1
|
Kong M, Li J, Jin R, Zhang Y, You J, Wang N, Tong N. Lycium barbarum polysaccharide alleviates H 2O 2-induced premature senescence by downregulating miRNA-34a-5p in ARPE-19 cells. Cell Stress Chaperones 2025; 30:130-142. [PMID: 40112947 PMCID: PMC12002617 DOI: 10.1016/j.cstres.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
The premature senescence of retinal pigment epithelium (RPE) plays a significant role in the development of age-related macular degeneration. This study aimed to investigate the potential protective effect of Lycium barbarum polysaccharide (LBP) against H2O2-induced premature senescence and to elucidate the underlying mechanisms. The ARPE-19 cell line was subjected to H2O2 exposure to create a model of premature senescence. The modulation of microRNA-34a-5p expression was accomplished using antagomir and agomir, as assessed by quantitative real-time polymerase chain reaction. The senescence model was successfully established by treating cells with 200 μM H2O2 for 2 hours daily over a span of three consecutive days. This oxidative stress resulted in a notable increase in the proportion of senescence-associated beta-galactosidase-positive cells, reaching 33.5%, without significant alterations in cell viability or apoptosis. In the ARPE-19 cells undergoing premature senescence, there was a marked increase in reactive oxygen species (ROS) production and malondialdehyde levels, coupled with a significant decrease in the activity of total superoxide dismutase, glutathione peroxidase, and catalase. Additionally, microRNA-34a-5p was found to be overexpressed in these cells. Treatment with LBP alleviated H2O2-induced premature senescence, diminished the overexpression of microRNA-34a-5p, and suppressed ROS production. Moreover, the incubation with ago-34a reversed the protective effect of LBP in ARPE-19 cells. In conclusion, the overexpression of microRNA-34a-5p contributes to the H2O2-induced premature senescence of ARPE-19 cells. LBP appears to mitigate this premature senescence, at least in part, by downregulating microRNA-34a-5p expression and reducing oxidative stress.
Collapse
Affiliation(s)
- Meng Kong
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Jingwen Li
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Rong Jin
- Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China; Department of Pediatrics, Affiliated Hospital of Qingdao University, 266001, Qingdao, China
| | - Yi Zhang
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Jia You
- Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Central Hospital, 266001, Qingdao, China
| | - Nan Wang
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China
| | - Nianting Tong
- School of Medicine, Qingdao University, 266001, Qingdao, China; Department of Ophthalmology, Qingdao Municipal Hospital, 266001, Qingdao, China.
| |
Collapse
|
2
|
Chen Y, Jiang F, Zeng Y, Zhang M. The role of retinal pigment epithelial senescence and the potential of senotherapeutics in age-related macular degeneration. Surv Ophthalmol 2025:S0039-6257(25)00053-0. [PMID: 40089029 DOI: 10.1016/j.survophthal.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment in the aging population. Evidence showing the presence of cellular senescence in retinal pigment epithelium (RPE) of patients with AMD is growing. Senescent RPE play a pivotal role in its pathogenesis. The senescent RPE suffers from structural and functional alterations and disruption of the surrounding microenvironment due to the development of the senescence-associated secretory phenotype, which contributes to metabolic dysfunctions and inflammatory responses in the retina. Senotherapeutics, including senolytics, senomorphics and others, are novel treatments targeting senescent cells and are promising treatments for AMD. As senotherapeutic targets are being developed, it is promising that the burden of AMD could be decreased.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| | - Feipeng Jiang
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| | - Yue Zeng
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| | - Meixia Zhang
