1
|
Senesi G, Lodrini AM, Mohammed S, Mosole S, Hjortnaes J, Veltrop RJA, Kubat B, Ceresa D, Bolis S, Raimondi A, Torre T, Malatesta P, Goumans MJ, Paneni F, Camici GG, Barile L, Balbi C, Vassalli G. miR-24-3p secreted as extracellular vesicle cargo by cardiomyocytes inhibits fibrosis in human cardiac microtissues. Cardiovasc Res 2025; 121:143-156. [PMID: 39527589 PMCID: PMC11998913 DOI: 10.1093/cvr/cvae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS Cardiac fibrosis in response to injury leads to myocardial stiffness and heart failure. At the cellular level, fibrosis is triggered by the conversion of cardiac fibroblasts (CF) into extracellular matrix-producing myofibroblasts. miR-24-3p regulates this process in animal models. Here, we investigated whether miR-24-3p plays similar roles in human models. METHODS AND RESULTS Gain- and loss-of-function experiments were performed using human induced pluripotent stem cell-derived cardiomyocytes (hCM) and primary hCF under normoxic or ischaemia-simulating conditions. hCM-derived extracellular vesicles (EVs) were added to hCF. Similar experiments were performed using three-dimensional human cardiac microtissues and ex vivo cultured human cardiac slices. hCF transfection with miR-24-3p mimic prevented TGFβ1-mediated induction of FURIN, CCND1, and SMAD4-miR-24-3p target genes participating in TGFβ1-dependent fibrogenesis-regulating hCF-to-myofibroblast conversion. hCM secreted miR-24-3p as EV cargo. hCM-derived EVs modulated hCF activation. Ischaemia-simulating conditions induced miR-24-3p depletion in hCM-EVs and microtissues. Similarly, hypoxia down-regulated miR-24-3p in cardiac slices. Analyses of clinical samples revealed decreased miR-24-3p levels in circulating EVs in patients with acute myocardial infarction (AMI), compared with healthy subjects. Post-mortem RNAScope analysis showed miR-24-3p down-regulation in myocardium from patients with AMI, compared with patients who died from non-cardiac diseases. Berberine, a plant-derived agent with miR-24-3p-stimulatory activity, increased miR-24-3p contents in hCM-EVs, down-regulated FURIN, CCND1, and SMAD4, and inhibited fibrosis in cardiac microtissues. CONCLUSION These findings suggest that hCM may control hCF activation through miR-24-3p secreted as EV cargo. Ischaemia impairs this mechanism, favouring fibrosis.
Collapse
Affiliation(s)
- Giorgia Senesi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Istituto Cardiocentro Ticino, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Alessandra M Lodrini
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shafeeq Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Zurich, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Switzerland
| | - Jesper Hjortnaes
- Department of Thoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Bela Kubat
- Department of Pathology, Maastricht University Medical Center, The Netherlands
| | - Davide Ceresa
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Sara Bolis
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Istituto Cardiocentro Ticino, Bellinzona, Switzerland
| | - Andrea Raimondi
- Institute of Biomedical Research, IRB, Bellinzona, Switzerland
| | - Tiziano Torre
- Heart Surgery Unit, Cardiocentro Ticino Institute, EOC, Lugano, Switzerland
| | - Paolo Malatesta
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine (DIMES), Experimental Biology Unit, University of Genova, Genova, Italy
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Zurich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Lucio Barile
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Istituto Cardiocentro Ticino, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Carolina Balbi
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Medicine, Baden Cantonal Hospital, Baden, Switzerland
| | - Giuseppe Vassalli
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Istituto Cardiocentro Ticino, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
2
|
Mack T, Gianferri T, Niedermayer A, Debatin KM, Meyer LH, Muench V. Benchmarking miRNA reference genes in B-cell precursor acute lymphoblastic leukemia. Sci Rep 2024; 14:26390. [PMID: 39488607 PMCID: PMC11531470 DOI: 10.1038/s41598-024-77733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
