Univerisity, Changsha, China
| | - Xin Huang
- Department of Epidemiology and Biostatistics, School of Medicine, Hunan Normal University, Changsha, China
| | - Quan Zhu
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tangxiele Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South Univerisity, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South Univerisity, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South Univerisity, Changsha, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South Univerisity, Changsha, China
| |
Collapse
|
9
|
Tang Z, Shen M, Xiao Y, Liu H, Chen X. Association Between Atopic Dermatitis, Asthma, and Serum Lipids: A UK Biobank Based Observational Study and Mendelian Randomization Analysis. Front Med (Lausanne) 2022; 9:810092. [PMID: 35265637 PMCID: PMC8899503 DOI: 10.3389/fmed.2022.810092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022] Open
Abstract
Background Both atopic diseases and dysregulation of serum lipids (SLs) add to significant health burden, but evidences about their association are inconsistent. Objective This work is to evaluate the association between asthma/atopic dermatitis (AD) and SLs and investigate the potential causal relationship. Methods A large-scale cross-sectional study based on the UK Biobank (UKB) and then examined the casual relationships between SLs with asthma/AD based on a Mendelian randomization (MR) analysis. Results A total of 502,505 participants were included in analysis. After full adjustment, AD was associated with lower TG (β = −0.006; 95%CI, −0.010 to −0.002; P = 0.006), lower LDL (β = −0.004; 95%CI, −0.006 to −0.002, P < 0.001), and lower TC (β = −0.004; 95%CI, −0.005 to −0.002; P < 0.001) but insignificantly correlated to HDL (P = 0.794). Asthma was also inversely correlated to TG (β = −0.005; 95%CI, = −0.007 to −0.003; < 0.001), LDL (β = −0.003; 95%CI, −0.004 to −0.002; P < 0.001), and TC (β = −0.002; 95%CI, −0.003 to −0.002; P < 0.001), but was positively correlated to HDL (β = 0.004; 95%CI, 0.003 to 0.005; P < 0.001), respectively. In subsequent MR analysis, both allergic diseases and asthma showed a protective effect on TC. Allergic diseases, asthma, and AD all showed a negative effect on LDL. Conclusion Collectively, we identify a protective causal effect of allergic diseases on serum lipids, as well as a potentially positive association of HDL with asthma. Owing to the largest sample size and the application of IVs in causal inference, this study will provide a robust evidence for the management of asthma and AD and the prevention of dyslipidemia.
Collapse
Affiliation(s)
- Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China.,Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
| |
Collapse
|
10
|
Ni X, Bai C, Nie C, Qi L, Liu Y, Yuan H, Zhu X, Sun L, Zhou Q, Li Y, Zhen H, Su H, Li R, Lan R, Pang G, Lv Y, Zhang W, Yang F, Yao Y, Chen C, Wang Z, Gao D, Zhang N, Zhang S, Zhang L, Wu Z, Hu C, Zeng Y, Yang Z. Identification and replication of novel genetic variants of ABO gene to reduce the incidence of diseases and promote longevity by modulating lipid homeostasis. Aging (Albany NY) 2021; 13:24655-24674. [PMID: 34812738 PMCID: PMC8660604 DOI: 10.18632/aging.203700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Genes related to human longevity have not been studied so far, and need to be investigated thoroughly. This study aims to explore the relationship among ABO gene variants, lipid levels, and longevity phenotype in individuals (≥90yrs old) without adverse outcomes. A genotype-phenotype study was performed based on 5803 longevity subjects and 7026 younger controls from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Four ABO gene variants associated with healthy longevity (rs8176719 C, rs687621 G, rs643434 A, and rs505922 C) were identified and replicated in the CLHLS GWAS data analysis and found significantly higher in longevity individuals than controls. The Bonferroni adjusted p-value and OR range were 0.013-0.020 and 1.126-1.151, respectively. According to the results of linkage disequilibrium (LD) analysis, the above four variants formed a block on the ABO gene (D’=1, r2range = 0.585-0.995). The carriers with genotypes rs687621 GG, rs643434 AX, or rs505922 CX (prange = 2.728 x 10-107-5.940 x 10-14; ORrange = 1.004-4.354) and haplotype CGAC/XGXX (p = 2.557 x 10-27; OR = 2.255) had a substantial connection with longevity, according to the results of genetic model analysis. Following the genotype and metabolic phenotype analysis, it has been shown that the longevity individuals with rs687621 GG, rs643434 AX, and rs505922 CX had a positive association with HDL-c, LDL-c, TC, TG (prange = 2.200 x 10-5-0.036, ORrange = 1.546-1.709), and BMI normal level (prange = 2.690 x 10-4-0.026, ORrange = 1.530-1.997). Finally, two pathways involving vWF/ADAMTS13 and the inflammatory markers (sE-selectin/ICAM1) that co-regulated lipid levels by glycosylation and effects on each other were speculated. In conclusion, the association between the identified longevity-associated ABO variants and better health lipid profile was elucidated, thus the findings can help in maintaining normal lipid metabolic phenotypes in the longevity population.
