1
|
Jin C, Jin R, Liu D, Li Y. Genetically determined α-Klotho levels and causal association with aging-related lung diseases. Respir Med 2025; 241:108081. [PMID: 40180194 DOI: 10.1016/j.rmed.2025.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Abnormal α-Klotho (KL) levels play an essential role in the pathogenesis of aging-related lung diseases. However, the correlation between circulating KL levels and aging-related lung diseases has not been determined. This study aimed to determine whether circulating KL levels causally affect aging-related lung diseases using Mendelian randomization (MR). METHODS Five KL-associated Single-nucleotide polymorphisms (SNPs) were analyzed using two-sample MR to assess their effects on three aging-related lung diseases: idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), and lung cancer. RESULTS Based on a main casual effects model with MR analyses by the inverse variance weighted (IVW) method including multiplicative random-effects model (IVW-mre) and fixed-effects inverse variance-weighted model (IVW-fe), genetically predicted circulating KL levels were negatively related with risk of IPF (Odds ratio (ORIVW-mre), 0.999, 95 % CI, 0.999-1.000, PIVW-mre = 0.008; OR IVW-fe, 0.999, 95 % CI, 0.999-1.000, PIVW-fe = 0.042). Inversely, the circulating levels of KL displayed no clear association with COPD and lung cancer. No pleiotropy was detected. CONCLUSIONS Genetically predicted circulating KL was causally associated with a lower risk of IPF, suggesting a protective effect in preventing IPF risk. Therefore, KL may be a promising target for the prevention and therapeutic intervention in patients with IPF.
Collapse
Affiliation(s)
- Chen Jin
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University and School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ruiying Jin
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University and School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dingyu Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University and School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuwen Li
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University and School of Public Health, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Zavvari Oskuye Z, Mehri K, Khalilpour J, Nemati S, Hosseini L, Bafadam S, Abdollahzade N, Badalzadeh R. Klotho in age-related cardiovascular diseases: Insights into mitochondrial dysfunction and cell death. IJC HEART & VASCULATURE 2025; 57:101629. [PMID: 40129656 PMCID: PMC11930703 DOI: 10.1016/j.ijcha.2025.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 03/26/2025]
Abstract
Aging is a major risk factor for the development of cardiovascular diseases (CVD), leading to specific alterations in the heart and vasculature. Besides, the mechanisms and intracellular pathways of aging and the factors affecting it are still not completely clear. Age-related complications such as oxidative stress, decreased autophagy, mitochondrial dysfunction, inflammatory responses, and cardiac dysfunction are associated with relative Klotho deficiency. Klotho, an anti-aging protein, with anti-oxidative and anti-inflammatory properties, has been shown to modulate calcium regulation and autophagy. It also protects against endothelial dysfunction by increasing nitric oxide production. Furthermore, emerging research has revealed that klotho significantly impacts vascular smooth muscle cells (VSMC) energetics and survival. This article has focused on recent advances in using Klotho in age-related CVD and summarizes the pre-clinical evidence supporting this approach. Based on the research, Klotho could provide more therapeutic options for ameliorating aging-related CVD.
Collapse
Affiliation(s)
- Zohreh Zavvari Oskuye
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Mehri
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soleyman Bafadam
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Shen S, Huang Q, Liu L, Zou X, Kang T, Wu J. GATA2 downregulation contributes to pro-inflammatory phenotype and defective phagocytosis of pulmonary macrophages in chronic obstructive pulmonary disease. Aging (Albany NY) 2024; 16:12928-12951. [PMID: 39379099 PMCID: PMC11501382 DOI: 10.18632/aging.206129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Pulmonary macrophages from COPD patients are characterized by lower phagocytic and bactericidal activity whereas there is hypersecretion of pro-inflammatory cytokines. The prominent decline of GATA2 expression in pulmonary macrophages from COPD patients inspired us to figure out its role during COPD development. The expression levels of GATA2 were decreased in alveolar macrophages isolated from cigarette smoke (CS)-induced COPD mice and cigarette smoke extract (CSE)-treated macrophages. In vitro, both CSE and GATA2 knockdown via siRNAs elevated pro-inflammatory cytokines expression whereas inhibiting phagocytosis in macrophages. Integrated analysis of transcriptomics of GATA2-knockdown macrophages and the results of ChIP sequencing of GATA2 together with dual-luciferase reporter assay identified Abca1 and Pacsin1 as functional target genes of GATA2. Mechanistically, ABCA1 mediates the pro-inflammatory secretion phenotype and the dysfunction in early stage of phagocytosis of macrophages through TLR4/MyD88 and MEGF10/GULP1 pathways, respectively. PACSIN1/SUNJ1 partially mediates the disruption effects of GATA2 downregulation on maturation of phagolysosomes in macrophages. Together, our study suggests that GATA2 influences multiple functions of pulmonary macrophages by simultaneous transcriptional regulation of several target genes, contributing to the dysfunctions of pulmonary macrophages in response to CS, which provides an impetus for further investigations of GATA2 or other underappreciated transcription factors as regulatory hubs in COPD pathogenesis.