MicroRNAs (miRNAs) play dual roles in acute lymphoblastic leukemia (ALL) as both tumor suppressors and oncogenes, and miRNA expression profiles can be used for patient risk stratification. Precise assessment of miRNA levels is crucial for understanding their role and function in gene regulation. Quantitative real-time polymerase chain reaction (qPCR) is a reliable, rapid, and cost-effective method for analyzing miRNA expression, assuming that appropriate normalization to stable references is performed to ensure valid data. In this study, we evaluated the stability of six commonly used miRNA references (5sRNA, SNORD44, RNU6, RNU1A1, miR-103a-3p, and miR-532-5p) across nine B-cell precursor (BCP) ALL cell lines, 22 patient-derived xenograft (PDX) BCP ALL samples from different organ compartments of leukemia bearing mice, and peripheral blood mononuclear cells (PBMCs) from six healthy donors. We used four different algorithms (Normfinder, ∆CT, geNorm, and BestKeeper) to assess the most stably expressed reference across all samples. Moreover, we validated our data in an additional set of 13 PDX ALL samples and six healthy controls, identifying miR-103a-3p and miR-532-5p as the most stable references for miRNA normalization in BCP ALL studies. Additionally, we demonstrated the critical importance of using a stable reference to accurately interpret miRNA data.
Collapse
Affiliation(s)
- Teresa Mack
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Tommaso Gianferri
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Vera Muench
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
3
|
Ullah MA, Moin AT, Nipa JF, Islam NN, Johora FT, Chowdhury RH, Islam S. Exploring risk factors and molecular targets in leukemia patients with COVID-19: a bioinformatics analysis of differential gene expression. J Leukoc Biol 2024; 115:723-737. [PMID: 38323674 DOI: 10.1093/jleuko/qiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
The molecular mechanism of COVID-19's pathogenic effects in leukemia patients is still poorly known. Our study investigated the possible disease mechanism of COVID-19 and its associated risk factors in patients with leukemia utilizing differential gene expression analysis. We also employed network-based approaches to identify molecular targets that could potentially diagnose and treat COVID-19-infected leukemia patients. Our study demonstrated a shared set of 60 genes that are expressed differentially among patients with leukemia and COVID-19. Most of these genes are expressed in blood and bone marrow tissues and are predominantly implicated in the pathogenesis of different hematologic malignancies, increasingly imperiling COVID-19 morbidity and mortality among the affected patients. Additionally, we also found that COVID-19 may influence the expression of several cancer-associated genes in leukemia patients, such as CCR7, LEF1, and 13 candidate cancer-driver genes. Furthermore, our findings reveal that COVID-19 may predispose leukemia patients to altered blood homeostasis, increase the risk of COVID-19-related liver injury, and deteriorate leukemia-associated injury and patient prognosis. Our findings imply that molecular signatures, like transcription factors, proteins such as TOP21, and 25 different microRNAs, may be potential targets for diagnosing and treating COVID-19-infected leukemia patients. Nevertheless, additional experimental studies will contribute to further validating the study's findings.
Collapse
Affiliation(s)
- Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Hathazari, Chattogram-4331, Bangladesh
| | - Jannatul Ferdous Nipa
- Department of Genetic Engineering and Biotechnology, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Fatema Tuz Johora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Rahee Hasan Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Hathazari, Chattogram-4331, Bangladesh
| | - Saiful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chittagong Cantonment, Chattogram-4220, Bangladesh
| |
Collapse
|
4
|
Barrios-Palacios D, Organista-Nava J, Balandrán JC, Alarcón-Romero LDC, Zubillaga-Guerrero MI, Illades-Aguiar B, Rivas-Alarcón AA, Diaz-Lucas JJ, Gómez-Gómez Y, Leyva-Vázquez MA. The Role of miRNAs in Childhood Acute Lymphoblastic Leukemia Relapse and the Associated Molecular Mechanisms. Int J Mol Sci 2023; 25:119. [PMID: 38203290 PMCID: PMC10779195 DOI: 10.3390/ijms25010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children worldwide. Although ALL patients' overall survival rates in wealthy countries currently surpass 80%, 15-20% of patients still experience relapse. The underlying mechanisms of relapse are still not fully understood, and little progress has been made in treating refractory or relapsed disease. Disease relapse and treatment failure are common causes of leukemia-related death. In ALL relapse, several gene signatures have been identified, but it is also important to study miRNAs involved in ALL relapse in an effort to avoid relapse and to achieve better survival rates since miRNAs regulate target genes that participate in signaling pathways involved in relapse, such as those related to drug resistance, survival signals, and antiapoptotic mechanisms. Several miRNAs, such as miR-24, miR-27a, miR-99/100, miR-124, miR-1225b, miR-128b, miR-142-3p, miR-155 and miR-335-3p, are valuable biomarkers for prognosis and treatment response in ALL patients. Thus, this review aimed to analyze the primary miRNAs involved in pediatric ALL relapse and explore the underlying molecular mechanisms in an effort to identify miRNAs that may be potential candidates for anti-ALL therapy soon.