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| |
Collapse
|
3
|
Wang SW, Li P, Liu SY, Huang DL, Zhang SJ, Zeng XX, Lan T, Mao KL, Gao Y, Cheng YF, Shen Q, Ruan YP, Mao ZJ. Astragaloside IV inhibits retinal pigment epithelial cell senescence and reduces IL-1β mRNA stability by targeting FTO-mediated m 6A methylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156408. [PMID: 39848020 DOI: 10.1016/j.phymed.2025.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified. PURPOSE This study aimed to explore the impacts of Ast on RPE cell senescence and to uncover the molecular mechanisms involved. METHODS The therapeutic efficacy of Ast was assessed using sodium iodate (NaIO3)-induced adult retinal pigment epithelial cell line 19 (ARPE-19) cell models and an AMD mouse model. To investigate the mechanisms by which Ast mitigated RPE cell senescence, RNA sequencing (RNA-seq), drug affinity responsive target stability-mass spectrometry (DARTS-MS), cellular thermal shift assay (CETSA), reverse transcription quantitative PCR (RT-qPCR), as well as western blotting were conducted. RESULTS Ast significantly inhibited NaIO3-treated ARPE-19 cell senescence and protected against NaIO3-induced AMD in mice. RNA-seq analysis revealed that Ast significantly attenuated inflammation-related signaling pathways and reduced the mRNA levels of interleukin-1 beta (IL-1β). Specifically, Ast decreased the stability of IL-1β mRNA while enhancing its N6-methyladenosine (m6A) methylation. Furthermore, Ast directly interacted with fat mass and obesity-associated protein (FTO). Knockdown or pharmacological inhibition of FTO mitigated the senescence and IL-1β expression in NaIO3-treated ARPE-19 cells. FTO was essential for Ast to inhibit cellular senescence and IL-1β expression. Additionally, inhibition or knockdown of FTO conferred also provided resistance to AMD in the murine model. CONCLUSION Our results indicated that Ast significantly attenuated RPE cell senescence and showed anti-AMD properties. FTO was demonstrated to be a promising therapeutic target for AMD treatment. These findings may provide a deeper understanding of the molecular mechanisms underlying RPE cell senescence in AMD and offer potential strategies for its prevention and management.
Collapse
Affiliation(s)
- Si-Wei Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Ping Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shi-Yu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - De-Lian Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Si-Jia Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Tian Lan
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Kai-Li Mao
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Yuan Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi-Fan Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qing Shen
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhu-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
4
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
5
|
Klochkov V, Chan CM, Lin WW. Methylglyoxal: A Key Factor for Diabetic Retinopathy and Its Effects on Retinal Damage. Biomedicines 2024; 12:2512. [PMID: 39595078 PMCID: PMC11592103 DOI: 10.3390/biomedicines12112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Diabetic retinopathy is the most common retinal vascular disease, affecting the retina's blood vessels and causing chronic inflammation, oxidative stress, and, ultimately, vision loss. Diabetes-induced elevated glucose levels increase glycolysis, the main methylglyoxal (MGO) formation pathway. MGO is a highly reactive dicarbonyl and the most rapid glycation compound to form endogenous advanced glycation end products (AGEs). MGO can act both intra- and extracellularly by glycating molecules and activating the receptor for AGEs (RAGE) pathway. Conclusions: This review summarizes the sources of MGO formation and its actions on various cell pathways in retinal cells such as oxidative stress, glycation, autophagy, ER stress, and mitochondrial dysfunction. Finally, the detoxification of MGO by glyoxalases is discussed.
