1
|
Zhu M, Yang Y, Tang X, Hou H, Zhang Y, Chen R. Exploring the role of the CD74 + cardiac macrophage subset in trastuzumab cardiotoxicity and its mechanisms. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167875. [PMID: 40316056 DOI: 10.1016/j.bbadis.2025.167875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/24/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Trastuzumab (TRZ) is the standard treatment for human epidermal growth factor receptor 2 (HER-2) positive breast cancer, but its cardiotoxicity significantly impacts the prognosis and quality of survival of patients, and the underlying mechanism of TRZ-related cardiotoxicity remains incompletely understood. Macrophage subsets better reflect macrophage heterogeneity than the traditional macrophage M1/M2 type polarization classification. CD74, a receptor with strong binding affinity for macrophage migration inhibitory factor, plays an important role in macrophage activation. After successfully constructing a mouse TRZ cardiotoxicity model, flow cytometry indicated that CD74+ cardiac macrophages (CMφs) were significantly elevated in the TRZ group. Single-cell data were utilized to identify CD74+ CMφs, GO and KEGG analyses of the DEGs were conducted to further validate the CD74/STAT1 signaling pathway. Analyses using RT-PCR, immunofluorescence, and western blot revealed a marked increase in the expression of genes and proteins linked to this pathway in TRZ-treated group. Additionally, levels of inflammation-related factors and the expression of apoptotic proteins was elevated following TRZ treatment. CD74-knockdown RAW 264.7 macrophages cell line were constructed via Lentiviruses carrying CD74 (hU6-MCS-CBh-gcGFP-IRES-puromycin) transfection and co-cultured with HL-1 cardiomyocytes to establish an in vitro TRZ cardiotoxicity model. Western blot analysis of CD74/STAT1 signaling pathway protein levels demonstrated that CD74 knockdown rescued TRZ-induced cellular damage. These findings suggest that TRZ may promote inflammation and apoptosis in cardiomyocytes, leading to cardiotoxicity through the CD74+ CMφ subset, which regulates the CD74/STAT1 signaling pathway. CD74+ CMφs are anticipated to be a novel intervention target and therapeutic strategy for addressing TRZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Minyan Zhu
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacology, Soochow University, Suzhou, China
| | - Yaping Yang
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacology, Soochow University, Suzhou, China
| | - Xinchen Tang
- Department of Health Sciences in Physical Education, Macao Polytechnic University, Macao
| | - Huan Hou
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Wuxi, China.
| | - Rong Chen
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacology, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Han L, Zhao C, Jin F, Jiang R, Wu H. LINC02282 promotes DNA methylation of TRIM6 by recruiting DNMTs to inhibit the progression of Parkinson's disease. Brain Res Bull 2025; 222:111224. [PMID: 39892584 DOI: 10.1016/j.brainresbull.2025.111224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Long non-coding RNAs (lncRNAs) are closely linked to the occurrence and development of neurodegenerative diseases, while the underlying mechanisms remain elusive. The goal of the present study was to elucidate the mechanism by which LINC02282, a significantly downregulated lncRNA in the GEO database, elicits neuroprotective effects on PD. LINC02282 was poorly expressed in SH-SY5Y and SK-N-AS cells exposed to MPP+ and mice injected with MPTP. LINC02282 overexpression plasmids inhibited apoptosis and promoted the proliferation of SH-SY5Y and SK-N-AS cells. In addition, LINC02282 overexpression using an adeno-associated virus reduced neuronal damage in PD mice. LINC02282 was mainly localized in the nucleus, and LINC02282 promoted the methylation of the tripartite motif-containing protein 6 (TRIM6) promoter to inhibit TRIM6 expression. LINC02282 bound to DNA methyltransferases (DNMTs) and LINC02282 overexpression increased the binding of DNMTs to the TRIM6 promoter. Overexpression of TRIM6 alone induced PD-like symptoms in mice and combined TRIM6 upregulation inhibited the neuroprotective effect of LINC02282 both in vitro and in vivo. In summary, LINC02282 alleviated neuronal injury in PD by recruiting DNMTs to the promoter region of TRIM6 and inhibiting TRIM6 expression.
Collapse
Affiliation(s)
- Lu Han
- Department of Neurology, Anshan Hospital, The First Hospital of China Medical University, Anshan, Liaoning 114000, PR China.