Collapse
Affiliation(s)
- Dalia Barrios-Palacios
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Juan Carlos Balandrán
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA;
| | - Luz del Carmen Alarcón-Romero
- Laboratorio de Citopatología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (L.d.C.A.-R.); (M.I.Z.-G.)
| | - Ma Isabel Zubillaga-Guerrero
- Laboratorio de Citopatología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (L.d.C.A.-R.); (M.I.Z.-G.)
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Alinne Ayulieth Rivas-Alarcón
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Jessica Julieth Diaz-Lucas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Yazmín Gómez-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| |
Collapse
|
5
|
Miyahara K, Tatehana M, Kikkawa T, Osumi N. Investigating the impact of paternal aging on murine sperm miRNA profiles and their potential link to autism spectrum disorder. Sci Rep 2023; 13:20608. [PMID: 38062235 PMCID: PMC10703820 DOI: 10.1038/s41598-023-47878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Paternal aging has consistently been linked to an increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Recent evidence has highlighted the involvement of epigenetic factors. In this study, we aimed to investigate age-related alterations in microRNA (miRNA) profiles of mouse sperm and analyze target genes regulated by differentially expressed miRNAs (DEmiRNAs). Microarray analyses were conducted on sperm samples from mice at different ages: 3 months (3 M), over 12 M, and beyond 20 M. We identified 26 miRNAs with differential expression between the 3 and 20 M mice, 34 miRNAs between the 12 and 20 M mice, and 2 miRNAs between the 3 and 12 M mice. The target genes regulated by these miRNAs were significantly associated with apoptosis/ferroptosis pathways and the nervous system. We revealed alterations in sperm miRNA profiles due to aging and suggest that the target genes regulated by these DEmiRNAs are associated with apoptosis and the nervous system, implying a potential link between paternal aging and an increased risk of neurodevelopmental disorders such as ASD. The observed age-related changes in sperm miRNA profiles have the potential to impact sperm quality and subsequently affect offspring development.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Misako Tatehana
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
6
|
Huang G, Yin Z, Wang X, Wen Z, Su R, Li C, Liu Y, Yang J, Hu H, Nie H, Zeng X, Fei J. System analysis of Huang-Lian-Jie-Du-Tang and their key active ingredients for overcoming CML resistance by suppression of leukemia stem cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154918. [PMID: 37329755 DOI: 10.1016/j.phymed.2023.154918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND BCR-ABL1-based resistance to imatinib, mainly resulting from BCR-ABL1 mutations, is largely solved after second- and third-generation tyrosine kinase inhibitors (TKIs) are discovered. Nonetheless, imatinib resistance without BCR-ABL1 mutations, including intrinsic resistance induced by stem cells within chronic myeloid leukemia (CML), remains the major clinical challenge for many patients. PURPOSE To study the key active ingredients and corresponding target proteins in Huang-Lian-Jie-Du-Tang (HLJDT) against BCR-ABL1-independent CML resistance to therapeutics, and then explore its mechanism of against CML drug resistance. METHODS Cytotoxicity of HLJDT and its active ingredients in BCR-ABL1-independent