1
|
Lin G, Cao N, Wu J, Zheng M, Yang Z. The transcription factor TCF4 regulates the miR-494-3p/THBS1 axis in the fibrosis of pathologic scars. Arch Dermatol Res 2025; 317:214. [PMID: 39786568 DOI: 10.1007/s00403-024-03692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The fibrosis of pathologic scar (PS) is formed by the excessive deposition of extracellular matrix, resulting in an abnormal scar. Recent clinical tests have indicated that the regulation of PS fibroblast cells (PSF cells) proliferation can serve as an intervention measure for PS. Our work aimed to elucidate the specific mechanism of action of TCF4 on the progression of PS fibrosis. METHODS Our study used qRT-PCR and Western blot to search for the expression of key proteins in PS clinical samples and cells. Transwell, CCK-8, and wound scratch assays were employed to analyze the proliferation and migration of PSF cells. CHIP, dual-luciferase reporter experiments, and bio-informatics analysis were used to analyze the interactions between molecules. RESULTS The analysis of PS clinical samples confirmed a positive correlation between TCF4 and miR-494-3p. This regulatory mechanism was related to the progression of PS. We verified that the overexpression of miR-494-3p or the knockdown of THBS1 both suppressed the proliferation and migration of PSF cells. Furthermore, we also confirmed the binding relationships between TCF4, miR-494-3p, and THBS1. Simultaneously, we verified the existence of the TCF4/miR-494-3p/THBS1 regulatory network in PS. This regulatory process affects the development of PS fibrosis. CONCLUSION Our study results indicate that TCF4, miR-494-3p, and THBS1 are abnormally expressed in PS. TCF4 increases the proliferation and migration ability of PSF cells through the miR-494-3p/THBS1 signaling pathway, which promotes the fibrosis of PS.
Collapse
Affiliation(s)
- Guangmin Lin
- Department of Plastic and Cosmetic Surgery, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China.
| | - Ning Cao
- Department of Plastic and Cosmetic Surgery, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Jinhong Wu
- Department of Plastic and Cosmetic Surgery, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Meilian Zheng
- Department of Plastic and Cosmetic Surgery, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Zhaobin Yang
- Medical Intensive Care Unit, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou City, Fujian Province, China
| |
Collapse
|
2
|
Wei Z, Lu Y, Qian C, Li J, Li X. Circ_0079480 facilitates proliferation, migration and fibrosis of atrial fibroblasts in atrial fibrillation by sponing miR-338-3p to activate the THBS1/TGF-β1/Smad3 signaling. Int J Cardiol 2024; 416:132486. [PMID: 39187069 DOI: 10.1016/j.ijcard.2024.132486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Atrial fibrosis is associated with the pathogenesis of atrial fibrillation (AF). This study aims to discuss the function of circ_0079480 in atrial fibrosis and its underlying mechanism. METHODS In vitro and in vivo models of atrial fibrosis were established by using angiotensin II (Ang II) to treat human atrial fibroblasts (HAFs) and C57/B6J mice. qRT-PCR and western blot were used to examine the mRNA and protein expression levels. CCK-8, EdU, cell strach, and transwell assays were performed to determine the proliferation and migration of HAFs. Dual-luciferase reporter and RIP/RNA pull-down assays were explored to identify the interaction of miR-338-3p and circ_0079480/THBS1. HE and Masson's trichrome staining experiments were performed to analyze the histopathological change in mice atrial tissues. RESULTS Circ_0079480 expression was increased in AF patients' atrial tissues and Ang II-treated HAFs. Silencing circ_0079480 inhibited cell proliferation and migration and reduced fibrosis-associated gene expression in Ang II-treated HAFs. Circ_0079480 could target miR-338-3p to repress its expression. MiR-338-3p inhibitor blocked the inhibitory effects of circ_0079480 knockdown on HAFs proliferation, migration, and fibrosis. Thrombospondin-1 (THBS1) was confirmed as a downstream target of miR-338-3p, and circ_0079480 could sponge miR-338-3p to upregulate THBS1 expression. Moreover, silencing THBS1 suppressed Ang II-induced proliferation, migration, and fibrosis in HAFs. More importantly, depletion of circ_0079480 inactivated the THBS1/TGF-β1/Smad3 signaling by upregulating miR-338-3p. Mice experiments also confirmed the suppression of circ_0079480 knockdown on atrial fibrosis. CONCLUSION Circ_0079480 acts as a sponge of miR-338-3p to upregulate THBS1 expression and activate the TGF-β1/Smad3 signaling, finally promoting Ang II-induced atrial fibrosis.