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Feng Jin
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Rongfeng Jiang
- Department of orthopedics department, Anshan Hospital, The First Hospital of China Medical University, Anshan, Liaoning 114000, PR China
| | - Hao Wu
- Department of orthopedics department, Anshan Hospital, The First Hospital of China Medical University, Anshan, Liaoning 114000, PR China
| |
Collapse
|
3
|
Guo J, Wang J, Zhang P, Wen P, Zhang S, Dong X, Dong J. TRIM6 promotes glioma malignant progression by enhancing FOXO3A ubiquitination and degradation. Transl Oncol 2024; 46:101999. [PMID: 38759605 PMCID: PMC11127279 DOI: 10.1016/j.tranon.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
PURPOSE TRIM6, an E3 ubiquitin ligase with tripartite motif, directly targets protein substrates for degradation through ubiquitination. Studies have shown that TRIM6 plays a significant role in tumor development in various human malignancies. Thus, the aim of this study was to investigate the importance of TRIM6 and its associated mechanism in promoting the progression of glioma. METHODS The expression of TRIM6 and its prognostic value in glioma patients were collected from the TCGA and CGGA databases. The effects of TRIM6 on glioma were investigated in vitro by CCK8, colony formation, wound healing, and transwell assays. Co-IP and western blot analysis were used to detect the interaction between TRIM6 and FOXO3A. The effects of TRIM6 were verified in vivo in subcutaneously xenograft models, and tumor size, and immunohistochemical changes were observed. RESULTS Our analysis of TRIM6 expression in glioma tissues revealed a high level of expression, and the heightened expression of TRIM6 showed a positive correlation with the unfavorable prognosis among glioma/GBM patients. Through loss-of-function and gain-of-function experiments, we observed a profound impact on the proliferation, invasion, and migration abilities of glioma cells both in vitro and in vivo upon deletion of TRIM6. Conversely, the overexpression of TRIM6 intensified the malignant characteristics of glioma. Additionally, our findings revealed a significant interaction between TRIM6 and FOXO3A, wherein TRIM6 contributed to the destabilization of FOXO3A protein by promoting its ubiquitination and subsequent degradation. Experiments conducted in the rescue study affirmed that the promotion of glioma cell proliferation, invasion, and migration is facilitated by TRIM6 through the suppression of FOXO3A protein levels. CONCLUSIONS These observations imply that the TRIM6-FOXO3A axis could potentially serve as an innovative focus for intervening in glioma.
Collapse
Affiliation(s)
- Jingpeng Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; Department of Neurosurgery, Fuyang People's Hospital, Fuyang, Anhui 236000, China
| | - Ji Wang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Peng Zhang
- Department of Neurosurgery, The People's Hospital of Rugao, Nantong, Jiangsu 226500, China
| | - Ping Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shoudan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xuchen Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
4
|
Cao N, Wang H. Insulin augments angiotensin II-induced myocardial fibrosis via the MEK/STAT3 pathway. Heliyon 2023; 9:e22860. [PMID: 38125490 PMCID: PMC10731081 DOI: 10.1016/j.heliyon.2023.e22860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Regular insulin therapy is significantly related to worse cardiovascular outcomes in patients with type 2 diabetes and heart failure. However, the mechanisms of the causal relationship remain unclear. In this study, we observed the effect of insulin on cardiac structure and function and found that insulin dramatically augmented angiotensin II (Ang II)-induced cardiac dysfunction, as well as the proliferation and collagen production of primary cardiac fibroblasts. Total STAT3 expression, but not activation was stimulated by insulin; the effect of insulin on Ang II-induced fibrosis disappeared when STAT3 was blocked and could be entirely suppressed by the MEK inhibitor PD0325901. Our findings suggest a noninsulin-dependent glucose-lowering regimen for patients with type 2 diabetes (T2DM) and heart failure (HF).