imatinib resistance cells was analyzed through MTT assay. The cloning ability was measured through soft agar assay. Monitoring therapeutic effect on Xenografted mice CML model by in vivo imaging technology and mice survival time. Predicting the potential target protein binding sites by the technology of photocrosslinking sensor chip, molecular space simulation docking, and use Surface Plasmon Resonance (SPR) technology . Flow cytometry to detect the ratio of stem progenitor cells (CD34+). Constructing bone marrow transplantation mice CML leukemia model, detect the effects on leukemia stem cells LSK (Lin-\ Sca-1+ \C-kit+) self-renewal. RESULTS Treatment with HLJDT, berberine and baicalein inhibited cell viability and colony formation of BCR-ABL1-independent imatinib-resistant cells in vitro while prolonging survival in mouse with CML xenografts and transplatation CML-like mouse models in vivo. JAK2 and MCL1were identified as targets of berberine and baicalein. JAK2 and MCL1 are involved in multi-leukemia stem cell-related pathways. Moreover, the ratio of CD34+ cells in resistant CML cells is higher than in treatment-sensitive CML cells. Treatment with BBR or baicalein partially suppressed CML leukemic stem cells (LSCs) self-renewal in vitro and in vivo. CONCLUSION From the above, we concluded that HLJDT and its key active ingredients (BBR and baicalein) allowed to overcome imatinib resistance with BCR-ABL1 independent by eradication of LSCs by targeting the JAK2 and MCL1 protein levels. Our results lay the foundation for applying HLJDT in patients with TKI-resistant CML.
Collapse
MESH Headings
- Humans
- Mice
- Animals
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Berberine/pharmacology
- Drug Resistance, Neoplasm
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Stem Cells
Collapse
Affiliation(s)
- Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China; Antisense Biopharmaceutical Technology Company, Limited, Guangzhou 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China; Antisense Biopharmaceutical Technology Company, Limited, Guangzhou 510632, China; Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangdong, Guangzhou 510317, China
| | - Xiuyuan Wang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China; Antisense Biopharmaceutical Technology Company, Limited, Guangzhou 510632, China
| | - Ziqi Wen
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China; Antisense Biopharmaceutical Technology Company, Limited, Guangzhou 510632, China
| | - Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China; Antisense Biopharmaceutical Technology Company, Limited, Guangzhou 510632, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China; Antisense Biopharmaceutical Technology Company, Limited, Guangzhou 510632, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China; Antisense Biopharmaceutical Technology Company, Limited, Guangzhou 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China; Antisense Biopharmaceutical Technology Company, Limited, Guangzhou 510632, China
| | - Haiyan Hu
- Department of Oncology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Hong Nie
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization andInnovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Xiaobin Zeng
- Center Lab of Longhua Branch, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Guangdong, Shenzhen 518020, China.
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China; Antisense Biopharmaceutical Technology Company, Limited, Guangzhou 510632, China.
