1
|
de Lima FA, Fernandes FL, de Almeida DRQ, Carvalho AE, Almeida VD, Cavalcante GA, de Morais NM, Rodrigues TD, do Nascimento EGC, de Oliveira IT, Bezerra CM, Fernandes JV, de Medeiros Fernandes TAA. Alteration in the Expression of Circular Rnas and its association with the Development and Progression of Osteosarcoma, an Integrative Review with High Sensitivity Research. Asian Pac J Cancer Prev 2024; 25:1195-1203. [PMID: 38679978 PMCID: PMC11162731 DOI: 10.31557/apjcp.2024.25.4.1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/22/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary malignant bone tumor, mainly affecting children, young adults, and the elderly. It is an aggressive cancer with a poor prognosis, exhibiting low survival rates even with standard treatment. Recently, circular RNA molecules capable of influencing gene expression through various functions, with their main role being acting as microRNA sponges and reducing their intracellular expression, have been identified. Recent studies have linked circular RNAs to osteosarcoma development and progression. Therefore, the present study aimed to investigate the alteration in circular RNA expression during osteosarcoma development and progression. METHODS An integrative literature review was conducted from September 10th to November 12th, 2021, using the following databases: PubMed/MEDLINE, SCOPUS, Web of Science, OVID, and EMBASE. 129 full articles were included in the review. The obtained data were organized using a standardized data collection instrument, which included the following information: altered expression profile of circular RNAs, associated cancer hallmarks, clinical-pathological relationships of circular RNAs, and perspectives on the studied circular RNAs. RESULTS A total of 94 distinct circular RNAs were identified, predominantly showing an increased expression pattern. Approximately 91% of the studies that aimed to identify the mechanisms of action of circular RNAs highlighted the function of circular RNAs as microRNA sponges. The most associated cancer hallmarks with the identified circular RNAs were proliferative signaling induction, invasion and metastasis, and resistance to cell death. The altered expression of these circular RNAs generally correlated with a worse prognosis for patients, as evidenced by clinical features such as shorter survival, advanced Enneking and/or TNM stage, higher incidence of metastasis, larger tumor size, and increased chemoresistance. CONSLUSION These findings indicate the significance of circular RNA molecules in osteosarcoma carcinogenesis, suggesting their potential as new prognostic and/or diagnostic biomarkers, as well as alternative therapeutic targets in the fight against osteosarcoma.
Collapse
Affiliation(s)
- Felipe Alves de Lima
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Brazil.
| | | | | | | | - Valeria Duarte Almeida
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Brazil.
| | | | - Nickson Melo de Morais
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Brazil.
| | | | | | | | | | - Jose Verissimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | |
Collapse
|
2
|
Liu D, Dong Y, Gao J, Wu Z, Zhang L, Wang B. Role of the circular RNA regulatory network in the pathogenesis of biliary atresia. Exp Ther Med 2024; 27:95. [PMID: 38313582 PMCID: PMC10831818 DOI: 10.3892/etm.2024.12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/13/2023] [Indexed: 02/06/2024] Open
Abstract
Circular RNAs (circRNAs) serve an essential role in the occurrence and development of cholangiocarcinoma, but the expression and function of circRNA in biliary atresia (BA) is not clear. In the present study, circRNA expression profiles were investigated in the liver tissues of patients with BA as well as in the choledochal cyst (CC) tissues of control patients using RNA sequencing. A total of 78 differentially expressed circRNAs (DECs) were identified between the BA and CC tissues. The expression levels of eight circRNAs (hsa_circ_0006137, hsa_circ_0079422, hsa_circ_0007375, hsa_circ_0005597, hsa_circ_0006961, hsa_circ_0081171, hsa_circ_0084665 and hsa_circ_0075828) in the liver tissues of the BA group and control group were measured using reverse transcription-quantitative polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that the identified DECs are involved in a variety of biological processes, including apoptosis and metabolism. In addition, based on the GO and KEGG pathway enrichment analyses, it was revealed that target genes that can be affected by circRNAs regulatory network were enriched in the TGF-β signaling pathway, EGFR tyrosine kinase inhibitor resistance pathway and transcription factor regulation pathway as well as other pathways that may be associated with the pathogenesis of BA. The present study revealed that circRNAs are potentially implicated in the pathogenesis of BA and could help to find promising targets and biomarkers for BA.