Collapse
Affiliation(s)
- Zihan Wei
- Department of General Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Ying Lu
- Department of General Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cheng Qian
- Department of General Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing Li
- Department of General Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Li
- Department of General Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Nie X, Xie R, Fan J, Wang DW. LncRNA MIR217HG aggravates pressure-overload induced cardiac remodeling by activating miR-138/THBS1 pathway. Life Sci 2024; 336:122290. [PMID: 38013141 DOI: 10.1016/j.lfs.2023.122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
AIM Cardiac hypertrophy and fibrosis are associated with cardiac remodeling and heart failure. We have previously shown that miRNA-217, embedded within the third intron of MIR217HG, aggravates pressure overload-induced cardiac hypertrophy by targeting phosphatase and tensin homolog. However, whether the MIR217HG transcript itself plays a role in cardiac remodeling remains unknown. METHODS Real-time PCR assays and RNA in situ hybridization were performed to detect MIR217HG expression. Lentiviruses and adeno-associated viruses with a cardiac-specific promoter (cTnT) were used to control MIR217HG expression in vitro and in vivo. Transverse aortic constriction (TAC) surgery was performed to develop cardiac remodeling models. Cardiac structure and function were analyzed using echocardiography and invasive pressure-volume analysis. KEY FINDINGS MIR217HG expression was increased in patients with heart failure. MIR217HG overexpression aggravated pressure-overload-induced myocyte hypertrophy and fibrosis both in vivo and in vitro, whereas MIR217HG knockdown reversed these phenotypes. Mechanistically, MIR217HG increased THBS1 expression by sponging miR-138. MiR-138 recognized the 3'UTR of THBS1 and repressed THBS1 expression in the absence of MIR217HG. Silencing THBS1 expression reversed MIR217HG-induced cardiac hypertrophy and remodeling. CONCLUSION MIR217HG acts as a potent inducer of cardiac remodeling that may contribute to heart failure by activating the miR-138/THBS1 pathway.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Rong Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
4
|
Lin LC, Liu ZY, Tu B, Song K, Sun H, Zhou Y, Sha JM, Zhang Y, Yang JJ, Zhao JY, Tao H. Epigenetic signatures in cardiac fibrosis: Focusing on noncoding RNA regulators as the gatekeepers of cardiac fibroblast identity. Int J Biol Macromol 2024; 254:127593. [PMID: 37898244 DOI: 10.1016/j.ijbiomac.2023.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Cardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades. Non coding RNAs (microRNAs, lncRNAs, circRNAs) regulate the functions and behaviors of cardiac fibroblasts, including proliferation, migration, phenotypic transformation, inflammation, pyroptosis, apoptosis, autophagy, which can provide the basis for novel targeted therapeutic treatments that abrogate activation and inflammation of cardiac fibroblasts, induce different death pathways in cardiac fibroblasts, or make it sensitive to established pathogenic cells targeted cytotoxic agents and biotherapy. This review summarizes our current knowledge in this field of ncRNAs function in epigenetic regulation and fate determination of cardiac fibroblasts as well as the details of signaling pathways contribute to cardiac fibrosis. Moreover, we will comment on the emerging landscape of lncRNAs and circRNAs function in regulating signal transduction pathways, gene translation processes and post-translational regulation of gene expression in cardiac fibroblast. In the end, the prospect of cardiac fibroblasts targeted therapy for cardiac fibrosis based on ncRNAs is discussed.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Chi C, Liang X, Cui T, Gao X, Liu R, Yin C. SKIL/SnoN attenuates TGF-β1/SMAD signaling-dependent collagen synthesis in hepatic fibrosis. BIOMOLECULES & BIOMEDICINE 2023; 23:1014-1025. [PMID: 37389959 PMCID: PMC10655871 DOI: 10.17305/bb.2023.9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