Collapse
Affiliation(s)
- Nanyu Cao
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Heyang Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Zhang J, Xu Y, Wei C, Yin Z, Pan W, Zhao M, Ding W, Xu S, Liu J, Yu J, Ye J, Ye D, Qin JJ, Wan J, Wang M. Macrophage neogenin deficiency exacerbates myocardial remodeling and inflammation after acute myocardial infarction through JAK1-STAT1 signaling. Cell Mol Life Sci 2023; 80:324. [PMID: 37824022 PMCID: PMC11072237 DOI: 10.1007/s00018-023-04974-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Liu X, Zhao J, Dong P, Du X, Lu W, Feng Y, Wang L. TRIM6 silencing for inhibiting growth and angiogenesis of gliomas by regulating VEGFA. J Chem Neuroanat 2023; 132:102291. [PMID: 37236551 DOI: 10.1016/j.jchemneu.2023.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Gliomas are the highest prevalent primary central nervous system (CNS) cancers with poor overall survival rate. There is an urgent need to conduct more research into molecular therapies targeting critical elements of gliomas. This study herein targeted to assess the impact of tripartite motif protein 6 (TRIM6) on gliomas. Using public databases, we found the increased TRIM6 expression in tissues of glioma which was linked with worst overall survival. Silencing TRIM6 promoted glioma cell proliferation, migration and angiogenesis, suggesting the promoting effects of TRIM6 on gliomas. Knockdown of TRIM6 expression downregulated the expression levels of Forkhead box M1 (FOXM1) and vascular endothelial growth factor A (VEGFA) in glioma cells. Afterwards, impact of TRIM6 on VEGFA expression was regulated by FOXM1. VEGFA overexpression reversed the decreased abilities of glioma cell proliferation, migration and angiogenesis caused by silencing TRIM6. Furthermore, we also found that TRIM6 promoted the growth of gliomas in the xenograft mouse model. In summary, the expression of TRIM6 was increased which was related to poor prognosis of glioma patients. TRIM6 promoted glioma cell proliferation, migration and angiogenesis through the FOXM1-VEGFA pathway. Therefore, TRIM6 carries capacity to be explored as a novel therapeutic target in clinical.
Collapse
Affiliation(s)
- Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Junling Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - PengFei Dong
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xinyuan Du
- Department of Neurosurgery, JingXing Chinese Medicne Hospital, Shijiazhuang, Hebei 050000, China
| | - Wenpeng Lu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Liqun Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
7
|
Peng H, Palma-Gudiel H, Soriano-Tarraga C, Jimenez-Conde J, Zhang M, Zhang Y, Zhao J. Epigenome-wide association study identifies novel genes associated with ischemic stroke. Clin Epigenetics 2023; 15:106. [PMID: 37370144 DOI: 10.1186/s13148-023-01520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND DNA methylation has previously been associated with ischemic stroke, but the specific genes and their functional roles in ischemic stroke remain to be determined. Here we aimed to identify differentially methylated genes that play a functional role in ischemic stroke in a Chinese population. RESULTS Genome-wide DNA methylation assessed with the Illumina Methylation EPIC Array in a discovery sample including 80 Chinese adults (40 cases vs. 40 controls) found that patients with ischemic stroke were characterized by increased DNA methylation at six CpG loci (individually located at TRIM6, FLRT2, SOX1, SOX17, AGBL4, and FAM84A, respectively) and decreased DNA methylation at one additional locus (located at TLN2). Targeted bisulfite sequencing confirmed six of these differentially methylated probes in an independent Chinese population (853 cases vs. 918 controls), and one probe (located at TRIM6) was further verified in an external European cohort (207 cases vs. 83 controls). Experimental manipulation of DNA methylation in engineered human umbilical vein endothelial cells indicated that the identified differentially methylated probes located at TRIM6, TLN2, and FLRT2 genes may play a role in endothelial cell adhesion and atherosclerosis. CONCLUSIONS Altered DNA methylation of the TRIM6, TLN2, and FLRT2 genes may play a functional role in ischemic stroke in Chinese populations.