Collapse
Affiliation(s)
- Dong Liu
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Yinghui Dong
- Department of Ultrasound, Shenzhen People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jiahui Gao
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Zhouguang Wu
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Lihui Zhang
- Department of Traditional Chinese Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
3
|
Chen S, Li W, Ning CG, Wang F, Wang LX, Liao C, Sun F. Hsa_circ_0136666 mediates the antitumor effect of curcumin in colorectal carcinoma by regulating CXCL1 via miR-1301-3p. World J Gastrointest Oncol 2023; 15:2120-2137. [PMID: 38173425 PMCID: PMC10758645 DOI: 10.4251/wjgo.v15.i12.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND This study investigate the anti-tumor effect of curcumin and whether its mediated by hsa_circ_0136666 through miR-1301-3p/CXCL1 in colorectal carcinoma (CRC). Through multiple experiments, we have drawn the conclusion that curcumin inhibited CRC development through the hsa_circ_0136666/miR-1301-3p/CXCL1 axis, hinting at a novel treatment option for curcumin to prevent CRC development. AIM To determine whether hsa_circ_0136666 involvement in curcumin-triggered CRC progression was mediated by sponging miR-1301-3p. METHODS Cell counting kit-8, colony-forming cell, 5-ethynyl-2'-deoxyuridine, and flow cytometry assays were carried out to determine cell proliferation, apoptosis, and cell cycle progression. Real-time quantitative polymerase chain reaction quantified hsa_circ_0136666, miR-1301-3p, and chemokine (C-X-C motif) ligand 1 (CXCL1), and western blot analysis determined CXCL1, B-cell lymphoma-2 (Bcl-2), and Bcl-2 related X protein (Bax) protein levels. CircBank or starbase software was first used for the prediction of miR-1301-3p binding with hsa_circ_0136666 and CXCL1, followed by RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assay validation. In vivo experiments were implemented in a murine xenograft model. RESULTS Curcumin blocked CRC cell proliferation but boosted apoptosis. Moreover, elevated hsa_circ_0136666 Levels were observed in CRC cells, which were reduced by curcumin. In vitro, hsa_circ_0136666 overexpression abolished the antitumor activity of CRC cells. Mechanical analysis revealed the ability of hsa_circ_0136666 to sponge miR-1301-3p to modulate CXCL1 levels. CONCLUSION Curcumin inhibited CRC development through the hsa_circ_0136666/miR-1301-3p/CXCL1 axis, hinting at a novel treatment option for curcumin to prevent CRC development.
Collapse
Affiliation(s)
- Shi Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Chen-Gong Ning
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Li-Xing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Chen Liao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Feng Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| |
Collapse
|
4
|
Chen S, Xu Y, Yang B. CircUSP48 promotes malignant behavior by regulating CYR61 via miR-365 in osteosarcoma. Funct Integr Genomics 2023; 23:270. [PMID: 37553503 DOI: 10.1007/s10142-023-01197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Even though circular RNAs (circRNAs), a class of non-coding endogenous RNA, play a crucial role in the progression of osteosarcoma (OS), the specific function of hsa_circ_0000028 (circUSP48) remains unclear. This study aims to elucidate the mechanism by which circUSP48 regulates OS. We employed qRT-PCR and western blot techniques to quantify circDOCK1, miR-186, and DNMT3A levels. Cell proliferation was assessed using the cell counting kit-8 (CCK-8), 5-Ethynyl-20-deoxyuridine (EdU) assay, and colony formation assay. Cell migration and invasion were evaluated through Transwell and cell scratch assays. Furthermore, we performed dual-luciferase reporter, RIP, and RNA pull-down assays to investigate the association between circUSP48, miR-365, and CYR61. In addition, an in vivo xenograft model was utilized to assess the functional role of circUSP48. High levels of circUSP48 and CYR61 were observed in OS tissues and cells, while miR-365 levels were low. Knockdown of circUSP48 suppressed the multiplication, motility, and invasion of OS cells, thereby reducing carcinoma growth. Moreover, inhibition of miR-365 reversed the OS cell-suppressive effect caused by circUSP48 knockdown through direct interaction with circUSP48. Additionally, circUSP48 upregulated the expression of CYR61 by sponging miR-365. The findings suggest that circUSP48 promotes malignant behavior in OS by regulating the expression of CYR61 through miR-365, making it a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Shunguang Chen
- Department of Orthopedics, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, China.
