1
|
Hinton A, Claypool SM, Neikirk K, Senoo N, Wanjalla CN, Kirabo A, Williams CR. Mitochondrial Structure and Function in Human Heart Failure. Circ Res 2024; 135:372-396. [PMID: 38963864 PMCID: PMC11225798 DOI: 10.1161/circresaha.124.323800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Steven M. Claypool
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Nanami Senoo
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation (A.K.)
- Vanderbilt Institute for Global Health (A.K.)
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH (C.R.W.)
| |
Collapse
|
2
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
3
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
4
|
Jia D, Tian Z, Wang R. Exercise mitigates age-related metabolic diseases by improving mitochondrial dysfunction. Ageing Res Rev 2023; 91:102087. [PMID: 37832607 DOI: 10.1016/j.arr.2023.102087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
The benefits of regular physical activity are related to delaying and reversing the onset of ageing and age-related disorders, including cardiomyopathy, neurodegenerative diseases, cancer, obesity, diabetes, and fatty liver diseases. However, the molecular mechanisms of the benefits of exercise or physical activity on ageing and age-related disorders remain poorly understood. Mitochondrial dysfunction is implicated in the pathogenesis of ageing and age-related metabolic diseases. Mitochondrial health is an important mediator of cellular function. Therefore, exercise alleviates metabolic diseases in individuals with advancing ageing and age-related diseases by the remarkable promotion of mitochondrial biogenesis and function. Exerkines are identified as signaling moieties released in response to exercise. Exerkines released by exercise have potential roles in improving mitochondrial dysfunction in response to age-related disorders. This review comprehensive summarizes the benefits of exercise in metabolic diseases, linking mitochondrial dysfunction to the onset of age-related diseases. Using relevant examples utilizing this approach, the possibility of designing therapeutic interventions based on these molecular mechanisms is addressed.
Collapse
Affiliation(s)
- Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Liu Y, Wang Y, Bi Y, Zhao Z, Wang S, Lin S, Yang Z, Wang X, Mao J. Emerging role of mitophagy in heart failure: from molecular mechanism to targeted therapy. Cell Cycle 2023; 22:906-918. [PMID: 36658777 PMCID: PMC10054314 DOI: 10.1080/15384101.2023.2167949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Heart failure is defined as a drop in heart's pump function, accounting for reduced blood output and venous stasis, and constitutes the end stage of various cardiovascular diseases. Although mild mitochondrial dysfunction may hinder cardiomyocyte metabolism and impair myocardial function, severe mitochondrial injury is accompanied by cardiomyocyte apoptosis, leading to irreversible damage of the heart. Selective autophagy of mitochondria, or mitophagy, serves to rapidly remove dysfunctional mitochondria and restore the health of the mitochondrial population within cells by allowing reutilization of degradative substrates such as amino acids, fatty acids, and nucleotides. Although mitophagy represents a protective program that prevents the accumulation of poorly structured or damaged mitochondria, excessive mitophagy leads to mitochondrial population decline, impaired oxidative phosphorylation, and decreased ATP production. In this review, we first discuss the molecular underpinnings of mitophagy and the roles of different mitophagy adaptors. Then, the multiple and complex influence of mitophagy on heart failure is summarized. Finally, novel pharmacological strategies targeting mitophagy to relieve heart failure are briefly summarized.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yizhou Wang
- Rehabilitation Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yingfei Bi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhiqiang Zhao
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuai Wang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shanshan Lin
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihua Yang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xianliang Wang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jingyuan Mao
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
6
|
Zhou X, Trinh-Minh T, Tran-Manh C, Gießl A, Bergmann C, Györfi AH, Schett G, Distler JHW. Impaired TFAM expression promotes mitochondrial damage to drive fibroblast activation and fibrosis in systemic sclerosis. Arthritis Rheumatol 2021; 74:871-881. [PMID: 34807516 DOI: 10.1002/art.42033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The transcription factor TFAM is controlling the transcription of core proteins required for mitochondrial homeostasis. The aim of the current study was to investigate changes in TFAM expression in systemic sclerosis (SSc), to analyze mitochondrial function and to evaluate the consequences for fibroblast activation. METHODS The expression of TFAM was analyzed by immunofluorescence and Western blot. The effects of TFAM knockout were investigated in cultured fibroblasts and in bleomycin-induced skin and lung fibrosis and in TβRIact -induced skin fibrosis. RESULTS The expression of TFAM was downregulated in fibroblasts in SSc skin and in cultured SSc fibroblasts. The downregulation of TFAM was associated with decreased mitochondrial number and accumulation of damaged mitochondria with release of mtDNA, accumulation of deletions in mtDNA, metabolic alterations with impaired OXPHOS and release of the mitokine GDF15. Chronic, but not acute, exposure of normal fibroblasts to TGFβ mimicked the finding in SSc fibroblasts with downregulation of TFAM and accumulation of mitochondrial damage. Downregulation of TFAM promotes fibroblast activation with upregulation of fibrosis-relevant GO-terms in RNASeq, partially in a ROS-dependent manner. Mice with fibroblast-specific knockout of TFAM are prone to fibrotic tissue remodeling with fibrotic responses even to NaCl instillation and enhanced sensitivity to bleomycin injection and TβRIact-overexpression. TFAM knockout fosters SMAD3 signaling to promote fibroblast activation. CONCLUSIONS Alterations in the key mitochondrial transcription factor TFAM in response to prolonged activation of TGFβ and associated mitochondrial damage induce transcriptional programs that promote fibroblast-to-myofibroblast transition and drive tissue fibrosis.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Cuong Tran-Manh