Collapse
Affiliation(s)
- Vladlen Klochkov
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
6
|
Jiang Y, Liu L, Al-Shabrawey M, Steinle JJ. Caveolin-1 regulates inflammatory mediators in retinal endothelial cells. Mol Vis 2024; 30:298-303. [PMID: 39959177 PMCID: PMC11829789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/15/2024] [Indexed: 02/18/2025] Open
Affiliation(s)
- Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Li Liu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Mohamed Al-Shabrawey
- Eye Research Center and Institute, Oakland University William Beaumont School of Medicine (OUWB-SOM), Oakland University, Oakland, MI
- Department of Foundational Medical Studies, OUWB-SOM, Oakland University
| | - Jena J Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
7
|
Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, Araújo I, Nóbrega C, Castelo-Branco P, Bragança J. Reprogramming iPSCs to study age-related diseases: Models, therapeutics, and clinical trials. Mech Ageing Dev 2023; 214:111854. [PMID: 37579530 DOI: 10.1016/j.mad.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The unprecedented rise in life expectancy observed in the last decades is leading to a global increase in the ageing population, and age-associated diseases became an increasing societal, economic, and medical burden. This has boosted major efforts in the scientific and medical research communities to develop and improve therapies to delay ageing and age-associated functional decline and diseases, and to expand health span. The establishment of induced pluripotent stem cells (iPSCs) by reprogramming human somatic cells has revolutionised the modelling and understanding of human diseases. iPSCs have a major advantage relative to other human pluripotent stem cells as their obtention does not require the destruction of embryos like embryonic stem cells do, and do not have a limited proliferation or differentiation potential as adult stem cells. Besides, iPSCs can be generated from somatic cells from healthy individuals or patients, which makes iPSC technology a promising approach to model and decipher the mechanisms underlying the ageing process and age-associated diseases, study drug effects, and develop new therapeutic approaches. This review discusses the advances made in the last decade using iPSC technology to study the most common age-associated diseases, including age-related macular degeneration (AMD), neurodegenerative and cardiovascular diseases, brain stroke, cancer, diabetes, and osteoarthritis.
Collapse
Affiliation(s)
- Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
8
|
Ma JY, Greferath U, Wong JH, Fothergill LJ, Jobling AI, Vessey KA, Fletcher EL. Aging induces cell loss and a decline in phagosome processing in the mouse retinal pigment epithelium. Neurobiol Aging 2023; 128:1-16. [PMID: 37130462 DOI: 10.1016/j.neurobiolaging.2023.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss and dysfunction in the retinal pigment epithelium (RPE) with age is known to contribute to disease development. The aim of this study was to investigate how the C57BL/6J mouse RPE changes with age. RPE structure was found to change with age and eccentricity, with cell size increasing, nuclei lost, and tight junctions altered in the peripheral retina. Phagocytosis of photoreceptor outer segments (POS) by the RPE was investigated using gene expression analysis and histology. RNA-Seq transcriptomic gene profiling of the RPE showed a downregulation of genes involved in phagosome processing and histological analysis showed a decline in phagosome-lysosome association in the aged tissue. In addition, failures in the autophagy pathway that modulates intracellular waste degradation were observed in the aged RPE tissue. These findings highlight that RPE cell loss and slowing of POS processing contribute to RPE dysfunction with age and may predispose the aging eye to AMD development.
Collapse
|
9
|
Kaarniranta K, Blasiak J, Liton P, Boulton M, Klionsky DJ, Sinha D. Autophagy in age-related macular degeneration. Autophagy 2023; 19:388-400. [PMID: 35468037 PMCID: PMC9851256 DOI: 10.1080/15548627.2022.2069437] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with limited understanding of its pathogenesis and a lack of effective treatment. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to geographic atrophy and/or choroidal neovascularization and fibrosis. The role of macroautophagy/autophagy in AMD pathology is steadily emerging. This review describes selective and secretory autophagy and their role in drusen biogenesis, senescence-associated secretory phenotype, inflammation and epithelial-mesenchymal transition in the pathogenesis of AMD.Abbreviations: Aβ: amyloid-beta; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ATF6: activating transcription factor 6; ATG: autophagy related; BACE1: beta-secretase 1; BHLHE40: basic helix-loop-helix family member e40; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; C: complement; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CFB: complement factor B; DELEC1/Dec1; deleted