| | - Yan Xu
- Department of Orthopedics, Gong An Country People's Hospital, Jingzhou, 434050, China
| | - Bo Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Luo Y, Yang B, Yuan X, Zheng J. Silencing circUSP48 suppresses osteosarcoma progression by regulating the miR-335/ smad nuclear interacting protein 1 pathway. J Clin Lab Anal 2023; 37:e24828. [PMID: 36597862 PMCID: PMC9937887 DOI: 10.1002/jcla.24828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) can have a critical function in the multi-processes of osteosarcoma (OS). Nevertheless, whether circUSP48 is involved in OS progression remains unclear. METHODS In the current work, the expression of circUSP48, miR-335 and SNIP1 in OS cell lines and tissues were evaluated using qRT-PCR. Then, Sanger sequencing, RNase R treatment and FISH assay were performed for circUSP48 validation. Furthermore, the function and potential mechanisms of circUSP48 in OS were investigated by performing loss-of-function experiments. RESULTS Silencing circUSP48 could suppress proliferation, invasion as well as migration of OS cells in vitro, also inhibiting the growth of tumor in vivo. Importantly, circUSP48 promoted OS malignancy by sponging miR-335 to upregulate SNIP1. CONCLUSION Overall, these findings suggested that circUSP48 acted as an oncogene in OS, which might become a new target for OS therapy.
Collapse
Affiliation(s)
- Yue Luo
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Bo Yang
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaopin Yuan
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jian Zheng
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
6
|
Gao X, Xu N, Miao K, Huang G, Huang Y. Circ_0136666 aggravates osteosarcoma development through mediating miR-1244/CEP55 axis. J Orthop Surg Res 2022; 17:421. [PMID: 36109749 PMCID: PMC9479312 DOI: 10.1186/s13018-022-03303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Accumulating articles demonstrate that circular RNAs play pivotal functions in tumorigenesis. However, the working mechanism of circ_0136666 in osteosarcoma (OS) progression remains to be further clarified. Methods Real time-quantitative polymerase chain reaction and western blot assay were applied to determine RNA and protein expression, respectively. Cell proliferation was assessed by 5-Ethynyl-2′-deoxyuridine assay and colony formation assay. Transwell assays were carried out to assess cell migration and invasion abilities. Flow cytometry was performed to analyze cell apoptosis. Cell glycolysis was evaluated by analyzing the uptake of glucose and the production of lactate using the corresponding kits. Dual-luciferase reporter assay and biotinylated RNA-pull down assay were performed to confirm the target interaction between microRNA-1244 (miR-1244) and circ_0136666 or centrosomal protein 55 (CEP55). Xenograft tumor model was utilized to explore the role of circ_0136666 in tumor growth in vivo. Results Circ_0136666 expression was prominently elevated in OS tissues and cell lines. Circ_0136666 absence restrained the proliferation, migration, invasion and glycolytic metabolism and promoted the apoptosis of OS cells. Circ_0136666 negatively regulated miR-1244 expression by binding to it in OS cells. MiR-1244 overexpression suppressed the malignant behaviors of OS cells. CEP55 was a target of miR-1244 in OS cells. Circ_0136666 positively regulated CEP55 expression partly by sequestering miR-1244 in OS cells. CEP55 overexpression largely reversed circ_0136666 silencing-mediated influences in OS cells. Circ_0136666 silencing significantly suppressed tumor growth in vivo. Conclusion Circ_0136666 silencing inhibited OS progression partly by targeting miR-1244/CEP55 signaling. Silencing circ_0136666 and CEP55 or restoring miR-1244 level might be a potential therapeutic strategy for OS.
