1
|
Ma CN, Shi SR, Zhang XY, Xin GS, Zou X, Li WL, Guo SD. Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review. Biomolecules 2024; 14:1446. [PMID: 39595622 PMCID: PMC11592287 DOI: 10.3390/biom14111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases.
Collapse
Affiliation(s)
- Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Guo-Song Xin
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Xiang Zou
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Wen-Lan Li
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| |
Collapse
|
2
|
Shamsi A, Roghani SA, Shamsi M, Jalili C, Taghadosi M, Soufivand P. miR-6089 may prevent the inflammatory events leading to cardiovascular disorders in RA patients. Heliyon 2024; 10:e36763. [PMID: 39281435 PMCID: PMC11395719 DOI: 10.1016/j.heliyon.2024.e36763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Background Cardiovascular disease (CVD) is the most important comorbid condition in rheumatoid arthritis (RA) patients. Dysregulated expression of non-coding RNA families has a critical role in RA-associated inflammatory events, including cardiovascular manifestations. The long non-coding RNA (lncRNA)- HIX003209 has a role in RA associated inflammation. In the current study, we investigated the association of HIX003209 and its downstream microRNA, miR-6089, with various cardiovascular and inflammatory biomarkers in RA patients. Material and methods 60 RA patients, including 30 newly diagnosed and 30 on-treatment patients were recruited in this study, and 30 healthy people were selected as a control group. The gene expression of HIX003209, miR-6089, and CXCR3 were measured using Real-time PCR. The CVD risk was measured using Systematic Coronary Risk Evaluation (SCORE) and Framingham Risk Score (FRS). Results The gene expression of LncRNA-HIX003209 was elevated significantly in newly-diagnosed compared to under-treatment and control groups (p < 0.05). The miR-6089 gene expression was elevated significantly in under-treatment RA patients group compared to control group (p < 0.001). There was a significant positive correlation between LncRNA-HIX003209 with CXCR3 gene expression (p < 0.01, r = 0.341). There was a significantly negative correlation between the gene expression of miR-6089 with DAS-28 (p < 0.05, r = -0.309), NT-proBNP plasma level (p = 0.039, r = -0.268), and CXCL9 plasma level (p < 0.001, r = -0.421). Conclusion Regarding its anti-inflammatory effects, miR-6089 may play an important role in preventing the pathological events of cardiovascular disorders in RA patients, through its inhibitory effects on inflammatory chemokines, such as CXCL9, and NT-ProBNP. Higher expression of LncRNA-HIX003209 may disrupt the anti-inflammatory effect of miR-6089 in RA patients.
Collapse
Affiliation(s)
- Afsaneh Shamsi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Askar Roghani
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Shamsi
- School of Dentistry, AJA University of Medical Sciences, Tehran, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Taghadosi
- Cardiovascular Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Zhang J, Zhao WR, Shi WT, Tan JJ, Zhang KY, Tang JY, Chen XL, Zhou ZY. Tribulus terrestris L. extract ameliorates atherosclerosis by inhibition of vascular smooth muscle cell proliferation in ApoE -/- mice and A7r5 cells via suppression of Akt/MEK/ERK signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115547. [PMID: 35870688 DOI: 10.1016/j.jep.2022.115547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.
Collapse
Affiliation(s)
- Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jun-Jie Tan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Kai-Yu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Qian Y, Mao M, Nian F. The Effect of TNF- α on CHD and the Relationship between TNF- α Antagonist and CHD in Rheumatoid Arthritis: A Systematic Review. Cardiol Res Pract 2022; 2022:6192053. [PMID: 36060429 PMCID: PMC9433296 DOI: 10.1155/2022/6192053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) plays an important role in coronary heart disease (CHD), a chronic inflammatory process. Meanwhile, this pro-inflammatory factor is also involved in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Patients with RA correspond to a higher risk of CHD. TNF-α antagonist, one of the main treatments for RA, may reduce the risk of CHD in patients with RA. This review summarizes the pathogenesis of TNF-α in CHD and discusses the relationship between TNF-α antagonist and CHD in patients with RA.
Collapse
Affiliation(s)
- Yezhou Qian
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Menghui Mao
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Feige Nian
- Department of Rheumatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
5
|
Meng H, Fan L, Zhang CJ, Zhu L, Liu P, Chen J, Bao X, Pu Z, Zhu MS, Xu Y. Synthetic VSMCs induce BBB disruption mediated by MYPT1 in ischemic stroke. iScience 2021; 24:103047. [PMID: 34553133 PMCID: PMC8441154 DOI: 10.1016/j.isci.2021.103047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) have been widely recognized as key players in regulating blood-brain barrier (BBB) function, and their roles are unclear in ischemic stroke. Myosin phosphatase target subunit 1 (MYPT1) is essential for VSMC contraction and maintaining healthy vasculature. We generated VSMC-specific MYPT1 knockout (MYPT1SMKO) mice and cultured VSMCs infected with Lv-shMYPT1 to explore phenotypic switching of VSMCs and the accompanied impacts on BBB integrity. We found that MYPT1 deficiency induced phenotypic switching of synthetic VSMCs, which aggravated BBB disruption. Proteomic analysis identified evolutionarily conserved signaling intermediates in Toll pathways (ECSIT) as a downstream molecule that promotes activation of synthetic VSMCs and contributed to IL-6 expression. Knocking down ECSIT rescued phenotypic switching of VSMCs and BBB disruption. Additionally, inhibition of IL-6 decreased BBB permeability. These findings reveal that MYPT1 deficiency activated phenotypic switching of synthetic VSMCs and induced BBB disruption through ECSIT-IL-6 signaling after ischemic stroke. MYPT1 deficiency induces activation of synthetic VSMCs and aggravates BBB disruption Synthetic VSMCs release more IL-6 to destroy BBB in a contact-independent way MYPT1-ECSIT-IL-6 signaling pathway regulates synthetic VSMC-mediated BBB disruption
Collapse
Affiliation(s)
- Hailan Meng
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Lizhen Fan
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Cun-Jin Zhang
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Liwen Zhu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Pinyi Liu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Jian Chen
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhijun Pu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Min-Sheng Zhu
- Model Animal Research Center, Nanjing University, Nanjing 210061, China.,Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Yun Xu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China.,Institute of Brain Sciences, Nanjing University, Nanjing 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| |
Collapse
|