The ski-related novel gene (SnoN), encoded by the SKIL gene, has been shown to negatively regulated transforming growth factor-β1 (TGF-β1) signaling pathway. However, the roles of SnoN in hepatic stellate cell (HSC) activation and hepatic fibrosis (HF) are still unclear. To evaluate the role of SnoN in HF, we combined bulk RNA sequencing analysis and single-cell RNA sequencing analysis to analyse patients with HF. The role of SKIL/SnoN was verified using liver samples from rat model transfected HSC-T6 and LX-2 cell lines. Immunohistochemistry, immunofluorescence, PCR, and western blotting techniques were used to demonstrate the expression of SnoN and its regulatory effects on TGF-β1 signaling in fibrotic liver tissues and cells. Furthermore, we constructed competitive endogenous RNA regulatory network and potential drug network associated with the SnoN gene. We identified SKIL gene as a differentially expressed gene in hepatic fibrosis. SnoN protein was found to be widely expressed in the cytoplasm of normal hepatic tissues, whereas it was almost absent in HF tissues. In the rat group subjected to bile duct ligation (BDL), SnoN protein expression decreased, while TGF-β1, collagen III, tissue inhibitor of metalloproteinase 1 (TIMP-1), and fibronectin levels increased. We observed the interaction of SnoN with p-SMAD2 and p-SMAD3 in the cytoplasm. Following SnoN overexpression, apoptosis of HSCs was promoted, and the expression of HF-associated proteins, including collagen I, collagen III, and TIMP-1, was reduced. Conversely, downregulation of SnoN inhibited HSC apoptosis, increased collagen III and TIMP-1 levels, and decreased matrix metalloproteinase 13 (MMP-13) expression. In conclusion, SnoN expression is downregulated in fibrotic livers, and could attenuate TGF-β1/SMADs signaling-dependent de-repression of collagen synthesis.
Collapse
Affiliation(s)
- Cheng Chi
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
- School of Nursing, Jining Medical University, Jining, Shandong, China
| | - Xifeng Liang
- School of Nursing, Jining Medical University, Jining, Shandong, China
- School of Nursing, Weifang Medical University, Weifang, Shandong, China
| | - Tianyu Cui
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiao Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
6
|
Lei Y, Jin X, Sun M, Ji Z. RNF7 Induces Skeletal Muscle Cell Apoptosis and Arrests Cell Autophagy via Upregulation of THBS1 and Inactivation of the PI3K/Akt Signaling Pathway in a Rat Sepsis Model. Infect Immun 2023; 91:e0053522. [PMID: 36920202 PMCID: PMC10112135 DOI: 10.1128/iai.00535-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 03/16/2023] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been highlighted for extensive functionality in sepsis. In this study, we aimed to explore the role of RNF7 in the progression of sepsis. We initially established a rat model of sepsis through cecal ligation and puncture induction, whereupon RNF7 expression was determined by RT-qPCR. Following adenovirus infection, the role of RNF7 in muscle injury, skeletal muscle protein metabolism, oxidative stress, and inflammation in sepsis rats was analyzed. Then, downstream mechanisms of RNF7 were identified and validated. Further, lipopolysaccharide was applied to treat myoblast to further demonstrate the in vitro role of RNF7. Our results showed that RNF7 expression was upregulated during sepsis. Overexpression of RNF7 worsened the sepsis-induced skeletal muscle injury, induced skeletal muscle protein metabolism, oxidative stress, and inflammation in sepsis rats. Meanwhile, overexpression of RNF7 elevated thrombospondin-1 (THBS1) expression. Silencing of RNF7 inhibited THBS1 and activated the PI3K/Akt signaling pathway, arresting the release of inflammatory factors and oxidative stress levels in skeletal muscle cells. Altogether, RNF7 may promote skeletal muscle cell apoptosis while simultaneously inhibiting cell autophagy through the promotion of THBS1 and inactivation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yu Lei
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaoyuan Jin
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Mingli Sun
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiyong Ji
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
7
|