| |
Collapse
|
7
|
Devarajan N, Nathan J, Mathangi R, Mahendra J, Ganesan SK. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management. J Biochem Mol Toxicol 2023; 37:e23278. [PMID: 36588295 DOI: 10.1002/jbt.23278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/27/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
Berberine (BBR), a traditional Chinese phytomedicine extracted from various parts of Berberis plants, is an isoquinoline alkaloid used for centuries to treat diabetes, hypercholesterolemia, hypertension, and so forth. It has recently received immense attention worldwide to treat cancer due to its potent pro-apoptotic, antiproliferative, and anti-inflammatory properties. BBR efficiently induces tumor apoptosis, replicative quiescence and abrogates cell proliferation, epithelial-mesenchymal transition, tumor neovascularization, and metastasis by modulating diverse molecular and cell signaling pathways. Furthermore, BBR could also reverse drug resistance, make tumor cells sensitive to current cancer treatment and significantly minimize the harmful side effects of cytotoxic therapies. This review comprehensively analyzed the pharmacological effects of BBR against the development, growth, progression, metastasis, and therapy resistance in wide varieties of cancer. Also, it critically discusses the significant limitations behind the development of BBR into pharmaceuticals to treat cancer and the future research directions to overcome these limitations.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research - MAHER (Deemed to be University), Chennai, Tamilnadu, India
| | - Jhansi Nathan
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Ramalingam Mathangi
- Department of Biochemistry, Sree Balaji Dental College and Hospital, BIHER, Chennai, Tamil Nadu, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185889. [PMID: 36144625 PMCID: PMC9505063 DOI: 10.3390/molecules27185889] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Cancer is the most commonly diagnosed type of disease and a major cause of death worldwide. Despite advancement in various treatment modules, there has been little improvement in survival rates and side effects associated with this disease. Medicinal plants or their bioactive compounds have been extensively studied for their anticancer potential. Novel drugs based on natural products are urgently needed to manage cancer through attenuation of different cell signaling pathways. In this regard, berberine is a bioactive alkaloid that is found in variety of plants, and an inverse association has been revealed between its consumption and cancer. Berberine exhibits an anticancer role through scavenging free radicals, induction of apoptosis, cell cycle arrest, inhibition of angiogenesis, inflammation, PI3K/AKT/mammalian target of rapamycin (mTOR), Wnt/β-catenin, and the MAPK/ERK signaling pathway. In addition, synergistic effects of berberine with anticancer drugs or natural compounds have been proven in several cancers. This review outlines the anticancer effects and mechanisms of action of berberine in different cancers through modulation of various cell signaling pathways. Moreover, the recent developments in the drug delivery systems and synergistic effect of berberine are explained.
Collapse
|
9
|
Galyamina AG, Smagin DA, Kovalenko IL, Redina OE, Babenko VN, Kudryavtseva NN. The Dysfunction of Carcinogenesis- and Apoptosis-Associated Genes that Develops in the Hypothalamus under Chronic Social Defeat Stress in Male Mice. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1050-1064. [PMID: 36180995 DOI: 10.1134/s0006297922090152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Chronic social stress caused by daily agonistic interactions in male mice leads to a mixed anxiety/depression-like disorder that is accompanied by the development of psychogenic immunodeficiency and stimulation of oncogenic processes concurrently with many neurotranscriptomic changes in brain regions. The aim of the study was to identify carcinogenesis- and apoptosis-associated differentially expressed genes (DEGs) in the hypothalamus of male mice with depression-like symptoms and, for comparison, in aggressive male mice with positive social experience. To obtain two groups of animals with the opposite 20-day social experiences, a model of chronic social conflict was used. Analysis of RNA-Seq data revealed similar expression changes for many DEGs between the aggressive and depressed animals in comparison with the control group; however, the number of DEGs was significantly lower in the aggressive than in the depressed mice. It is likely that the observed unidirectional changes in the expression of carcinogenesis- and apoptosis-associated genes in the two experimental groups may be a result of prolonged social stress (of different severity) caused by the agonistic interactions. In addition, 26 DEGs were found that did not change expression in the aggressive animals and could be considered genes promoting carcinogenesis or inhibiting apoptosis. Akt1, Bag6, Foxp4, Mapk3, Mapk8, Nol3, Pdcd10, and Xiap were identified as genes whose expression most strongly correlated with the expression of other DEGs, suggesting that their protein products play a role in coordination of the neurotranscriptomic changes in the hypothalamus. Further research into functions of these genes may be useful for the development of pharmacotherapies for psychosomatic pathologies.
Collapse
Affiliation(s)
- Anna G Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitry A Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina L Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga E Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir N Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia N Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| |
Collapse
|
10
|
Almeida TC, Seibert JB, Amparo TR, de Souza GHB, da Silva GN, Dos Santos DH. Modulation of Long Non-Coding RNAs by Different Classes of Secondary Metabolites from Plants: A Mini-Review on Antitumor Effects. Mini Rev Med Chem 2021; 22:1232-1255. [PMID: 34720079 DOI: 10.2174/1389557521666211101161548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinical-pathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.