Collapse
Affiliation(s)
- Shaoran Shen
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qiqing Huang
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lele Liu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoli Zou
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tutu Kang
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianqing Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
4
|
Jankowski J, Lee HK, Liu C, Wilflingseder J, Hennighausen L. Sexually dimorphic renal expression of mouse Klotho is directed by a kidney-specific distal enhancer responsive to HNF1b. Commun Biol 2024; 7:1142. [PMID: 39277686 PMCID: PMC11401919 DOI: 10.1038/s42003-024-06855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Transcription enhancers are genomic sequences regulating common and tissue-specific genes and their disruption can contribute to human disease development and progression. Klotho, a sexually dimorphic gene specifically expressed in kidney, is well-linked to kidney dysfunction and its deletion from the mouse genome leads to premature aging and death. However, the sexually dimorphic regulation of Klotho is not understood. Here, we characterize two candidate Klotho enhancers using H3K27ac epigenetic marks and transcription factor binding and investigate their functions, individually and combined, through CRISPR-Cas9 genome engineering. We discovered that only the distal (E1), but not the proximal (E2) candidate region constitutes a functional enhancer, with the double deletion not causing Klotho expression to further decrease. E1 activity is dependent on HNF1b transcription factor binding site within the enhancer. Further, E1 controls the sexual dimorphism of Klotho as evidenced by qPCR and RNA-seq. Despite the sharp reduction of Klotho mRNA, unlike germline Klotho knockouts, mutant mice present normal phenotype, including weight, lifespan, and serum biochemistry. Lastly, only males lacking E1 display more prominent acute, but not chronic kidney injury responses, indicating a remarkable range of potential adaptation to isolated Klotho loss, especially in female E1 knockouts, retaining renoprotection despite over 80% Klotho reduction.
Collapse
Affiliation(s)
- Jakub Jankowski
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA.
- , 8 Center Drive, Room 107, 20892, Bethesda, MD, USA.
| | - Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia Wilflingseder
- Department of Physiology and Pathophysiology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Koziol-White C, Gebski E, Cao G, Panettieri RA. Precision cut lung slices: an integrated ex vivo model for studying lung physiology, pharmacology, disease pathogenesis and drug discovery. Respir Res 2024; 25:231. [PMID: 38824592 PMCID: PMC11144351 DOI: 10.1186/s12931-024-02855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024] Open
Abstract
Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.
Collapse
Affiliation(s)
- Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA.
| | - Eric Gebski
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Gaoyaun Cao
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Jankowski J, Lee HK, Liu C, Wilflingseder J, Hennighausen L. Sexually dimorphic renal expression of Klotho is directed by a kidney-specific distal enhancer responsive to HNF1b. RESEARCH SQUARE 2024:rs.3.rs-4188774. [PMID: 38712042 PMCID: PMC11071613 DOI: 10.21203/rs.3.rs-4188774/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Transcription enhancers are genomic sequences regulating common and tissue-specific genes and their disruption can contribute to human disease development and progression. Klotho, a sexually dimorphic gene specifically expressed in kidney, is well-linked to kidney dysfunction and its deletion from the mouse genome leads to premature aging and death. However, the sexually dimorphic regulation of Klotho is not understood. Here, we characterize two candidate Klotho enhancers using H3K27ac epigenetic marks and transcription factor binding and investigate their functions, individually and combined, through CRISPR-Cas9 genome engineering. We discovered that only the distal (E1), but not the proximal (E2) candidate region constitutes a functional enhancer, with the double deletion not causing Klotho expression to further decrease. E1 activity is dependent on HNF1b transcription factor binding site within the enhancer. Further, E1 controls the sexual dimorphism of Klotho as evidenced by qPCR and RNA-seq. Despite the sharp reduction of Klotho mRNA, unlike germline Klotho knockouts, mutant mice presented normal phenotype, including weight, lifespan, and serum biochemistry. Lastly, only males lacking E1 display more prominent acute, but not chronic kidney injury responses, indicating a remarkable range of potential adaptation to isolated Klotho loss, especially in female E1 knockouts, retaining renoprotection despite over 80% Klotho reduction.