Lozano J, Rai A, Lees JG, Fang H, Claridge B, Lim SY, Greening DW. Scalable Generation of Nanovesicles from Human-Induced Pluripotent Stem Cells for Cardiac Repair. Int J Mol Sci 2022; 23:14334. [PMID: 36430812 PMCID: PMC9696585 DOI: 10.3390/ijms232214334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) from stem cells have shown significant therapeutic potential to repair injured cardiac tissues and regulate pathological fibrosis. However, scalable generation of stem cells and derived EVs for clinical utility remains a huge technical challenge. Here, we report a rapid size-based extrusion strategy to generate EV-like membranous nanovesicles (NVs) from easily sourced human iPSCs in large quantities (yield 900× natural EVs). NVs isolated using density-gradient separation (buoyant density 1.13 g/mL) are spherical in shape and morphologically intact and readily internalised by human cardiomyocytes, primary cardiac fibroblasts, and endothelial cells. NVs captured the dynamic proteome of parental cells and include pluripotency markers (LIN28A, OCT4) and regulators of cardiac repair processes, including tissue repair (GJA1, HSP20/27/70, HMGB1), wound healing (FLNA, MYH9, ACTC1, ILK), stress response/translation initiation (eIF2S1/S2/S3/B4), hypoxia response (HMOX2, HSP90, GNB1), and extracellular matrix organization (ITGA6, MFGE8, ITGB1). Functionally, NVs significantly promoted tubule formation of endothelial cells (angiogenesis) (p < 0.05) and survival of cardiomyocytes exposed to low oxygen conditions (hypoxia) (p < 0.0001), as well as attenuated TGF-β mediated activation of cardiac fibroblasts (p < 0.0001). Quantitative proteome profiling of target cell proteome following NV treatments revealed upregulation of angiogenic proteins (MFGE8, MYH10, VDAC2) in endothelial cells and pro-survival proteins (CNN2, THBS1, IGF2R) in cardiomyocytes. In contrast, NVs attenuated TGF-β-driven extracellular matrix remodelling capacity in cardiac fibroblasts (ACTN1, COL1A1/2/4A2/12A1, ITGA1/11, THBS1). This study presents a scalable approach to generating functional NVs for cardiac repair.
Collapse
Affiliation(s)
- Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jarmon G. Lees
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Bethany Claridge
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Shiang Y. Lim
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Melbourne, VIC 3010, Australia
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC 3086, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
8
|
Chen YH, Zhong LF, Hong X, Zhu QL, Wang SJ, Han JB, Huang WJ, Ye BZ. Integrated Analysis of circRNA-miRNA-mRNA ceRNA Network in Cardiac Hypertrophy. Front Genet 2022; 13:781676. [PMID: 35211156 PMCID: PMC8860901 DOI: 10.3389/fgene.2022.781676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
Cardiac hypertrophy is an adaptive cardiac response that accommodates the variable hemodynamic demands of the human body during extended periods of preload or afterload increase. In recent years, an increasing number of studies have pointed to a potential connection between myocardial hypertrophy and abnormal expression of non-coding RNAs. Circular RNA (circRNA), as one of the non-coding RNAs, plays an essential role in cardiac hypertrophy. However, few studies have systematically analyzed circRNA-related competing endogenous RNA (ceRNA) regulatory networks associated with cardiac hypertrophy. Therefore, we used public databases from online prediction websites to predict and screen differentially expressed mRNAs and miRNAs and ultimately obtained circRNAs related to cardiac hypertrophy. Based on this result, we went on to establish a circRNAs-related ceRNA regulatory network. This study is the first to establish a circRNA-mediated ceRNA regulatory network associated with myocardial hypertrophy. To verify the results of our analysis, we used PCR to verify the differentially expressed mRNAs and miRNAs in animal myocardial hypertrophy model samples. Our findings suggest that three mRNAs (Col12a1, Thbs1, and Tgfbr3), four miRNAs (miR-20a-5p, miR-27b-3p, miR-342-3p, and miR-378a-3p), and four related circRNAs (circ_0002702, circ_0110609, circ_0013751, and circ_0047959) may play a key role in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yang-Hao Chen
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, China
| | - Ling-Feng Zhong
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, China