in esophageal cancer 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMT: epithelial-mesenchymal transition; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; IL: interleukin; KEAP1: kelch like ECH associated protein 1; LAP: LC3-associated phagocytosis; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NFE2L2: NFE2 like bZIP transcription factor 2; NLRP3; NLR family pyrin domain containing 3; NFKB/NFκB: nuclear factor kappa B; OPTN: optineurin; PARL: presenilin associated rhomboid like; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; PINK1: PTEN induced kinase 1; POS: photoreceptor outer segment; PPARGC1A: PPARG coactivator 1 alpha; PRKN: parkin RBR E3 ubiquitin protein ligase; PYCARD/ASC: PYD and CARD domain containing; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SA: secretory autophagy; SASP: senescence-associated secretory phenotype; SEC22B: SEC22 homolog B, vesicle trafficking protein; SNAP: synaptosome associated protein; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX: syntaxin; TGFB2: transforming growth factor beta 2; TRIM16: tripartite motif containing 16; TWIST: twist family bHLH transcription factor; Ub: ubiquitin; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; V-ATPase: vacuolar-type H+-translocating ATPase; VIM: vimentin.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Paloma Liton
- Duke University, Department of Ophthalmology, Durham, NC, USA
| | - Michael Boulton
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, AL, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Debasish Sinha
- University of Pittsburgh School of Medicine, Departments of Ophthalmology, Cell Biology, and Developmental Biology, Pittsburgh, PA, USA
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med 2022; 28:1556-1568. [PMID: 35953721 PMCID: PMC9599677 DOI: 10.1038/s41591-022-01923-y] [Citation(s) in RCA: 491] [Impact Index Per Article: 163.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023]
Abstract
Interlinked and fundamental aging processes appear to be a root-cause contributor to many disorders and diseases. One such process is cellular senescence, which entails a state of cell cycle arrest in response to damaging stimuli. Senescent cells can arise throughout the lifespan and, if persistent, can have deleterious effects on tissue function due to the many proteins they secrete. In preclinical models, interventions targeting those senescent cells that are persistent and cause tissue damage have been shown to delay, prevent or alleviate multiple disorders. In line with this, the discovery of small-molecule senolytic drugs that selectively clear senescent cells has led to promising strategies for preventing or treating multiple diseases and age-related conditions in humans. In this Review, we outline the rationale for senescent cells as a therapeutic target for disorders across the lifespan and discuss the most promising strategies-including recent and ongoing clinical trials-for translating small-molecule senolytics and other senescence-targeting interventions into clinical use.
Collapse
Affiliation(s)
- Selim Chaib
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Yasom S, Watcharanurak P, Bhummaphan N, Thongsroy J, Puttipanyalears C, Settayanon S, Chalertpet K, Khumsri W, Kongkaew A, Patchsung M, Siriwattanakankul C, Pongpanich M, Pin‐on P, Jindatip D, Wanotayan R, Odton M, Supasai S, Oo TT, Arunsak B, Pratchayasakul W, Chattipakorn N, Chattipakorn S, Mutirangura A. The roles of HMGB1-produced DNA gaps in DNA protection and aging biomarker reversal. FASEB Bioadv 2022; 4:408-434. [PMID: 35664831 PMCID: PMC9164245 DOI: 10.1096/fba.2021-00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
The endogenous DNA damage triggering an aging progression in the elderly is prevented in the youth, probably by naturally occurring DNA gaps. Decreased DNA gaps are found during chronological aging in yeast. So we named the gaps "Youth-DNA-GAPs." The gaps are hidden by histone deacetylation to prevent DNA break response and were also reduced in cells lacking either the high-mobility group box (HMGB) or the NAD-dependent histone deacetylase, SIR2. A reduction in DNA gaps results in shearing DNA strands and decreasing cell viability. Here, we show the roles of DNA gaps in genomic stability and aging prevention in mammals. The number of Youth-DNA-GAPs were low in senescent cells, two aging rat models, and the elderly. Box A domain of HMGB1 acts as molecular scissors in producing DNA gaps. Increased gaps consolidated DNA durability, leading to DNA protection and improved aging features in senescent cells and two aging rat models similar to those of young organisms. Like the naturally occurring Youth-DNA-GAPs, Box A-produced DNA gaps avoided DNA double-strand break response by histone deacetylation and SIRT1, a Sir2 homolog. In conclusion, Youth-DNA-GAPs are a biomarker determining the DNA aging stage (young/old). Box A-produced DNA gaps ultimately reverse aging features. Therefore, DNA gap formation is a potential strategy to monitor and treat aging-associated diseases.