Collapse
Affiliation(s)
- Jakub Jankowski
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Wilflingseder
- Department of Physiology and Pathophysiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
7
|
Xu B, Cheng F, Xue X. Klotho-mediated activation of the anti-oxidant Nrf2/ARE signal pathway affects cell apoptosis, senescence and mobility in hypoxic human trophoblasts: involvement of Klotho in the pathogenesis of preeclampsia. Cell Div 2024; 19:13. [PMID: 38632651 PMCID: PMC11025225 DOI: 10.1186/s13008-024-00120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
The anti-aging gene Klotho is implicated in the pathogenesis of preeclampsia (PE), which is a pregnancy disease characterized by hypertension and proteinuria. Oxidative stress is closely associated with the worse outcomes in PE, and Klotho can eliminate Reactive Oxygen Species (ROS), but it is still unclear whether Klotho regulates PE pathogenesis through modulating oxidative damages. Here, by analyzing the clinical data, we found that Klotho was aberrantly downregulated in PE umbilical cord serum and placental tissues, compared to their normal counterparts. In in vitro experiments, the human trophoblasts were subjected to hypoxic pressure to establish the PE models, and we confirmed that hypoxia also decreased the expression levels of Klotho in those trophoblasts. In addition, through performing functional experiments, we confirmed that hypoxia promoted oxidative damages, cell apoptosis and senescence, whereas suppressed cell invasion in human trophoblasts, which were all reversed overexpressing Klotho. The following mechanical experiments verified that Klotho increased the levels of nuclear Nrf2, total Nrf2, SOD2 and NQO1 to activate the anti-oxidant Nrf2/ARE signal pathway, and silencing of Nrf2 abrogated the protective effects of Klotho overexpression on hypoxic human trophoblasts. Consistently, in in vivo experiments, Klotho overexpression restrained oxidative damages and facilitated cell mitosis in PE rats' placental tissues. In conclusion, this study validated that Klotho activated the Nrf2/ARE signal pathway to eliminate hypoxia-induced oxidative damages, cell apoptosis and senescence to recover normal cellular functions in human trophoblasts, and our data supported that Klotho could be used as novel biomarker for PE diagnosis and treatment.
Collapse
Affiliation(s)
- Baomei Xu
- Obstetrical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Urumqi, 830000, Xinjiang, China
| | - Fang Cheng
- Obstetrical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Urumqi, 830000, Xinjiang, China
| | - Xiaolei Xue
- Obstetrical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Henan Road No. 118, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
8
|
Wang Q, Sun J, Wang R, Sun J. Inhibition of EZH2 mitigates peritoneal fibrosis and lipid precipitation in peritoneal mesothelial cells mediated by klotho. Ren Fail 2023; 45:2149411. [PMID: 36724065 PMCID: PMC9897791 DOI: 10.1080/0886022x.2022.2149411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Peritoneal fibrosis caused by long-term peritoneal dialysis (PD) is the main reason why patients withdraw from PD treatment. Lipid accumulation in the peritoneum was shown to participate in fibrosis, and klotho is a molecule involved in lipid metabolism. GSK343 (enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitor) has been verified to inhibit epithelial mesenchymal transdifferentiation (EMT) and peritoneal fibrosis, but its related mechanism remains unclear. This study aimed to investigate whether lipid accumulation was involved in the effect of GSK343 and its related mechanism. MATERIALS AND METHODS First, the expression of EZH2, klotho and EMT indices in human peritoneal mesothelial cells (HMrSV5) incubated with high glucose (HG) levels was detected. After EZH2 was inhibited by GSK343, Western blot (WB), wound healing and Transwell assays were used to explore the effect of GSK343. EZH2 and klotho expression was also detected. Oil red O and Nile red staining and triglyceride (TG) detection kits were used to detect lipid accumulation. A rescue experiment with small interfering RNA specific for klotho (si-klotho) on the basis of GSK343 was also conducted to verify that GSK343 exerted its effect via klotho. In in vivo experiments, rats were administered GSK343, and the related index was assessed. RESULTS In our study, we revealed that the expression of EZH2 was significantly upregulated and klotho was significantly downregulated in HMrSV5 cells induced by high glucose. With the aid of GSK343, we found that lipid deposition caused by HG was significantly decreased. In addition, EMT and fibrosis were also significantly alleviated. Moreover, GSK343 could also restore the downregulation of klotho. To further verify whether klotho mediated the effect of EZH2, a rescue experiment with si-klotho was also conducted. The results showed that si-klotho could counteract the protective effect of GSK343 on high glucose-induced lipid accumulation and fibrosis. In vivo experiments also revealed that GSK343 could relieve peritoneal fibrosis, lipid deposition and EMT by mitigating EZH2 and restoring klotho expression. CONCLUSIONS Combining these findings, we found that EZH2 regulated lipid deposition, peritoneal fibrosis, and EMT mediated by klotho. To our knowledge, this is the first study to demonstrate the effect of the EZH2-klotho interaction on peritoneal fibrosis. Hence, EZH2 and klotho could act as potential targets for the treatment of peritoneal fibrosis.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jingshu Sun