Collapse
Affiliation(s)
- Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Helena Palma-Gudiel
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Carolina Soriano-Tarraga
- Neurovascular Research Group, Department of Neurology of Hospital del Mar-IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autònoma de Barcelona/DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University in St. Louis, St. Louis, USA
| | - Jordi Jimenez-Conde
- Neurovascular Research Group, Department of Neurology of Hospital del Mar-IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autònoma de Barcelona/DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Hou H, Xu Y, Xie M, Chen R. Exploring the potential molecular mechanism of trastuzumab-induced cardiotoxicity based on RNA sequencing and bioinformatics analysis. Biochem Pharmacol 2023; 208:115388. [PMID: 36563885 DOI: 10.1016/j.bcp.2022.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The cardiotoxicity of trastuzumab (TRZ) seriously affects the prognosis of breast cancer patients, but the underlying mechanisms remains to be elucidated. This study aimed to investigate the potential molecular mechanisms of TRZ-induced cardiotoxicity based on RNA sequencing (RNA-Seq) and bioinformatics analysis. Kunming mice were exposed to 10 mg/kg TRZ for 6 and 10 days, followed by echocardiography, histopathology and serum biochemical analysis to evaluate the cardiotoxicity model. The results showed no significant changes after 6 days administration of TRZ. After 10 days administration of TRZ, the mice showed cardiac dysfunction, myocardial injury and fibrosis, and the serum levels of LDH, CK, CK-MB and cTnI were increased compared to the control [CON (Day 10)] group, indicating the cardiotoxicity model was successfully established. We compared gene expression levels in mice cardiac tissues by RNA-Seq and screened out 593 differentially expressed genes (DEGs). Results based on Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction (PPI) network analysis and RT-PCR revealed that the CD74/STAT1 signaling pathway might play an important role in TRZ-induced cardiotoxicity. In the TRZ group, the protein expressions of CD74, p-STAT1 (Tyr) and p-STAT1 (Ser) were increased. The TUNEL staining showed increased apoptosis of cardiomyocytes. In addition, an increased expressions of Bax, Caspase-3, IFN-γ and TNF-α and a decreased expression of Bcl-2 were observed in Western blot results, indicating the apoptosis and inflammation levels were increased. These findings suggested that TRZ may induce cardiotoxicity in mice by activating the CD74/STAT1 signaling pathway, which might be related to the induction of apoptosis and inflammation.
Collapse
Affiliation(s)
- Huan Hou
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Xu
- Department of Pharmacy, Yancheng Third People's Hospital, Yancheng, Jiangsu 224008, China
| | - Meilin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Rong Chen
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
9
|
TRIM6 Reduces Ferroptosis and Chemosensitivity by Targeting SLC1A5 in Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9808100. [PMID: 36654781 PMCID: PMC9842414 DOI: 10.1155/2023/9808100] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
Objective Ferroptosis, a newly identified form of cell death, plays critical roles in the development and chemoresistance of lung cancer. Tripartite motif 6 (TRIM6) acts as an E3-ubiquitin ligase and can promote the progression of human colorectal cancer. The present study is aimed at investigating its role and potential mechanisms in lung cancer. Methods Lentiviral vectors were used to overexpress or knock down TRIM6 in human lung cancer cells. Cell survival, colony formation, lipid peroxidation, intracellular iron levels, and other ferroptotic markers were examined. The role of TRIM6 on ferroptosis and chemosensitivity was further tested in mouse tumor xenograft models. Results TRIM6 was highly expressed in human lung cancer tissues and cells, and its expression in the lung cancer cells was further increased by ferroptotic stimulation. TRIM6 overexpression inhibited, while TRIM6 silence promoted erastin- and RSL3-induced glutaminolysis and ferroptosis in the lung cancer cells. Mechanistically, TRIM6 directly interacted with solute carrier family 1 member 5 to promote its ubiquitination and degradation, thereby inhibiting glutamine import, glutaminolysis, lipid peroxidation, and ferroptotic cell death. Moreover, we observed that TRIM6 overexpression reduced the chemotherapeutic effects of cisplatin and paclitaxel. In contrast, TRIM6 silence sensitized human lung cancer cells to cisplatin and paclitaxel in vivo and in vitro. Conclusion Our findings for the first time define TRIM6 as a negative regulator of ferroptosis in the lung cancer cells, and TRIM6 overexpression enhances the resistance of human lung cancer cells to chemotherapeutic drugs. Overall, targeting TRIM6 may help to establish novel strategies to treat lung cancer.