| | - Xia Hong
- Coronary Care Unit, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, China
| | - Qian-Li Zhu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, China
| | - Song-Jie Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, China
| | - Ji-Bo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wei-Jian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, China
| | - Bo-Zhi Ye
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, China
| |
Collapse
|
9
|
Okabe M, Takarada S, Miyao N, Nakaoka H, Ibuki K, Ozawa S, Watanabe K, Tsuji H, Hashimoto I, Hatasaki K, Hayakawa S, Hamaguchi Y, Hamada M, Ichida F, Hirono K. G0S2 regulates innate immunity in Kawasaki disease via lncRNA HSD11B1-AS1. Pediatr Res 2022; 92:378-387. [PMID: 35292727 PMCID: PMC8922062 DOI: 10.1038/s41390-022-01999-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/23/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Kawasaki disease (KD) is a systemic vasculitis that is currently the most common cause of acquired heart disease in children. However, its etiology remains unknown. Long non-coding RNAs (lncRNAs) contribute to the pathophysiology of various diseases. Few studies have reported the role of lncRNAs in KD inflammation; thus, we investigated the role of lncRNA in KD inflammation. METHODS A total of 50 patients with KD (median age, 19 months; 29 males and 21 females) were enrolled. We conducted cap analysis gene expression sequencing to determine differentially expressed genes in monocytes of the peripheral blood of the subjects. RESULTS About 21 candidate lncRNA transcripts were identified. The analyses of transcriptome and gene ontology revealed that the immune system was involved in KD. Among these genes, G0/G1 switch gene 2 (G0S2) and its antisense lncRNA, HSD11B1-AS1, were upregulated during the acute phase of KD (P < 0.0001 and <0.0001, respectively). Moreover, G0S2 increased when lipopolysaccharides induced inflammation in THP-1 monocytes, and silencing of G0S2 suppressed the expression of HSD11B1-AS1 and tumor necrosis factor-α. CONCLUSIONS This study uncovered the crucial role of lncRNAs in innate immunity in acute KD. LncRNA may be a novel target for the diagnosis of KD. IMPACT This study revealed the whole aspect of the gene expression profile of monocytes of patients with Kawasaki disease (KD) using cap analysis gene expression sequencing and identified KD-specific molecules: G0/G1 switch gene 2 (G0S2) and long non-coding RNA (lncRNA) HSD11B1-AS1. We demonstrated that G0S2 and its antisense HSD11B1-AS1 were associated with inflammation of innate immunity in KD. lncRNA may be a novel key target for the diagnosis of patients with KD.
Collapse
Affiliation(s)
- Mako Okabe
- grid.267346.20000 0001 2171 836XDepartment of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shinya Takarada
- grid.267346.20000 0001 2171 836XDepartment of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Nariaki Miyao
- grid.267346.20000 0001 2171 836XDepartment of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hideyuki Nakaoka
- grid.267346.20000 0001 2171 836XDepartment of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keijiro Ibuki
- grid.267346.20000 0001 2171 836XDepartment of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Sayaka Ozawa
- grid.267346.20000 0001 2171 836XDepartment of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Harue Tsuji
- Department of Pediatrics, Takaoka City Hospital, Toyama, Japan
| | - Ikuo Hashimoto
- grid.417233.00000 0004 1764 0741Department of Pediatrics, Toyama City Hospital, Toyama, Japan
| | - Kiyoshi Hatasaki
- Department of Pediatrics, Toyama Prefectural Hospital, Toyama, Japan
| | - Shotaro Hayakawa
- grid.5290.e0000 0004 1936 9975Department of Electrical Engineering and Bioscience, Waseda University, Tokyo, Japan
| | - Yu Hamaguchi
- grid.5290.e0000 0004 1936 9975Department of Electrical Engineering and Bioscience, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- grid.5290.e0000 0004 1936 9975Department of Electrical Engineering and Bioscience, Waseda University, Tokyo, Japan
| | - Fukiko Ichida
- grid.411731.10000 0004 0531 3030Department of Pediatrics, International University of Health and Welfare, Tokyo, Japan
| | - Keiichi Hirono
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan.