- Department of Nephrology, Weifang People’s Hospital, Weifang, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jing Sun
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China,CONTACT Jing Sun Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong250021, China
| |
Collapse
|
9
|
Han YY, Celedón JC, Forno E. Serum α-Klotho level, lung function, airflow obstruction and inflammatory markers in US adults. ERJ Open Res 2023; 9:00471-2023. [PMID: 37936898 PMCID: PMC10626412 DOI: 10.1183/23120541.00471-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023] Open
Abstract
Background α-Klotho is a pleiotropic protein that may have anti-oxidative and anti-inflammatory properties in the lung, but its role in airflow obstruction or lung function is largely unknown. Methods This was a cross-sectional study of 6046 adults aged 40-79 years in the US National Health and Nutrition Examination Survey (NHANES) 2007-2012. We used multivariable logistic or linear regression to examine the relation between serum α-Klotho level and airflow obstruction, defined as forced expiratory volume in 1 s (FEV1) <80% of predicted and FEV1/forced vital capacity (FVC) ratio <0.70; FEV1, FVC and FEV1/FVC as percentage of predicted; and inflammatory markers in blood (white blood cell count, eosinophils, neutrophils and C-reactive protein (CRP)). Results α-Klotho levels in the second to fourth quartiles (Q2-Q4) were associated with significantly decreased odds of airflow obstruction (adjusted OR for Q2-Q4 versus lowest quartile (Q1) 0.54 (95% CI 0.35-0.81)) in never-smokers and ex-smokers with <10 pack-years of smoking, but not in current smokers or ex-smokers with ≥10 pack-years of smoking. In all participants, each unit increment in log10-transformed α-Klotho level was significantly associated with 5.0% higher FEV1 % pred and 3.7% higher FVC % pred. Higher α-Klotho was also associated with lower eosinophils, neutrophils and CRP in participants both with and without airflow obstruction. Conclusions Higher serum α-Klotho is associated with lower inflammatory markers and higher lung function in adults with and without airflow obstruction, and with decreased odds of airflow obstruction in never-smokers and ex-smokers with <10 pack-years of smoking. Further studies are warranted to replicate our findings and evaluate underlying mechanisms.
Collapse
Affiliation(s)
- Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Forno
- Division of Pulmonary, Allergy and Sleep Medicine, Riley Children's Hospital, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Zhao H, Zhang HL, Jia L. High glucose dialysate-induced peritoneal fibrosis: Pathophysiology, underlying mechanisms and potential therapeutic strategies. Biomed Pharmacother 2023; 165:115246. [PMID: 37523983 DOI: 10.1016/j.biopha.2023.115246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Peritoneal dialysis is an efficient renal replacement therapy for patients with end-stage kidney disease. However, continuous exposure of the peritoneal membrane to dialysate frequently leads to peritoneal fibrosis, which alters the function of the peritoneal membrane and results in withdrawal from peritoneal dialysis in patients. Among others, high glucose dialysate is considered as a predisposing factor for peritoneal fibrosis in patients on peritoneal dialysis. Glucose-induced inflammation, metabolism disturbance, activation of the renin-angiotensin-aldosterone system, angiogenesis and noninflammation-induced reactive oxygen species are implicated in the pathogenesis of high glucose dialysate-induced peritoneal fibrosis. Specifically, high glucose causes chronic inflammation and recurrent peritonitis, which could cause migration and polarization of inflammatory cells, as well as release of cytokines and fibrosis. High glucose also interferes with lipid metabolism and glycolysis by activating the sterol-regulatory element-binding protein-2/cleavage-activating protein pathway and increasing hypoxia inducible factor-1α expression, leading to angiogenesis and peritoneal fibrosis. Activation of the renin-angiotensin-aldosterone system and Ras-mitogen activated protein kinase signaling pathway is another contributing factor in high glucose dialysate-induced fibrosis. Ultimately, activation of the transforming growth factor-β1/Smad pathway is involved in mesothelial-mesenchymal transition or epithelial-mesenchymal transition, which leads to the development of fibrosis. Although possible intervention strategies for peritoneal dialysate-induced fibrosis by targeting the transforming growth factor-β1/Smad pathway have occasionally been proposed, lack of laboratory evidence renders clinical decision-making difficult. We therefore aim to revisit the upstream pathways of transforming growth factor-beta1/Smad and propose potential therapeutic targets for high glucose-induced peritoneal fibrosis.