Collapse
Affiliation(s)
- Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Chen Bai
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC 27708, USA.,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing 100871, P.R. China
| | - Chao Nie
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Liping Qi
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, Hebei, P.R. China
| | - Yifang Liu
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yan Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Hefu Zhen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Huabing Su
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Rongqiao Li
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Rushu Lan
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Guofang Pang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Yuan Lv
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Wei Zhang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Fan Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Yao Yao
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC 27708, USA.,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing 100871, P.R. China
| | - Chen Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Danni Gao
- Peking University Fifth School of Clinical Medicine, Beijing 100191, P.R. China
| | - Nan Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Shenqi Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Li Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Zhu Wu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Caiyou Hu
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Yi Zeng
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC 27708, USA.,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing 100871, P.R. China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
11
|
Torres GG, Nygaard M, Caliebe A, Blanché H, Chantalat S, Galan P, Lieb W, Christiansen L, Deleuze JF, Christensen K, Strauch K, Müller-Nurasyid M, Peters A, Nöthen MM, Hoffmann P, Flachsbart F, Schreiber S, Ellinghaus D, Franke A, Dose J, Nebel A. Exome-Wide Association Study Identifies FN3KRP and PGP as New Candidate Longevity Genes. J Gerontol A Biol Sci Med Sci 2021; 76:786-795. [PMID: 33491046 PMCID: PMC8087267 DOI: 10.1093/gerona/glab023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Despite enormous research efforts, the genetic component of longevity has remained largely elusive. The investigation of common variants, mainly located in intronic or regulatory regions, has yielded only little new information on the heritability of the phenotype. Here, we performed a chip-based exome-wide association study investigating 62 488 common and rare coding variants in 1248 German long-lived individuals, including 599 centenarians and 6941 younger controls (age < 60 years). In a single-variant analysis, we observed an exome-wide significant association between rs1046896 in the gene fructosamine-3-kinase-related-protein (FN3KRP) and longevity. Noteworthy, we found the longevity allele C of rs1046896 to be associated with an increased FN3KRP expression in whole blood; a database look-up confirmed this effect for various other human tissues. A gene-based analysis, in which potential cumulative effects of common and rare variants were considered, yielded the gene phosphoglycolate phosphatase (PGP) as another potential longevity gene, though no single variant in PGP reached the discovery p-value (1 × 10E−04). Furthermore, we validated the previously reported longevity locus cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1). Replication of our results in a French longevity cohort was only successful for rs1063192 in CDKN2B-AS1. In conclusion, we identified 2 new potential candidate longevity genes, FN3KRP and PGP which may influence the phenotype through their role in metabolic processes, that is, the reverse glycation of proteins (FN3KRP) and the control of glycerol-3-phosphate levels (PGP).