| |
Collapse
|
10
|
Song J, Dobrev D, Li N. Proteomics: A promising approach to discover new biomarkers for atrial fibrillation. Int J Cardiol 2021; 345:125-126. [PMID: 34710496 PMCID: PMC8876401 DOI: 10.1016/j.ijcard.2021.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jia Song
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Centre, University Duisburg-Essen, Germany; Montréal Heart Institute and University de Montréal, Medicine and Research Center, Montréal, QC, Canada; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Wang Y, Chen J, Cowan DB, Wang DZ. Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential. Semin Cell Dev Biol 2021; 118:150-162. [PMID: 34284952 PMCID: PMC8434979 DOI: 10.1016/j.semcdb.2021.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
In the past two decades, thousands of non-coding RNAs (ncRNAs) have been discovered, annotated, and characterized in nearly every tissue under both physiological and pathological conditions. Here, we will focus on the role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in ischemic heart disease (IHD), which remains the leading cause of morbidity and mortality in humans-resulting in 8.9 million deaths annually. Cardiomyocyte (CM) proliferation, differentiation, and survival in addition to neovascularization of injured tissues and the prevention of fibrosis are commonly regarded as critically important for the recovery of the heart following myocardial infarction (MI). An abundance of evidence has been accumulated to show ncRNAs participate in cardiac recovery after MI. Because miRNAs are important regulators of cardiac regeneration, the therapeutic potential of at least five of these molecules has been assessed in large animal models of human IHD. In particular, miRNA-based interventions based on miR-132 and miR-92a inhibition in related diseases have displayed favorable outcomes that have provided the impetus for miRNA-based clinical trials for IHD. At the same time, the functional roles of lncRNAs and circRNAs in cardiac regeneration are also being explored. In the present review, we will summarize the latest ncRNA studies aimed at reversing damage to the ischemic heart and discuss the therapeutic potential of targeting miRNAs, lncRNAs, and circRNAs to stimulate cardiac regeneration.
Collapse
Affiliation(s)
- Yi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jinghai Chen
- Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University, 268 Kaixuan Road, Hangzhou, China
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
miR-2337 induces TGF-β1 production in granulosa cells by acting as an endogenous small activating RNA. Cell Death Discov 2021; 7:253. [PMID: 34537818 PMCID: PMC8449777 DOI: 10.1038/s41420-021-00644-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is essential for ovarian function and female fertility in mammals. Herein, we identified three completely linked variants, including two known variants referred to as c.1583A > G and c.1587A > G and the novel variant c.2074A > C in the porcine TGF-β1 3′-UTR. An important role of these variants in Yorkshire sow fertility was revealed. Variants c.1583A > G and c.1587A > G were located at the miRNA response element (MRE) of miR-2337 and affected miR-2337 regulation of TGF-β1 3′-UTR activity. Interestingly, miR-2337 induces, not reduces the transcription and production of TGF-β1 in granulosa cells (GCs). Mechanistically, miR-2337 enhances TGF-β1 promoter activity via the MRE motif in the core promoter region and alters histone modifications, including H3K4me2, H3K4me3, H3K9me2, and H3K9ac. In addition, miR-2337 controls TGF-β1-mediated activity of the TGF-β signaling pathway and GC apoptosis. Taken together, our findings identify miR-2337 as an endogenous small activating RNA (saRNA) of TGF-β1 in GCs, while miR-2337 is identified as a small activator of the TGF-β signaling pathway which is expected to be a new target for rescuing GC apoptosis and treating low fertility.