Collapse
|
10
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Pu C, Ciren Y, Liu Y, Long Z. TRIM52 knockdown inhibits cell proliferation and induces apoptosis through activation of the STAT3 pathway in ovarian cancer 1. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1947394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Chi Pu
- Department of Obstetrics and Gynecology, Shigatse People’s Hospital, Shigatse, Tibet Autonomous Region, People’s Republic of China
| | - Yangla Ciren
- Department of Obstetrics and Gynecology, Shigatse People’s Hospital, Shigatse, Tibet Autonomous Region, People’s Republic of China
| | - Yun Liu
- Department of Obstetrics and Gynecology, Shigatse People’s Hospital, Shigatse, Tibet Autonomous Region, People’s Republic of China
| | - Ziwen Long
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Knockdown of lncRNA Abhd11os attenuates myocardial ischemia/reperfusion injury by inhibiting apoptosis in cardiomyocytes. J Cardiovasc Pharmacol 2021; 79:192-198. [PMID: 34117183 DOI: 10.1097/fjc.0000000000001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/08/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Long non-coding RNA (lncRNA) is one potential target for the treatment of various disorders. Here, we explored the role of Abhd11os in ischemia/reperfusion-induced myocardial injury, and preliminarily explored the regulatory mechanisms. Relative Abhd11os expression level was examined by qRT-PCR. Western blot was done to measure the expression of apoptotic-related proteins. CCK-8 assay and flow cytometry were performed to detect cell viability and apoptosis, respectively. ELISA assay was used to ensure the levels of LDH, CK, and cTnI in serum. Besides, the infarct sizes were confirmed by TTC and Evans blue staining. Apoptotic rate of cardiomyocytes in myocardial tissues was evaluated by TUNEL assay. Here, increased Abhd11os expression was found in rat myocardial ischemia/reperfusion injury (MIRI) model and hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Subsequently, our data in vitro showed that upregulation of Abhd11os inhibited proliferation of cardiomyocytes, but promoted cell apoptosis. In animal experiments, myocardial infarct size in MIRI rats was reduced by Abhd11os knockdown. Moreover, downregulation of Abhd11os inhibited apoptosis of cardiomyocytes. Overall, our results revealed that knockdown of Abhd11os could notably attenuate H/R-induced myocardial injury through suppressing apoptosis of cardiomyocytes. These data suggest that Abhd11os may be a potential target for MIRI therapy.
Collapse
|
13
|
Zhang J, Jiang S, Lu C, Pang J, Xu H, Yang F, Zhuang S. SYVN1/GPX5 axis affects ischemia/reperfusion induced apoptosis of AC16 cells by regulating ROS generation. Am J Transl Res 2021; 13:4055-4067. [PMID: 34149998 PMCID: PMC8205806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Ischemia/reperfusion (I/R) induced injury is a major cause of coronary heart disease (CHD). Increased production of reactive oxygen species (ROS) can lead to an I/R injury in CHD, and the ROS level can be regulated by Glutathione peroxidase (GPX) enzyme family. In this study, we investigated the role and underlying molecular mechanism of GPX5 in I/R-induced AC16 cells. We found that the serum level of GPX5 was down-regulated in patients with CHD and I/R-induced AC16 cells. Overexpression of GPX5 inhibited I/R-induced apoptosis by suppressing the production of ROS. On the other hand, knock-down of GPX5 promoted apoptosis in AC16 cells by up-regulating the level of ROS. Furthermore, we found that GPX5 was regulated by synovial apoptosis inhibitor 1 (SYVN1)-mediated ubiquitination in AC16 cells. In I/R-induced AC16 cells, the expression of SYVN1 was up-regulated, and SYVN1 knock-down decreased the ROS levels and apoptotic rate but increased GPX5 levels. Moreover, GPX5 knockdown promoted ROS production and apoptosis, while its effects were attenuated by SYVN1 knockdown. Furthermore, SYVN1 was up-regulated while GPX5 was down-regulated in the myocardial tissue of I/R-injured rats. Taken together, our data demonstrate that GPX5 inhibits I/R-induced apoptosis of AC16 cells by down-regulating ROS level, and its stabilization is regulated by SYVN1-mediated ubiquitination.