Collapse
Affiliation(s)
- Tamires Cunha Almeida
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Tatiane Roquete Amparo
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Glenda Nicioli da Silva
- Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | |
Collapse
|
11
|
Yu T, Yu J, Lu L, Zhang Y, Zhou Y, Zhou Y, Huang F, Sun L, Guo Z, Hou G, Dong Z, Wang B. MT1JP-mediated miR-24-3p/BCL2L2 axis promotes Lenvatinib resistance in hepatocellular carcinoma cells by inhibiting apoptosis. Cell Oncol (Dordr) 2021; 44:821-834. [PMID: 33974236 PMCID: PMC8338827 DOI: 10.1007/s13402-021-00605-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Lenvatinib is a long-awaited alternative to Sorafenib for first-line targeted therapy of patients with advanced hepatocellular carcinoma (HCC). However, resistance to Lenvatinib results in tumor progression and has become a major obstacle to improving the prognosis of HCC patients. Exploring the mechanisms underlying Lenvatinib resistance is considered essential for the treatment of advanced HCC. METHODS Lenvatinib resistant HCC (LR-HCC) cells were generated and potential long non-coding RNAs (Lnc-RNAs) upregulated in LR-HCC cells were identified by RNA sequencing. The effects of upregulated Lnc-RNAs were evaluated in vitro in cell models and in vivo in experimental animals using quantitative cell viability and apoptosis assays. RESULTS We found that Lnc-RNA MT1JP (MT1JP) was upregulated in LR-HCC cells and inhibited the apoptosis signaling pathway. In addition, we found that sponging of microRNA-24-3p by MT1JP released Bcl-2 like 2 (BCL2L2), an anti-apoptotic protein, thereby forming a positive-feedback loop. The role of this feedback loop was validated using rescue assays. Additionally, we found that upregulation of MT1JP and BCL2L2 impaired the sensitivity of HCC cells to Lenvatinib both vitro and vivo. CONCLUSIONS Our results suggest a novel molecular feedback loop between MT1JP and apoptosis signaling in Lenvatinib sensitive HCC cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Nude
- Mice, SCID
- MicroRNAs/genetics
- Phenylurea Compounds/therapeutic use
- Quinolines/therapeutic use
- RNA, Long Noncoding/genetics
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Ting Yu
- Department of Hepatobiliary, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Jiajian Yu
- Department of Hepatobiliary, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Lu Lu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yize Zhang
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yadong Zhou
- Department of Hepatobiliary, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Yong Zhou
- Department of Hepatobiliary, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Fengling Huang
- Department of Radiology, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Lu Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhixian Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guojun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Zihui Dong
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Bibo Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
12
|
Jagetia GC. Anticancer Potential of Natural Isoquinoline Alkaloid Berberine. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Chen C, Hao X, Lai X, Liu L, Zhu J, Shao H, Huang D, Gu H, Zhang T, Yu Z, Xie L, Zhang X, Yang Y, Xu J, Zhao Y, Lu Z, Zheng J. Oxidative phosphorylation enhances the leukemogenic capacity and resistance to chemotherapy of B cell acute lymphoblastic leukemia. SCIENCE ADVANCES 2021; 7:eabd6280. [PMID: 33692103 PMCID: PMC7946372 DOI: 10.1126/sciadv.abd6280] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/22/2021] [Indexed: 05/11/2023]
Abstract
How metabolic status controls the fates of different types of leukemia cells remains elusive. Using a SoNar-transgenic mouse line, we demonstrated that B cell acute lymphoblastic leukemia (B-ALL) cells had a preference in using oxidative phosphorylation. B-ALL cells with a low SoNar ratio (SoNar-low) had enhanced mitochondrial respiration capacity, mainly resided in the vascular niche, and were enriched with more functional leukemia-initiating cells than that of SoNar-high cells in a murine B-ALL model. The SoNar-low cells were more resistant to cytosine arabinoside (Ara-C) treatment. cyclic adenosine 3',5'-monophosphate response element-binding protein transactivated pyruvate dehydrogenase complex component X and cytidine deaminase to maintain the oxidative phosphorylation level and Ara-C-induced resistance. SoNar-low human primary B-ALL cells also had a preference for oxidative phosphorylation. Suppressing oxidative phosphorylation with several drugs sufficiently attenuated Ara-C-induced resistance. Our study provides a unique angle for understanding the potential connections between metabolism and B-ALL cell fates.