Collapse
Affiliation(s)
- Guillermo G Torres
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Germany
| | - Marianne Nygaard
- The Danish Twin Registry and The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense C.,Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Germany
| | - Hélène Blanché
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain (CEPH), Paris, France
| | - Sophie Chantalat
- Centre National de Recherche en Génomique Humaine CNRGH-CEA, Evry, France
| | - Pilar Galan
- Université Sorbonne Paris Cité-UREN, Unité de Recherche en Epidémiologie Nutritionelle, U557 Inserm, U1125 Inra, Bobigny, France
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Kiel University, University Hospital Schleswig-Holstein, Germany
| | - Lene Christiansen
- The Danish Twin Registry and The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense C.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Jean-François Deleuze
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain (CEPH), Paris, France.,Centre National de Recherche en Génomique Humaine CNRGH-CEA, Evry, France
| | - Kaare Christensen
- The Danish Twin Registry and The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense C.,Department of Clinical Genetics, Odense University Hospital, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Germany.,Department of Internal Medicine I (Cardiology), Hospital of the LMU Munich, Germany
| | - Annette Peters
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Germany
| | - Friederike Flachsbart
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Germany
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Germany
| |
Collapse
|
12
|
Yang F, Wang J, Yang Z, Ren Z, Zeng F. PANK2 p.A170fs:a novel pathogenetic mutation, compound with PANK2 p.R440P, causing pantothenate kinase Associated neurodegeneration in a Chinese family. Int J Neurosci 2020; 132:582-588. [PMID: 33043782 DOI: 10.1080/00207454.2020.1828883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Pantothenate kinase associated neurodegeneration (PKAN) is a severe autosomal recessive rare disease and characterized by iron accumulation in the basal ganglia. To investigate the pathogenesis of this disease in two sibling patients with PANK in a Chinese family, whole-exome variant detection and functional analysis were performed. MATERIALS AND METHODS Clinical and radiographic investigations were performed in the two brother patients. Whole exome sequencing (WES) was used in mutation detection, and the mutations were confirmed by Sanger sequencing. A longevity cohort genetic database was applied as Chinese urban controls. Bioinformatic analysis was performed to predict the pathogenicity. RESULTS Compound heterozygous mutations of PANK2 were detected in two sibling brothers with PKAN in a Chinese family: c.510_522del (p.A170fs) and c.1319G > C (p.R440P) in the transcript NM_153638. PANK2: c.510_522del (p.A170fs) was absent in public data and the Chinese urban controls. Bioinformatics analysis showed that the above two variants were pathogenicity. CONCLUSIONS We identified a rare compound heterozygous combination of PANK2 mutations found in a Chinese family in which two sibling brothers suffered from PKAN. PANK2 c.510_522del (p.A170fs) was the first reported to be a PKAN pathogenic variant.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China
| | - Juan Wang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P. R. China
| | - Zhaorui Ren
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Key Laboratory of Embryo Molecular Biology, National Health Commission & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, P. R. China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
13
|
Giuliani C, Garagnani P, Franceschi C. Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework. Circ Res 2019; 123:745-772. [PMID: 30355083 DOI: 10.1161/circresaha.118.312562] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human longevity is a complex trait, and to disentangle its basis has a great theoretical and practical consequences for biomedicine. The genetics of human longevity is still poorly understood despite several investigations that used different strategies and protocols. Here, we argue that such rather disappointing harvest is largely because of the extraordinary complexity of the longevity phenotype in humans. The capability to reach the extreme decades of human lifespan seems to be the result of an intriguing mixture of gene-environment interactions. Accordingly, the genetics of human longevity is here described as a highly context-dependent phenomenon, within a new integrated, ecological, and evolutionary perspective, and is presented as a dynamic process, both historically and individually. The available literature has been scrutinized within this perspective, paying particular attention to factors (sex, individual biography, family, population ancestry, social structure, economic status, and education, among others) that have been relatively neglected. The strength and limitations of the most powerful and used tools, such as genome-wide association study and whole-genome sequencing, have been discussed, focusing on prominently emerged genes and regions, such as apolipoprotein E, Forkhead box O3, interleukin 6, insulin-like growth factor-1, chromosome 9p21, 5q33.3, and somatic mutations among others. The major results of this approach suggest that (1) the genetics of longevity is highly population specific; (2) small-effect alleles, pleiotropy, and the complex allele timing likely play a major role; (3) genetic risk factors are age specific and need to be integrated in the light of the geroscience perspective; (4) a close relationship between genetics of longevity and genetics of age-related diseases (especially cardiovascular diseases) do exist. Finally, the urgent need of a global approach to the largely unexplored interactions between the 3 genetics of human body, that is, nuclear, mitochondrial, and microbiomes, is stressed. We surmise that the comprehensive approach here presented will help in increasing the above-mentioned harvest.
Collapse
Affiliation(s)
- Cristina Giuliani
- From the Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology (C.G.), University of Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom (C.G.).,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Italy (C.G.)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) (P.G.), University of Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden (P.G.)