Collapse
Affiliation(s)
- Hanxue Zhao
- First Clinical Medical College, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, No. 83 Shuangqing Road, Beijing 100085, China.
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China.
| |
Collapse
|
11
|
Tu M, Wei T, Jia Y, Wang Y, Wu J. Molecular mechanisms of alveolar epithelial cell senescence and idiopathic pulmonary fibrosis: a narrative review. J Thorac Dis 2023; 15:186-203. [PMID: 36794134 PMCID: PMC9922607 DOI: 10.21037/jtd-22-886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial pneumonia of unknown etiology. An increasing number of studies have reported that the incidence of IPF increases with age. Simultaneously, the number of senescent cells increased in IPF. Epithelial cell senescence, an important component of epithelial cell dysfunction, plays a key role in IPF pathogenesis. This article summarizes the molecular mechanisms associated with alveolar epithelial cell senescence and recent advances in the applications of drugs targeting pulmonary epithelial cell senescence to explore novel therapeutic approaches for the treatment of pulmonary fibrosis. Methods All literature published in English on PubMed, Web of Science, and Google Scholar were electronically searched online using the following keyword combinations: aging, alveolar epithelial cell, cell senescence, idiopathic pulmonary fibrosis, WNT/β-catenin, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB). Key Content and Findings We focused on signaling pathways associated with alveolar epithelial cell senescence in IPF, including WNT/β-catenin, PI3K/Akt, NF-κB, and mTOR signaling pathways. Some of these signaling pathways are involved in alveolar epithelial cell senescence by affecting cell cycle arrest and secretion of senescence-associated secretory phenotype-associated markers. We also found that changes in lipid metabolism in alveolar epithelial cells can be induced by mitochondrial dysfunction, both of which contribute to cellular senescence and development of IPF. Conclusions Decreasing senescent alveolar epithelial cells may be a promising strategy for the treatment of IPF. Therefore, further investigations into new treatments of IPF by applying inhibitors of relevant signaling pathways, as well as senolytic drugs, are warranted.
Collapse
Affiliation(s)
- Mingjin Tu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Ting Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yufang Jia
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China;,Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Jun Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
12
|
Abraham CR, Li A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Res Rev 2022; 82:101766. [PMID: 36283617 DOI: 10.1016/j.arr.2022.101766] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The protein Klotho (KL) was first discovered in KL-deficient mice, which developed a syndrome similar to premature aging in humans. Since then, KL has been implicated in multiple molecular signaling pathways and diseases. KL has been shown to have anti-aging, healthspan and lifespan extending, cognitive enhancing, anti-oxidative, anti-inflammatory, and anti-tumor properties. KL levels decrease with age and in many diseases. Therefore, it has been of great interest to develop a KL-boosting or restoring drug, or to supplement endogenous Klotho with exogenous Klotho genetic material or recombinant Klotho protein, and to use KL levels in the body as a marker for the efficacy of such drugs and as a biomarker for the diagnosis and management of diseases. OBJECTIVE The goal of this study was to provide a comprehensive review of KL levels across age groups in individuals who are healthy or have certain health conditions, using four sources: blood, cerebrospinal fluid, urine, and whole biopsy/necropsy tissue. By doing so, baseline KL levels can be identified across the lifespan, in the absence or presence of disease. In turn, these findings can be used to guide the development of future KL-based therapeutics and biomarkers, which will heavily rely on an individual's baseline KL range to be efficacious. METHODS A total of 65 studies were collected primarily using the PubMed database. Research articles that were published up to April 2022 were included. Statistical analysis was conducted using RStudio. RESULTS Mean and median blood KL levels in healthy individuals, mean blood KL levels in individuals with renal conditions, and mean blood KL levels in individuals with metabolic or endocrine conditions were shown to decrease with age. Similarly, CSF KL levels in patients with AD also declined compared with age-matched controls. CONCLUSIONS The present study confirms the trend that KL levels in blood decrease with age in humans, among those who are healthy, and even further among those with renal and endocrine/metabolic illnesses. Further, by drawing this trend from multiple published works, we were able to provide a general idea of baseline KL ranges, specifically in blood in these populations. These data add to the current knowledge on normal KL levels in the body and how they change with time and in disease, and can potentially support efforts to create KL-based treatments and screening tools to better manage aging, renal, and metabolic/endocrine diseases.