Collapse
Affiliation(s)
- Sakawdaurn Yasom
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Papitchaya Watcharanurak
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Narumol Bhummaphan
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | | | - Charoenchai Puttipanyalears
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Sirapat Settayanon
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Kanwalat Chalertpet
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Wilunplus Khumsri
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand,Interdisciplinary Program of Biomedical Sciences, Graduate SchoolChulalongkorn UniversityBangkokThailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Maturada Patchsung
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Chutha Siriwattanakankul
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of ScienceChulalongkorn UniversityBangkokThailand,Omics Sciences and Bioinformatics Center, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Piyapat Pin‐on
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Depicha Jindatip
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Rujira Wanotayan
- Department of Radiological Technology, Faculty of Medical TechnologyMahidol UniversityNakhon PathomThailand
| | - Mingkwan Odton
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Suangsuda Supasai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand,Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand,Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand,Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand,Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|
12
|
Mahaling B, Low SWY, Beck M, Kumar D, Ahmed S, Connor TB, Ahmad B, Chaurasia SS. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int J Mol Sci 2022; 23:ijms23052591. [PMID: 35269741 PMCID: PMC8910759 DOI: 10.3390/ijms23052591] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Shermaine W. Y. Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Molly Beck
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Devesh Kumar
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Simrah Ahmed
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Thomas B. Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2050
| |
Collapse
|
13
|
Niklander SE, Lambert DW, Hunter KD. Senescent Cells in Cancer: Wanted or Unwanted Citizens. Cells 2021; 10:cells10123315. [PMID: 34943822 PMCID: PMC8699088 DOI: 10.3390/cells10123315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
Over recent decades, the field of cellular senescence has attracted considerable attention due to its association with aging, the development of age-related diseases and cancer. Senescent cells are unable to proliferate, as the pathways responsible for initiating the cell cycle are irreversibly inhibited. Nevertheless, senescent cells accumulate in tissues and develop a pro-inflammatory secretome, known as the senescence-associated secretory phenotype (SASP), which can have serious deleterious effects if not properly regulated. There is increasing evidence suggesting senescent cells contribute to different stages of carcinogenesis in different anatomical sites, mainly due to the paracrine effects of the SASP. Thus, a new therapeutic field, known as senotherapeutics, has developed. In this review, we aim to discuss the molecular mechanisms underlying the senescence response and its relationship with cancer development, focusing on the link between senescence-related inflammation and cancer. We will also discuss different approaches to target senescent cells that might be of use for cancer treatment.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar 2520000, Chile
- Correspondence: ; Tel.: +56-(32)2845108
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Oral Biology and Pathology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
14
|
Goutas A, Outskouni Z, Papathanasiou I, Satra M, Koliakos G, Trachana V. Dysregulation of Caveolin-1 Phosphorylation and Nuclear Translocation Is Associated with Senescence Onset. Cells 2021; 10:cells10112939. [PMID: 34831162 PMCID: PMC8616550 DOI: 10.3390/cells10112939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
We recently reported that the inability of osteoarthritic (OA) chondrocytes to repair oxidative stress (OS) induced DNA damage is linked to Cav-1 overexpression/improper localization. We speculated that the senescent status of OA cells was responsible for this Cav-1 dysregulation. Here, to further investigate this hypothesis, we used Wharton Jelly derived mesenchymal stem cells (WJ-MSCs) and investigated Cav-1 function as cells reached replicative senescence or upon stress induced senescence (SIPS). We showed that Cav-1 is upregulated, phosphorylated and translocated to the nucleus in young WJ-MSCs upon acute exogenous OS, and that it returns back to basal/nonphosphorylated levels and exports the nucleus in the recovery phase. However, as cells reach senescence, this regulation is lost. OS did not induce any Cav-1-mediated response, which is concomitant with the inability of older cells to restore DNA damage. Furthermore, downregulation of Cav-1 resulted in persistent OS-induced DNA damage and subsequent onset of senescence. We also report that the establishment of senescence is mediated by autophagy stimulation, since downregulation of autophagy key molecule Atg5, simultaneously with Cav-1 downregulation, was found to inhibit SIPS. Basically, we propose that Cav-1 involvement in DNA damage response can lead to senescence, either because the damage is extensive or because Cav-1 is absent/unable to perform its homeostatic role.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - Zozo Outskouni
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - Ioanna Papathanasiou
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - Maria Satra
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
| | - George Koliakos
- Biohellenika, Biotechnology Company, 57001 Thessaloniki, Greece;
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (Z.O.); (I.P.); (M.S.)