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Andreas Gießl
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Wasyluk W, Nowicka-Stążka P, Zwolak A. Heart Metabolism in Sepsis-Induced Cardiomyopathy-Unusual Metabolic Dysfunction of the Heart. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147598. [PMID: 34300048 PMCID: PMC8303349 DOI: 10.3390/ijerph18147598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022]
Abstract
Due to the need for continuous work, the heart uses up to 8% of the total energy expenditure. Due to the relatively low adenosine triphosphate (ATP) storage capacity, the heart's work is dependent on its production. This is possible due to the metabolic flexibility of the heart, which allows it to use numerous substrates as a source of energy. Under normal conditions, a healthy heart obtains approximately 95% of its ATP by oxidative phosphorylation in the mitochondria. The primary source of energy is fatty acid oxidation, the rest of the energy comes from the oxidation of pyruvate. A failed heart is characterised by a disturbance in these proportions, with the contribution of individual components as a source of energy depending on the aetiology and stage of heart failure. A unique form of cardiac dysfunction is sepsis-induced cardiomyopathy, characterised by a significant reduction in energy production and impairment of cardiac oxidation of both fatty acids and glucose. Metabolic disorders appear to contribute to the pathogenesis of cardiac dysfunction and therefore are a promising target for future therapies. However, as many aspects of the metabolism of the failing heart remain unexplained, this issue requires further research.
Collapse
Affiliation(s)
- Weronika Wasyluk
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; (P.N.-S.); (A.Z.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Patrycja Nowicka-Stążka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; (P.N.-S.); (A.Z.)
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; (P.N.-S.); (A.Z.)
| |
Collapse
|
8
|
Patergnani S, Bouhamida E, Leo S, Pinton P, Rimessi A. Mitochondrial Oxidative Stress and "Mito-Inflammation": Actors in the Diseases. Biomedicines 2021; 9:biomedicines9020216. [PMID: 33672477 PMCID: PMC7923430 DOI: 10.3390/biomedicines9020216] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
A decline in mitochondrial redox homeostasis has been associated with the development of a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to intensify the inflammatory response at front of different stimuli. Here, we review the evidence that an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular, we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory-related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related diseases.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Sara Leo
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
9
|
Abstract
Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.
Collapse
|
10
|
D'Souza RF, Woodhead JST, Hedges CP, Zeng N, Wan J, Kumagai H, Lee C, Cohen P, Cameron-Smith D, Mitchell CJ, Merry TL. Increased expression of the mitochondrial derived peptide, MOTS-c, in skeletal muscle of healthy aging men is associated with myofiber composition. Aging (Albany NY) 2020; 12:5244-5258. [PMID: 32182209 PMCID: PMC7138593 DOI: 10.18632/aging.102944] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria putatively regulate the aging process, in part, through the small regulatory peptide, mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) that is encoded by the mitochondrial genome. Here we investigated the regulation of MOTS-c in the plasma and skeletal muscle of healthy aging men. Circulating MOTS-c reduced with age, but older (70-81 y) and middle-aged (45-55 y) men had ~1.5-fold higher skeletal muscle MOTS-c expression than young (18-30 y). Plasma MOTS-c levels only correlated with plasma in young men, was associated with markers of slow-type muscle, and associated with improved muscle quality in the older group (maximal leg-press load relative to thigh cross-sectional area). Using small mRNA assays we provide evidence that MOTS-c transcription may be regulated independently of the full length 12S rRNA gene in which it is encoded, and expression is not associated with antioxidant response element (ARE)-related genes as previously seen in culture. Our results suggest that plasma and muscle MOTS-c are differentially regulated with aging, and the increase in muscle MOTS-c expression with age is consistent with fast-to-slow type muscle fiber transition. Further research is required to determine the molecular targets of endogenous MOTS-c in human muscle but they may relate to factors that maintain muscle quality.
Collapse
Affiliation(s)
- Randall F D'Souza
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Nina Zeng
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Japan Society for the Promotion of Science, Tokyo, Japan.,Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA.,Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Cameron J Mitchell
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,School of Kinesiology, University of British Colombia, Vancouver, BC V6T 1Z1, Canada
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|