Collapse
|
13
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 2021; 143:112132. [PMID: 34481379 DOI: 10.1016/j.biopha.2021.112132] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-β, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yang M, Liu X, Jiang M, Li J, Tang Y, Zhou L. miR-543 in human mesenchymal stem cell-derived exosomes promotes cardiac microvascular endothelial cell angiogenesis after myocardial infarction through COL4A1. IUBMB Life 2021; 73:927-940. [PMID: 33890394 DOI: 10.1002/iub.2474] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
To explore the impact and mechanism of human mesenchymal stem cells (hMSCs) on the angiogenesis of cardiac microvascular endothelial cells (CMECs) after ischemia insult. Exosomes derived from hMSCs (hMSCs-Exo) were identified by Western blotting and labeled by PHK-67. CMECs were isolated from rat myocardial tissues. After hypoxic treatment, CMECs were cultured with hMSCs and exosome inhibitor (GW4869) or transfected with si-COL4A1 + miR-543 inhibitor. CMEC proliferation, migration, invasion, and angiogenesis were examined. Target genes of miR-543 were predicted and then were identified by dual luciferase assay. Myocardial infarction (MI) rat model established by suture occlusion was intravenously injected with hMSCs-Exo. Fluorescence microscope was applied to visualize exosomes in myocardial tissues. Infarction volume and pathologies of myocardial tissues were observed. Ki-67 and miR-543 expressions were detected. The isolated hMSC-Exo expressed TSG101, HSP70, and CD63. Hypoxia-treated CMECs cultured with hMSCs exhibited high proliferation, migration, invasion, and angiogenesis ability, while incubation with exosome inhibitor GW4969 offset the promoting effects of hMSCs on the proliferation, migration, invasion, and angiogenesis of CMECs. hMSCs transfected with miR-543 inhibitor brought CMECs weak viability and angiogenesis ability. CMECs transfected with si-COL4A1 and miR-543 inhibitor showed low proliferation, migration, invasion, and angiogenesis compared to those transfected with si-COL4A1 alone. hMSCs-Exo entered the myocardial tissues of MI rats. Injection of hMSCs-Exo in MI rats diminished infarction size, attenuated MI-induced injuries, and increased Ki-67 expression. hMSCs-Exo facilitates the proliferation, migration, invasion, and angiogenesis of CMECs through transferring miR-543 and downregulating COL4A1 expression.
Collapse
Affiliation(s)
- Mei Yang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, China
| | - Jian Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yaping Tang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Fortier SM, Penke LR, King D, Pham TX, Ligresti G, Peters-Golden M. Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions. JCI Insight 2021; 6:144799. [PMID: 33561015 PMCID: PMC8026183 DOI: 10.1172/jci.insight.144799] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Myofibroblasts are the major cellular source of collagen, and their accumulation - via differentiation from fibroblasts and resistance to apoptosis - is a hallmark of tissue fibrosis. Clearance of myofibroblasts by dedifferentiation and restoration of apoptosis sensitivity has the potential to reverse fibrosis. Prostaglandin E2 (PGE2) and mitogens such as FGF2 have each been shown to dedifferentiate myofibroblasts, but - to our knowledge - the resultant cellular phenotypes have neither been comprehensively characterized or compared. Here, we show that PGE2 elicited dedifferentiation of human lung myofibroblasts via cAMP/PKA, while FGF2 utilized MEK/ERK. The 2 mediators yielded transitional cells with distinct transcriptomes, with FGF2 promoting but PGE2 inhibiting proliferation and survival. The gene expression pattern in fibroblasts isolated from the lungs of mice undergoing resolution of experimental fibrosis resembled that of myofibroblasts treated with PGE2 in vitro. We conclude that myofibroblast dedifferentiation can proceed via distinct programs exemplified by treatment with PGE2 and FGF2, with dedifferentiation occurring in vivo most closely resembling the former.
Collapse
Affiliation(s)
| | - Loka R. Penke
- Division of Pulmonary and Critical Care Medicine and
| | - Dana King
- BCRF Bioinformatics Core, University of Michigan, Ann Arbor, Michigan, USA
| | - Tho X. Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
16
|
Jiang D, Guo B, Lin F, Lin S, Tao K. miR-205 inhibits the development of hypertrophic scars by targeting THBS1. Aging (Albany NY) 2020; 12:22046-22058. [PMID: 33186919 PMCID: PMC7695429 DOI: 10.18632/aging.104044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Increasing evidence shows that miRNAs are involved in the growth and development of hypertrophic scars. However, the specific mechanism of miR-205 is unclear. Here, we investigated the relationship between miR-205, thrombospondin 1 (THBS1) expression, and hypertrophic scars, and showed that miR-205 inhibits cell proliferation and migration and induces apoptosis. Double luciferase analysis, Western blot, and real-time polymerase chain reaction showed that miR-205 downregulates THBS1 expression and activity. Compared to the control group, miR-205 inhibited hypertrophic scar development. Our findings contribute to a better understanding of the miR-205-THBS1 pathway as a promising therapeutic target for reducing hypertrophic scars.