- Correspondence: ; Tel.: +30-2410-685624
| |
Collapse
|
15
|
Clark D, Kotronia E, Ramsay SE. Frailty, aging, and periodontal disease: Basic biologic considerations. Periodontol 2000 2021; 87:143-156. [PMID: 34463998 PMCID: PMC8771712 DOI: 10.1111/prd.12380] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is associated with the development of disease. Periodontal disease is one of the many diseases and conditions that increase in prevalence with age. In addition to the traditional focus on individual age-related conditions, there is now a greater recognition that multisystem conditions such as frailty play an important role in the health of older populations. Frailty is a clinical condition in older adults that increases the risk of adverse health outcomes. Both frailty and periodontal disease are common chronic conditions in older populations and share several risk factors. There is likely a bidirectional relationship between periodontal disease and frailty. Comorbid systemic diseases, poor physical functioning, and limited ability to self-care in frail older people have been implicated as underlying the association between frailty and periodontal disease. In addition, both frailty and periodontal disease also have strong associations with inflammatory dysregulation and other age-related pathophysiologic changes that may similarly underlie their development and progression. Investigating age-related changes in immune cells that regulate inflammation may lead to a better understanding of age-related disease and could lead to therapeutic targets for the improved management of frailty and periodontal disease.
Collapse
Affiliation(s)
- Daniel Clark
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Eftychia Kotronia
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Sheena E Ramsay
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
16
|
Ramazan ZK, Sarı İ, Yıldırım BG, Güntürk İ, Küçük E, Erşan S, Seydel GŞ. The Evaluation of oxidative stress, 3-nitrotyrosine, and HMGB-1 levels in patients with Wet Type Age-Related Macular Degeneration. J Med Biochem 2021; 41:275-281. [PMID: 36042902 PMCID: PMC9375537 DOI: 10.5937/jomb0-32189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022] Open
Abstract
Background This study aims to compare serum HMGB-1, 3-nitrotyrosine (3-NT), TAS, TOS, and OSI levels in Wettype Age-Related Macular Degeneration (wAMD) patients and healthy controls to determine the correlation of these parameters with each other. Methods Thirty patients with Wet-type Age-Related Macular Degeneration (wAMD) and 27 healthy adults, as controls were enrolled in the study. We determined the TAS and TOS levels in serum samples of both groups using commercial kits on a microplate reader. Serum HMGB-1 and 3-NT levels were measured with the enzyme-linked immunosorbent assay method. Results HMGB-1 levels were significantly higher in the patient group (137.51 pg/mL, p=0.001), while there was no difference between the two groups in serum 3-NT levels (p=0.428). A statistically significant difference found in the levels of TOS and OSI (p=0.001 and p=0.045, respectively) between the patients and controls, however, no significant difference was observed between the groups in terms of TAS levels (p=0.228). Conclusions Oxidative stress and HMGB-1 levels were increased in wAMD patients and enhanced oxidative stress may be associated with increased tissue necrosis and inflammation. Thus administration of antioxidant treatment in addition to routine therapy should be considered in wAMD.