Collapse
Affiliation(s)
- Jiehan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Shengyang Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Jiadong Pang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Huajie Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Fenghua Yang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Shaowei Zhuang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| |
Collapse
|
14
|
Li YP, Chen Z, Cai YH. Piperine protects against myocardial ischemia/reperfusion injury by activating the PI3K/AKT signaling pathway. Exp Ther Med 2021; 21:374. [PMID: 33732347 PMCID: PMC7903478 DOI: 10.3892/etm.2021.9805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/18/2020] [Indexed: 12/12/2022] Open
Abstract
Piperine (PIP) exerts numerous pharmacological effects and its involvement in endoplasmic reticulum (ER) stress (ERS)-led apoptosis has garnered attention. The present study focused on whether PIP played protective effects on hypoxia/reoxygenation (H/R)-induced cardiomyocytes by repressing ERS-led apoptosis. The potential molecular mechanisms in association with the PI3K/AKT signaling pathway were investigated. Primary neonatal rat cardiomyocytes (NRCMs) were isolated and randomized into four groups: Control + vehicle group, control + PIP group, H/R + vehicle group and H/R + PIP group. The H/R injury model was constructed by 4 h of hypoxia induction followed by 6 h of reoxygenation. A total of 10 µM PI3K/AKT inhibitor LY294002 was supplemented to the cells during the experiments. Cell viability and myocardial enzymes were detected to evaluate myocardial damage. A flow cytometry assay was performed to assess apoptotic response. Western blot analysis was performed to detect the expression of related proteins including PI3K, AKT, CHOP, GRP78 and cleaved caspase-12. The results showed that H/R markedly promoted myocardial damage as shown by the increased release of lactate dehydrogenase and creatine kinase levels, but a reduction in cell viability. In addition, ERS-induced apoptosis was markedly promoted by H/R in NRCMs, as shown by the increased apoptotic rates and expression of C/EBP-homologous protein, endoplasmic reticulum chaperone BiP and caspase-12. PIP administration reversed cell injury and ERS-induced apoptosis in H/R. Mechanistic studies concluded that the apoptosis-inhibitory contributions and cardio-favorable effects of PIP were caused partly by the activation of the PI3K/AKT signaling pathway, which was verified by LY294002 administration. To conclude, PIP can reduce ERS-induced apoptosis by activating the PI3K/AKT signaling pathway during the process of H/R injury, which could be a potential therapeutic target for the treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yun-Peng Li
- Department of Cardiovasology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Zhen Chen
- Department of Emergency and Evidence-Based Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yu-Hua Cai
- Department of Cardiovasology, Jingzhou First Municipal Hospital, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
15
|
Zhang XH, Zhao HY, Wang Y, Di L, Liu XY, Qian F, Liu SR. Zenglv Fumai Granule protects cardiomyocytes against hypoxia/reoxygenation-induced apoptosis via inhibiting TRIM28 expression. Mol Med Rep 2021; 23:171. [PMID: 33398366 PMCID: PMC7821356 DOI: 10.3892/mmr.2020.11810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/23/2020] [Indexed: 01/16/2023] Open
Abstract
Myocardial ischemia/reperfusion (MIR) injury, which occurs following acute myocardial infarction, can cause secondary damage to the heart. Tripartite interaction motif (TRIM) proteins, a class of E3 ubiquitin ligases, have been recognized as critical regulators in MIR injury. Zenglv Fumai Granule (ZFG) is a clinical prescription for the treatment of sick sinus syndrome, a disease that is associated with MIR injury. The present study aimed to investigate the effect of ZFG on MIR injury and to determine whether ZFG exerts its effects via regulation of TRIM proteins. In order to establish an in vitro MIR model, human cardiomyocyte cell line AC16 was cultured under hypoxia for 5 h and then under normal conditions for 1 h. Following hypoxia/reoxygenation (H/R) treatment, these cells were cultured with different ZFG concentrations. ZFG notably inhibited H/R-induced cardiomyocyte apoptosis. The expression levels of four TRIM proteins, TRIM7, TRIM14, TRIM22 and TRIM28, were also detected. These four proteins were significantly upregulated in H/R-injured cardiomyocytes, whereas their expression was inhibited following ZFG treatment. Moreover, TRIM28 knockdown inhibited H/R-induced cardiomyocyte apoptosis, whereas TRIM28 overexpression promoted apoptosis and generation of reactive oxygen species (ROS) in cardiomyocytes. However, the effects of TRIM28 overexpression were limited by the action of ROS inhibitor N-acetyl-L-cysteine. In addition, the mRNA and protein levels of antioxidant enzyme glutathione peroxidase (GPX)1 were significantly downregulated in H/R-injured cardiomyocytes. TRIM28 knockdown restored GPX1 protein levels but had no effect on mRNA expression levels. Co-immunoprecipitation and ubiquitination assays demonstrated that TRIM28 negatively regulated GPX1 via ubiquitination. In sum, the present study revealed that ZFG attenuated H/R-induced cardiomyocyte apoptosis by regulating the TRIM28/GPX1/ROS pathway. ZFG and TRIM28 offer potential therapeutic options for the treatment of MIR injury.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Cardiovascular Diseases, The First Clinical Hospital of Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Hong-Yu Zhao