Collapse
Affiliation(s)
- Dongwen Jiang
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
- Graduate School, Jinzhou Medical University, Jinzhou 121001, P.R.China
| | - Bingyu Guo
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Feng Lin
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Shixiu Lin
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Kai Tao
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| |
Collapse
|
17
|
Ou Y, Liao C, Li H, Yu G. LncRNA SOX2OT/Smad3 feedback loop promotes myocardial fibrosis in heart failure. IUBMB Life 2020; 72:2469-2480. [PMID: 32959533 DOI: 10.1002/iub.2375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNA SOX2OT is associated with myocardial fibrosis (MF) in heart failure (HF). This article aims to investigate the role of SOX2OT in MF. We constructed HF mouse models by subcutaneous injection of isoprenaline (ISO). Cardiac fibroblasts (CFs) were treated with ISO to induce MF.Hematoxylin-eosin, Masson, and Sirius-red staining were used to identify myocardial injury and collagen deposition in heart tissues. The relationship among SOX2OT, miR-138-5p, TGF-β1, and Smad3 were evaluated by chromatin immunoprecipitation and luciferase reporter assay. The gene and protein expression were verified by quantitative real-time PCR and western blot. We found that SOX2OT was up-regulated in HF mice and ISO-induced CFs. SOX2OT knockdown reduced myocardial injury and collagen deposition in HF mice. The expression of collagen I, α-SMA, TGF-β1, and p-Smad3 were inhibited by SOX2OT down-regulation in HF mice and ISO-induced CFs. Furthermore, TGF-β1 was a target gene of miR-138-5p and indirectly regulated by SOX2OT. SOX2OT promoted MF in HF by activating TGF-β1/Smad3, and then Smad3 interacted with the SOX2OT promoter and formed a positive feedback loop. In conclusion, our work verifies that SOX2OT/Smad3 feedback loop promotes MF in HF. Thus, SOX2OT is potentially a novel therapeutic target for MF in HF.
Collapse
Affiliation(s)
- Yali Ou
- Department of Cardiovascular, Central South University, Changsha, China
| | - Chunfeng Liao
- Department of Cardiovascular, Changsha First People's Hospital, Changsha, China
| | - He Li
- Department of Cardiovascular, The Second People's Hospital of Hunan Province, Changsha, China
| | - Guolong Yu
- Department of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Zhou C, Zhao X, Duan S. The role of miR-543 in human cancerous and noncancerous diseases. J Cell Physiol 2020; 236:15-26. [PMID: 32542683 DOI: 10.1002/jcp.29860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) is a noncoding single-stranded RNA molecule that can regulate the posttranscriptional expression level of a gene by binding to the 3'-untranslated region (3'-UTR) of the target messenger RNA. miR-543 is a kind of miRNA, which plays an important role in the occurrence and development of various human cancerous and noncancerous diseases. miR-543 directly or indirectly regulates a large number of downstream target genes and plays an important role in cellular components, biological processes, and molecular functions. In addition, many studies have verified the regulatory mechanism, physiological role, biological function, and prognostic value of miR-543. Therefore, this article reviews the papers published in the past decade and elaborates on the research progress of miR-543 from the aspects of physiology and pathology, especially in cancerous and other noncancerous diseases. In particular, we pay attention to the expression patterns, direct targets, biological functions, related pathways, and prognostic value of miR-543 reported in experimental articles. And by comparing similar research articles, we point out existing controversies in this field to date, so as to facilitate further research in the future.
Collapse
Affiliation(s)
- Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xin Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|