Collapse
Affiliation(s)
- Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, USA; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, USA.
| | - Anne Li
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Park SY, Kang MJ, Jin N, Lee SY, Lee YY, Jo S, Eom JY, Han H, Chung SI, Jang K, Kim TH, Park J, Han JS. House dust mite-induced Akt-ERK1/2-C/EBP beta pathway triggers CCL20-mediated inflammation and epithelial-mesenchymal transition for airway remodeling. FASEB J 2022; 36:e22452. [PMID: 35916017 DOI: 10.1096/fj.202200150rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
House dust mite (HDM) allergens cause inflammatory responses and chronic allergic diseases such as bronchial asthma and atopic dermatitis. Here, we investigate the mechanism by which HDM induces C-C chemokine ligand 20 (CCL20) expression to promote chronic inflammation and airway remodeling in an HDM-induced bronchial asthma mouse model. We showed that HDM increased CCL20 levels via the Akt-ERK1/2-C/EBPβ pathway. To investigate the role of CCL20 in chronic airway inflammation and remodeling, we made a mouse model of CCL20-induced bronchial asthma. Treatment of anti-CCL20Ab in this mouse model showed the reduced airway hyper-responsiveness and inflammatory cell infiltration into peribronchial region by neutralizing CCL20. In addition, CCL20 induced the Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation through NLRP3 deubiquitination and transcriptional upregulation in BEAS-2B cells. As expected, anti-CCL20Ab markedly suppressed NLRP3 activation induced by CCL20. Moreover, HDM-induced CCL20 leads to epithelial-mesenchymal transition in the lung epithelium which appears to be an important regulator of airway remodeling in allergic asthma. We also found that anti-CCL20Ab attenuates airway inflammation and remodeling in an HDM-induced mouse model of bronchial asthma. Taken together, our results suggest that HDM-induced CCL20 is required for chronic inflammation that contributes airway remodeling in a mouse model of asthma.
Collapse
Affiliation(s)
- Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Min-Jeong Kang
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Nuri Jin
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - So Young Lee
- EONE-DIAGNOMICS Genome Center Co. Ltd., Incheon, Republic of Korea
| | | | - Sungsin Jo
- Institute for Rheumatology Research, Hanyang University, Seoul, Republic of Korea
| | - Jeong Yun Eom
- Department of Pathology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Heejae Han
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sook In Chung
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Institute for Rheumatology Research, Hanyang University, Seoul, Republic of Korea
| | - Jungwon Park
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Münz S, Wolf L, Hoelzle LE, Chernyakov D, Edemir B, Föller M. Impact of cytotoxic agents or apoptosis stimulants on αklotho in MDCK, NRK-52E and HK2 kidney cells. Aging (Albany NY) 2022; 14:7282-7299. [PMID: 35997650 PMCID: PMC9550246 DOI: 10.18632/aging.204238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
αKlotho is a transmembrane protein acting as a co-receptor for FGF23, a bone hormone regulating renal phosphate and vitamin D metabolism. αKlotho expression is controlled by PPARγ. Soluble αklotho (sKL) regulates cellular signaling impacting stress resistance and death. αKlotho deficiency causes early onset of aging-associated diseases while its overexpression markedly increases lifespan. Cellular stress due to cytotoxic therapeutics or apoptosis induction through caspase activation or serum deficiency may result in cell death. Owing to αklotho's role in cellular stress and aging, this study explored the effect of cytotoxic agents or apoptosis stimulants on cellular αklotho expression. Experiments were performed in renal MDCK, NRK-52E and HK-2 cells. Gene expression was determined by qRT-PCR, sKL by ELISA, apoptosis and necrosis by annexin V binding and a fluorescent DNA dye, and cell viability by MTT assay. Cytostatic drugs cisplatin, paclitaxel, and doxorubicin as well as apoptosis induction with caspase 3 activator PAC-1 and serum deprivation induced αklotho and PPARG gene expression while decreasing viability and proliferation and inducing apoptosis of MDCK and NRK-52E cells to a variable extent. PPARγ antagonism attenuated up-regulation of αklotho in MDCK cells. In HK-2 cells, αklotho gene expression and sKL protein were down-regulated by chemotherapeutics. SKL serum levels in patients following chemotherapy were not significantly changed. In summary, potentially fatal stress results in up-regulation of αKlotho gene expression in MDCK and NRK-52E cells and down-regulation in HK-2 cells. These results indicate that different renal cell lines may exhibit completely different regulation of αklotho.