- Drug Pharmacology and Toxicology Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Yu Wang
- Drug Pharmacology and Toxicology Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Lin Di
- Drug Pharmacology and Toxicology Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Xin-Yu Liu
- Drug Pharmacology and Toxicology Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Feng Qian
- Department of Cardiovascular Diseases, The First Clinical Hospital of Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| | - Shu-Rong Liu
- Department of Cardiovascular Diseases, The First Clinical Hospital of Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
16
|
Liu B, Deng Q, Zhang L, Zhu W. Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway. Mol Med Rep 2020; 22:4655-4662. [PMID: 33173956 PMCID: PMC7646848 DOI: 10.3892/mmr.2020.11554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have demonstrated that nobiletin (NOB) displays anti-oxidative and anti-apoptotic efficacies against multiple pathological insults. However, the potential effects of NOB on the injury caused by ischemia and reperfusion (I/R) in the kidney remain undetermined. In the present study, I/R injury was elicited by right kidney removal and left renal pedicel clamping for 45 min, followed by reperfusion for 24 h. NOB was added at the start of reperfusion. Histological examination, detection of biomarkers in plasma, and measurement of apoptosis induced by endoplasmic reticulum stress (ERS) were used to evaluate renal injury. Additionally, the PI3K/AKT inhibitor LY294002 was also used in mechanistic experiments. NOB pre-treatment significantly reduced renal damage caused by I/R injury, as indicated by decreased serum levels of creatine, blood urea nitrogen and tubular injury scores. Furthermore, NOB inhibited elevated ERS-associated apoptosis, as evidenced by reduced apoptotic rates and ERS-related signaling molecules (such as, C/EBP homologous protein, caspase-12 and glucose-regulated protein of 78 kDa). NOB increased phosphorylation of proteins in the PI3K/AKT pathway. The inhibition of PI3K/AKT signaling with pharmacological inhibitors could reverse the beneficial effects of NOB during renal I/R insult. In conclusion, NOB pre-treatment may alleviate I/R injury in the kidney by inhibiting reactive oxygen species production and ERS-induced apoptosis, partly through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bo Liu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Quanhong Deng
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Lei Zhang
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Wen Zhu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
17
|
Hage A, Rajsbaum R. To TRIM or not to TRIM: the balance of host-virus interactions mediated by the ubiquitin system. J Gen Virol 2020; 100:1641-1662. [PMID: 31661051 DOI: 10.1099/jgv.0.001341] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The innate immune system responds rapidly to protect against viral infections, but an overactive response can cause harmful damage. To avoid this, the response is tightly regulated by post-translational modifications (PTMs). The ubiquitin system represents a powerful PTM machinery that allows for the reversible linkage of ubiquitin to activate and deactivate a target's function. A precise enzymatic cascade of ubiquitin-activating, conjugating and ligating enzymes facilitates ubiquitination. Viruses have evolved to take advantage of the ubiquitin pathway either by targeting factors to dampen the antiviral response or by hijacking the system to enhance their replication. The tripartite motif (TRIM) family of E3 ubiquitin ligases has garnered attention as a major contributor to innate immunity. Many TRIM family members limit viruses either indirectly as components in innate immune signalling, or directly by targeting viral proteins for degradation. In spite of this, TRIMs and other ubiquitin ligases can be appropriated by viruses and repurposed as valuable tools in viral replication. This duality of function suggests a new frontier of research for TRIMs and raises new challenges for discerning the subtleties of these pro-viral mechanisms. Here, we review current findings regarding the involvement of TRIMs in host-virus interactions. We examine ongoing developments in the field, including novel roles for unanchored ubiquitin in innate immunity, the direct involvement of ubiquitin ligases in promoting viral replication, recent controversies on the role of ubiquitin and TRIM25 in activation of the pattern recognition receptor RIG-I, and we discuss the implications these studies have on future research directions.
Collapse
Affiliation(s)
- Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|