Collapse
Affiliation(s)
- Zor Kürşad Ramazan
- Niğde Ömer Halisdemir University School of Medicine Department of Ophthalmology, Bor Yolu, Niğde, Turkey
| | - İsmail Sarı
- Niğde Ömer Halisdemir University School of Medicine Department of Biochemistry, Bor Yolu, Niğde, Turkey
| | - Biçer Gamze Yıldırım
- Niğde Ömer Halisdemir University School of Medicine Department of Ophthalmology, Bor Yolu, Niğde, Turkey
| | - İnayet Güntürk
- Niğde Ömer Halisdemir University, Healthcare Services, Zübeyde Hanım Health Services Vocational High School, Bor Yolu, Niğde, Turkey
| | - Erkut Küçük
- Niğde Ömer Halisdemir University School of Medicine Department of Ophthalmology, Bor Yolu, Niğde, Turkey
| | - Serpil Erşan
- Niğde Ömer Halisdemir University School of Medicine Department of Biochemistry, Bor Yolu, Niğde, Turkey
| | - Gönül Şeyda Seydel
- Niğde Ömer Halisdemir University School of Medicine Department of Medical Biochemistry, Bor Yolu, Niğde, Turkey
| |
Collapse
|
17
|
Zhang Q, Presswalla F, Ali RR, Zacks DN, Thompson DA, Miller JML. Pharmacologic activation of autophagy without direct mTOR inhibition as a therapeutic strategy for treating dry macular degeneration. Aging (Albany NY) 2021; 13:10866-10890. [PMID: 33872219 PMCID: PMC8109132 DOI: 10.18632/aging.202974] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Dry age-related macular degeneration (AMD) is marked by the accumulation of extracellular and intracellular lipid-rich deposits within and around the retinal pigment epithelium (RPE). Inducing autophagy, a conserved, intracellular degradative pathway, is a potential treatment strategy to prevent disease by clearing these deposits. However, mTOR inhibition, the major mechanism for inducing autophagy, disrupts core RPE functions. Here, we screened autophagy inducers that do not directly inhibit mTOR for their potential as an AMD therapeutic in primary human RPE culture. Only two out of more than thirty autophagy inducers tested reliably increased autophagy flux in RPE, emphasizing that autophagy induction mechanistically differs across distinct tissues. In contrast to mTOR inhibitors, these compounds preserved RPE health, and one inducer, the FDA-approved compound flubendazole (FLBZ), reduced the secretion of apolipoprotein that contributes to extracellular deposits termed drusen. Simultaneously, FLBZ increased production of the lipid-degradation product β-hydroxybutyrate, which is used by photoreceptor cells as an energy source. FLBZ also reduced the accumulation of intracellular deposits, termed lipofuscin, and alleviated lipofuscin-induced cellular senescence and tight-junction disruption. FLBZ triggered compaction of lipofuscin-like granules into a potentially less toxic form. Thus, induction of RPE autophagy without direct mTOR inhibition is a promising therapeutic approach for dry AMD.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robin R. Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- KCL Centre for Cell and Gene Therapy, London, England WC2R 2LS, United Kingdom
| | - David N. Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Debra A. Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jason ML. Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
18
|
Abstract
Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.
Collapse
|
19
|
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288:518-536. [PMID: 32686219 PMCID: PMC7405395 DOI: 10.1111/joim.13141] [Citation(s) in RCA: 614] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.