Collapse
Affiliation(s)
- Sina Münz
- Department of Physiology, University of Hohenheim, Stuttgart 70599, Germany
| | - Lisa Wolf
- Department of Physiology, University of Hohenheim, Stuttgart 70599, Germany
| | - Ludwig E Hoelzle
- Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany
| | - Dmitry Chernyakov
- Department of Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Bayram Edemir
- Department of Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart 70599, Germany
| |
Collapse
|
15
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
16
|
Klotho Modulates Pro-Fibrotic Activities in Human Atrial Fibroblasts through Inhibition of Phospholipase C Signaling and Suppression of Store-Operated Calcium Entry. Biomedicines 2022; 10:biomedicines10071574. [PMID: 35884879 PMCID: PMC9312905 DOI: 10.3390/biomedicines10071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Atrial fibroblasts activation causes atrial fibrosis, which is one major pathophysiological contributor to atrial fibrillation (AF) genesis. Klotho is a pleiotropic protein with remarkable cardiovascular effects, including anti-inflammatory, anti-oxidative, and anti-apoptotic effects. This study investigated whether Klotho can modulate the activity of human atrial fibroblasts and provides an anti-fibrotic effect. Methods: Cell migration assay and proliferation assay were used to investigate fibrogenesis activities in single human atrial fibroblasts with or without treatment of Klotho (10 and 100 pM, 48 h). Calcium fluorescence imaging, the whole-cell patch-clamp, and Western blotting were performed in human atrial fibroblasts treated with and without Klotho (100 pM, 48 h) to evaluate the store-operated calcium entry (SOCE), transient receptor potential (TRP) currents, and downstream signaling. Results: High dose of Klotho (100 pM, 48 h) significantly reduced the migration of human atrial fibroblasts without alternating their proliferation; in addition, treatment of Klotho (100 pM, 48 h) also decreased SOCE and TRP currents. In the presence of BI-749327 (a selective canonical TRP 6 channel inhibitor, 1 μM, 48 h), Klotho (100 pM, 48 h) could not inhibit fibroblast migration nor suppress the TRP currents. Klotho-treated fibroblasts (100 pM, 48 h) had lower phosphorylated phospholipase C (PLC) (p-PLCβ3 Ser537) expression than the control. The PLC inhibitor, U73122 (1 μM, 48 h), reduced the migration, decreased SOCE and TRP currents, and lowered p-PLCβ3 in atrial fibroblasts, similar to Klotho. In the presence of the U73122 (1 μM, 48 h), Klotho (100 pM, 48 h) could not further modulate the migration and collagen synthesis nor suppress the TRP currents in human atrial fibroblasts. Conclusions: Klotho inhibited pro-fibrotic activities and SOCE by inhibiting the PLC signaling and suppressing the TRP currents, which may provide a novel insight into atrial fibrosis and arrhythmogenesis.
Collapse
|
17
|
Zhu Y, Prata LGL, Gerdes EOW, Netto JME, Pirtskhalava T, Giorgadze N, Tripathi U, Inman CL, Johnson KO, Xue A, Palmer AK, Chen T, Schaefer K, Justice JN, Nambiar AM, Musi N, Kritchevsky SB, Chen J, Khosla S, Jurk D, Schafer MJ, Tchkonia T, Kirkland JL. Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. EBioMedicine 2022; 77:103912. [PMID: 35292270 PMCID: PMC9034457 DOI: 10.1016/j.ebiom.2022.103912] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND α-Klotho is a geroprotective protein that can attenuate or alleviate deleterious changes with ageing and disease. Declines in α-Klotho play a role in the pathophysiology of multiple diseases and age-related phenotypes. Pre-clinical evidence suggests that boosting α-Klotho holds therapeutic potential. However, readily clinically-translatable, practical strategies for increasing α-Klotho are not at hand. Here, we report that orally-active, clinically-translatable senolytics can increase α-Klotho in mice and humans. METHODS We examined α-Klotho expression in three different human primary cell types co-cultured with conditioned medium (CM) from senescent or non-senescent cells with or without neutralizing antibodies. We assessed α-Klotho expression in aged, obese, and senescent cell-transplanted mice treated with vehicle or senolytics. We assayed urinary α-Klotho in patients with idiopathic pulmonary fibrosis (IPF) who were treated with the senolytic drug combination, Dasatinib plus Quercetin (D+Q). FINDINGS We found exposure to the senescent cell secretome reduces α-Klotho in multiple nonsenescent human cell types. This was partially prevented by neutralizing antibodies against the senescence-associated secretory phenotype (SASP) factors, activin A and Interleukin 1α (IL-1α). Consistent with senescent cells' being a cause of decreased α-Klotho, transplanting senescent cells into younger mice reduced brain and urine α-Klotho. Selectively removing senescent cells genetically or pharmacologically increased α-Klotho in urine, kidney, and brain of mice with increased senescent cell burden, including naturally-aged, diet-induced obese (DIO), or senescent cell-transplanted