| | | |
Collapse
|
14
|
Nygaard HB, Erson-Omay EZ, Wu X, Kent BA, Bernales CQ, Evans DM, Farrer MJ, Vilariño-Güell C, Strittmatter SM. Whole-Exome Sequencing of an Exceptional Longevity Cohort. J Gerontol A Biol Sci Med Sci 2019; 74:1386-1390. [PMID: 29750252 PMCID: PMC6696723 DOI: 10.1093/gerona/gly098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/26/2018] [Indexed: 12/22/2022] Open
Abstract
Centenarians represent a unique cohort to study the genetic basis for longevity and factors determining the risk of neurodegenerative disorders, including Alzheimer's disease (AD). The estimated genetic contribution to longevity is highest in centenarians and super-cententenarians, but few genetic variants have been shown to clearly impact this phenotype. While the genetic risk for AD and other dementias is now well understood, the frequency of known dementia risk variants in centenarians is not fully characterized. To address these questions, we performed whole-exome sequencing on 100 individuals of 98-108 years age in search of genes with large effect sizes towards the exceptional aging phenotype. Overall, we were unable to identify a rare protein-altering variant or individual genes with an increased burden of rare variants associated with exceptional longevity. Gene burden analysis revealed three genes of nominal statistical significance associated with extreme aging, including LYST, MDN1, and RBMXL1. Several genes with variants conferring an increased risk for AD and other dementias were identified, including TREM2, EPHA1, ABCA7, PLD3, MAPT, and NOTCH3. Larger centenarian studies will be required to further elucidate the genetic basis for longevity, and factors conferring protection against age-dependent neurodegenerative syndromes.
Collapse
Affiliation(s)
- Haakon B Nygaard
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Xiujuan Wu
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brianne A Kent
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cecily Q Bernales
- Department of Medical Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel M Evans
- Department of Medical Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew J Farrer
- Department of Medical Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carles Vilariño-Güell
- Department of Medical Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
16
|
Liu Q, Li H, You L, Li T, Li L, Zhou P, Bo X, Chen H, Chen X, Hu Y. Genome-wide identification and analysis of A-to-I RNA editing events in the malignantly transformed cell lines from bronchial epithelial cell line induced by α-particles radiation. PLoS One 2019; 14:e0213047. [PMID: 31158229 PMCID: PMC6546236 DOI: 10.1371/journal.pone.0213047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is the most prevalent RNA editing mechanism in humans and plays critical roles in tumorigenesis. However, the effects of radiation on RNA editing were poorly understood, and a deeper understanding of the radiation-induced cancer is imperative. Here, we analyzed BEP2D (a human bronchial epithelial cell line) and radiation-induced malignantly transformed cell lines with next generation sequencing. By performing an integrated analysis of A-to-I RNA editing, we found that single-nucleotide variants (SNVs) might induce the downregulation of ADAR2 enzymes, and further caused the abnormal occurrence of RNA editing in malignantly transformed cell lines. These editing events were significantly enriched in differentially expressed genes between normal cell line and malignantly transformed cell lines. In addition, oncogenes CTNNB1 and FN1 were highly edited and significantly overexpressed in malignantly transformed cell lines, thus may be responsible for the lung cancer progression. Our work provides a systematic analysis of RNA editing from cell lines derived from human bronchial epithelial cells with high-throughput RNA sequencing and DNA sequencing. Moreover, these results provide further evidence for RNA editing as an important tumorigenesis mechanism.
Collapse
Affiliation(s)
- Qiaowei Liu
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hao Li
- Medical School of Chinese PLA, Beijing, P.R. China
| | - Lukuan You
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Tao Li
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Lingling Li
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Pingkun Zhou
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hebing Chen
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
- * E-mail: (YH); (XC); (HC)
| | - Xiaohua Chen
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
- * E-mail: (YH); (XC); (HC)
| | - Yi Hu
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
- * E-mail: (YH); (XC); (HC)
| |
Collapse
|
17
|
Teschke R, Xuan TD. Viewpoint: A Contributory Role of Shell Ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) for Human Longevity in Okinawa, Japan? Nutrients 2018; 10:nu10020166. [PMID: 29385084 PMCID: PMC5852742 DOI: 10.3390/nu10020166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
The longevity of the population in the Okinawa Islands of Japan has been ascribed to genetic factors and the traditional Okinawa cuisine, which is low in calories and high in plant content. This diet includes shell ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) of the ginger family (Zingiberaceae). Due to its local popularity, Alpinia zerumbet has become the subject of a good deal of study at the University of the Ryukyus in Okinawa. Personal local experience and review of the literature now suggest that culinary shell ginger may contribute to longevity among the population in Okinawa. This is supported by its abundant phytochemical content, with antioxidant and anti-obesity properties. The major bioactive phytochemicals are dihydro-5,6-dehydrokawain (DDK; 80-410 mg g-1 fresh weight), 5,6-dehydrokawain (DK; ≤100 mg g-1), and essential oils, phenols, phenolic acids, and fatty acids (≤150 mg g-1 each). Further, Alpinia zerumbet extends the lifespan in animals by 22.6%. In conclusion, culinary shell ginger may significantly contribute to human longevity in Okinawa.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/ Main, Germany.
| | - Tran Dang Xuan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan.
| |
Collapse
|