Collapse
Affiliation(s)
- Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxin Hao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyun Lai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhu
- Department of Hematology, Shanghai Zhaxin Hospital, Shanghai 200434, China
| | - Hongfang Shao
- Center of Reproductive Medicine, Shanghai Sixth People's Hospital, 600 Yishan Road Shanghai 200233, China
| | - Dan Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Gu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tinghua Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaocui Zhang
- Department of Hematology, Shanghai Zhaxin Hospital, Shanghai 200434, China
| | - Yi Yang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yuzheng Zhao
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhigang Lu
- The Fifth People's Hospital of Shanghai, Fudan University, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
14
|
Wang S, Liu N, Tang Q, Sheng H, Long S, Wu W. MicroRNA-24 in Cancer: A Double Side Medal With Opposite Properties. Front Oncol 2020; 10:553714. [PMID: 33123467 PMCID: PMC7566899 DOI: 10.3389/fonc.2020.553714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-24 (miR-24) has been widely studied in a variety of human cancers, which plays different roles in specific type of cancers. In the present review, we summarized the recent surveys regarding the role of miR-24 in different human cancers. On the one hand, miR-24 was reported to be down-regulated in some types of cancer, indicating its role as a tumor suppressor. On the other hand, it has shown that miR-24 was up-regulated in some other types of cancer, even in the same type of cancer, suggesting the role of miR-24 being as an oncogene. Firstly, miR-24 was dysregualted in human cancers, which is related to the clinical performance of cancer patients. Thus miR-24 could be used as a potential non-invasive diagnostic marker in human cancers. Secondly, miR-24 was associated with the tumor initiation and progression, being as a promoter or inhibitor. Therefore, miR-24 might be an effective prognostic biomarker in different type of cancers. Lastly, the abnormal expression of miR-24 was involved in the chemo- and radio- therapies of cancer patients, indicating the role of miR-24 being as a predictive biomarker to cancer treatment. Totally, miR-24 contributes to tumorigenesis, tumor progression, and tumor therapy, which closely related to clinic. The present review shows that miR-24 plays a double role in human cancers and provides plenty of evidences to apply miR-24 as a potential novel therapeutic target in treating human cancers.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Nayan Liu
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Tang
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Honghao Sheng
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shunqin Long
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
15
|
Alnuqaydan AM. Targeting micro-RNAs by natural products: a novel future therapeutic strategy to combat cancer. Am J Transl Res 2020; 12:3531-3556. [PMID: 32774718 PMCID: PMC7407688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs are a class of short, non-coding RNAs that play a crucial role in normal physiology by attenuating translation or targeting messenger RNAs for degradation. Deregulation of miRNAs disturbs key molecular events in interconnected processes such as cell proliferation, tumor angiogenesis, self-renewal, apoptosis, metastasis and epithelial to mesenchymal transition. This process initiates, promotes and develops the pathophysiology of cancer. The modulation of miRNAs results in epigenetic changes in the genome, which eventually leads to cancer. Targeting deregulated miRNAs by natural products derived from plants is an ideal strategy to combat tumorigenesis. Owing to their fewer side effects, natural products have been used as chemotherapeutic agents against various cancers. These natural products modulate the dysregulated signaling pathways by downregulating the oncogenic miRNAs which play a crucial role in the development of tumorigenesis and maintain a fine balance of tumor suppressor miRNAs. This review article aims to highlight the key modifications of miRNAs which lead to tumorigenesis and the chemotherapeutic potential of natural products by targeting miRNAs and their possible mechanism of inhibition for developing an effective anti-cancer agent(s). They will have less damaging effects on normal cells for future chemotherapeutics.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University Saudi Arabia
| |
Collapse
|