mice. D+Q increased α-Klotho in urine of patients with IPF, a disease linked to cellular senescence. INTERPRETATION Senescent cells cause reduced α-Klotho, partially due to their production of activin A and IL-1α. Targeting senescent cells boosts α-Klotho in mice and humans. Thus, clearing senescent cells restores α-Klotho, potentially opening a novel, translationally-feasible avenue for developing orally-active small molecule, α-Klotho-enhancing clinical interventions. Furthermore, urinary α-Klotho may prove to be a useful test for following treatments in senolytic clinical trials. FUNDING This work was supported by National Institute of Health grants AG013925 (J.L.K.), AG062413 (J.L.K., S.K.), AG044271 (N.M.), AG013319 (N.M.), and the Translational Geroscience Network (AG061456: J.L.K., T.T., N.M., S.B.K., S.K.), Robert and Arlene Kogod (J.L.K.), the Connor Group (J.L.K.), Robert J. and Theresa W. Ryan (J.L.K.), and the Noaber Foundation (J.L.K.). The previous IPF clinical trial was supported by the Claude D. Pepper Older Americans Independence Centers at WFSM (AG021332: J.N.J., S.B.K.), UTHSCA (AG044271: A.M.N.), and the Translational Geroscience Network.
Collapse
Affiliation(s)
- Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Corresponding authors at: Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | | | - Erin O. Wissler Gerdes
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | | | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Christina L. Inman
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Kurt O. Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Allyson K. Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kalli Schaefer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Jamie N. Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anoop M. Nambiar
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, University of Texas Health Sciences Center at San Antonio and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging, University of Texas Health Sciences Center at San Antonio and Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Stephen B. Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jun Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marissa J. Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA,Corresponding authors at: Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Gagan JM, Cao K, Zhang YA, Zhang J, Davidson TL, Pastor JV, Moe OW, Hsia CCW. Constitutive transgenic alpha-Klotho overexpression enhances resilience to and recovery from murine acute lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 321:L736-L749. [PMID: 34346778 DOI: 10.1152/ajplung.00629.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AIMS Normal lungs do not express alpha-Klotho (Klotho) protein but derive cytoprotection from circulating soluble Klotho. It is unclear whether chronic supranormal Klotho levels confer additional benefit. To address this, we tested the age-related effects of Klotho overexpression on acute lung injury (ALI) and recovery. METHODS Transgenic Klotho-overexpressing (Tg-Kl) and wild-type (WT) mice (2 and 6 months old) were exposed to hyperoxia (95% O2; 72 h) then returned to normoxia (21% O2; 24 h) (Hx-R). Control mice were kept in normoxia. Renal and serum Klotho, lung histology, and bronchoalveolar lavage fluid oxidative damage markers were assessed. Effects of hyperoxia were tested in human embryonic kidney cells stably expressing Klotho. A549 lung epithelial cells transfected with Klotho cDNA or vector were exposed to cigarette smoke; lactate dehydrogenase and double-strand DNA breaks were measured. RESULTS Serum Klotho decreased with age. Hyperoxia suppressed renal Klotho at both ages and serum Klotho at 2-months of age. Tg-Kl mice at both ages and 2-months-old WT mice survived Hx-R; 6-months-old Tg-Kl mice showed lower lung damage than age-matched WT mice. Hyperoxia directly inhibited Klotho expression and release in vitro; Klotho transfection attenuated cigarette smoke-induced cytotoxicity and DNA double-strand breaks in lung epithelial cells. CONCLUSIONS Young animals with chronic high baseline Klotho expression are more resistant to ALI. Chronic constitutive Klotho overexpression in older Tg-Kl animals attenuates hyperoxia-induced lung damage and improves survival and short-term recovery despite an acute reduction in serum Klotho level during injury. We conclude that chronic enhancement of Klotho expression increases resilience to ALI.
Collapse
Affiliation(s)
- Joshuah M Gagan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Khoa Cao
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yu-An Zhang
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jianning Zhang
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Taylor L Davidson
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Johanne V Pastor
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orson W Moe
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Connie C W Hsia
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|