Collapse
Affiliation(s)
- J L Kirkland
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - T Tchkonia
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
20
|
Zhou P, Zhou J. The Primary Cilium as a Therapeutic Target in Ocular Diseases. Front Pharmacol 2020; 11:977. [PMID: 32676032 PMCID: PMC7333185 DOI: 10.3389/fphar.2020.00977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
Primary cilia are microtubule-based cellular structures located on the surfaces of most mammalian cells and play important roles in detecting external stimuli, signal transduction, and cell cycle regulation. Primary cilia are also present in several structures of the eye, and their abnormal development or dysfunction can cause various ocular diseases. The rapid development of proteomics and metabolomics technologies have helped in the identification of many ocular disease-related proteins, some of which are dysregulated in primary cilia. This review focuses on ciliary dysregulation in a number of ocular diseases and discusses the potential of targeting primary cilia in gene and stem cell therapy for these diseases.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020; 16:263-275. [PMID: 32161396 PMCID: PMC7227781 DOI: 10.1038/s41574-020-0335-y] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
With the ageing of the global population, interest is growing in the 'geroscience hypothesis', which posits that manipulation of fundamental ageing mechanisms will delay (in parallel) the appearance or severity of multiple chronic, non-communicable diseases, as these diseases share the same underlying risk factor - namely, ageing. In this context, cellular senescence has received considerable attention as a potential target in preventing or treating multiple age-related diseases and increasing healthspan. Here we review mechanisms of cellular senescence and approaches to target this pathway therapeutically using 'senolytic' drugs that kill senescent cells or inhibitors of the senescence-associated secretory phenotype (SASP). Furthermore, we highlight the evidence that cellular senescence has a causative role in multiple diseases associated with ageing. Finally, we focus on the role of cellular senescence in a number of endocrine diseases, including osteoporosis, metabolic syndrome and type 2 diabetes mellitus, as well as other endocrine conditions. Although much remains to be done, considerable preclinical evidence is now leading to the initiation of proof-of-concept clinical trials using senolytics for several endocrine and non-endocrine diseases.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2020; 77:789-805. [PMID: 31897543 PMCID: PMC11105088 DOI: 10.1007/s00018-019-03420-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease underlined by the death of photoreceptors and degeneration of retinal pigment epithelium (RPE) and choriocapillaris (CC). The mechanism(s) responsible for massive and progressive retinal degeneration is not completely known. Senescence, a state of permanent inhibition of cell growth, may be induced by many factors important for AMD pathogenesis and results in senescence-associated secretory phenotype (SASP) that releases growth factors, cytokines, chemokines, proteases and other molecules inducing inflammation and other AMD-related effects. These effects can be induced in the affected cell and neighboring cells, leading to progression of AMD phenotype. Senescent cells also release reactive oxygen species that increase SASP propagation. Many other pathways of senescence-related AMD pathogenesis, including autophagy, the cGAS-STING signaling, degeneration of CC by membrane attack complex, can be considered. A2E, a fluorophore present in lipofuscin, amyloid-beta peptide and humanin, a mitochondria-derived peptide, may link AMD with senescence. Further studies on senescence in AMD pathogenesis to check the possibility of opening a perspective of the use of drugs killing senescent cells (senolytics) and terminating SASP bystander effects (senostatics) might be beneficial for AMD that at present is an incurable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, Poland.
| |
Collapse
|
23
|
Egger AN, Rajabi‐Estarabadi A, Williams NM, Resnik SR, Fox JD, Wong LL, Jozic I. The importance of caveolins and caveolae to dermatology: Lessons from the caves and beyond. Exp Dermatol 2020; 29:136-148. [PMID: 31845391 PMCID: PMC7028117 DOI: 10.1111/exd.14068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Caveolae are flask-shaped invaginations of the cell membrane rich in cholesterol and sphingomyelin, with caveolin proteins acting as their primary structural components that allow compartmentalization and orchestration of various signalling molecules. In this review, we discuss how pleiotropic functions of caveolin-1 (Cav1) and its intricate roles in numerous cellular functions including lipid trafficking, signalling, cell migration and proliferation, as well as cellular senescence, infection and inflammation, are integral for normal development and functioning of skin and its appendages. We then examine how disruption of the homeostatic levels of Cav1 can lead to development of various cutaneous pathophysiologies including skin cancers, cutaneous fibroses, psoriasis, alopecia, age-related changes in skin and aberrant wound healing and propose how levels of Cav1 may have theragnostic value in skin physiology/pathophysiology.
Collapse
Affiliation(s)
- Andjela N. Egger
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ali Rajabi‐Estarabadi
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Natalie M. Williams
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Sydney R. Resnik
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Joshua D. Fox
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Lulu L. Wong
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|