Collapse
|
7
|
Shi Y, Tian Y, Sun X, Qiu Y, Zhao Y. Silencing circOMA1 Inhibits Osteosarcoma Progression by Sponging miR-1294 to Regulate c-Myc Expression. Front Oncol 2022; 12:889583. [PMID: 35493998 PMCID: PMC9043560 DOI: 10.3389/fonc.2022.889583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Several studies have reported that circRNAs have a crucial function in the tumorigenesis of various cancers. However, the expression and function of circOMA1 in osteosarcoma is unknown. Methods circOMA1 was identified through bioinformatics analysis. qRT-PCR was used to assess the expressions of circOMA1, miR-1294, and c-Myc in osteosarcoma tissues. Further, we performed functional experiments to explore the biological function of circOMA1 in osteosarcoma. Moreover, a luciferase reporter assay, RNA immunoprecipitation (RIP), and fluorescence in situ hybridisation (FISH) assay were performed to demonstrate the association between circOMA1 and miR-1294. Results circOMA1 exhibited considerable upregulation in osteosarcoma tissues compared with adjacent normal tissues. Silencing circOMA1 suppressed osteosarcoma progression in vitro and in vivo. Mechanically, circOMA1 functioned as a sponge of miR-1294 to upregulate c-Myc expression. Conclusion circOMA1 played the role of an oncogene in osteosarcoma and promoted osteosarcoma progression by mediating the miR-1294/c-Myc pathway, which might be a new target for treating osteosarcoma.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunyun Tian
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangran Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonglong Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Wang H, Zhang X, Qiao L, Wang H. CircRNA circ_0000554 promotes ovarian cancer invasion and proliferation by regulating miR-567. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19072-19080. [PMID: 34709546 DOI: 10.1007/s11356-021-13710-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 06/13/2023]
Abstract
Circular RNAs (circRNAs) indicated potential modulating effects in tumor development. However, the specific role of circ_0000554 in ovarian tumor remains unknown. We found that circ_0000554 was overexpressed in ovarian tumor specimens and cells. Forced expression of circ_0000554 promoted cell growth, invasion, and epithelial to mesenchymal transition (EMT). We illustrated that miR-567 was downregulated in ovarian tumor specimens and cells. circ_0000554 was negatively correlated with miR-567 in ovarian tumor specimens. circ_0000554 sponged miR-567 expression in ovarian tumor. RIP assay showed that elevated expression of miR-567 could be enriched with circ_0000554. Luciferase reporter assay indicated that luciferase intensity was inhibited after treated with miR-567 mimic; however, the luciferase value of mut type was not decreased. Elevated expression of circ_0000554 suppressed miR-567 expression in HO8910 cell. circ_0000554 promoted ovarian tumor cell growth, invasion, and EMT via sponging miR-567. It suggested that circ_0000554 represent a potential therapy target for ovarian tumor.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gynaecology and Obstetrics, Shengli Oilfield Central Hospital, Dongying, 57000, Shandong, China
| | - Xuezhong Zhang
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Lujun Qiao
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, 257000, Shandong, China
| | - Heng Wang
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, 257000, Shandong, China.
| |
Collapse
|
9
|
Chen Z, Li L, Li Z, Wang X, Han M, Gao Z, Wang M, Hu G, Xie X, Du H, Xie Z, Zhang H. Identification of key serum biomarkers for the diagnosis and metastatic prediction of osteosarcoma by analysis of immune cell infiltration. Cancer Cell Int 2022; 22:78. [PMID: 35151325 PMCID: PMC8841093 DOI: 10.1186/s12935-022-02500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/30/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The role of circular RNAs (circRNAs) and microRNAs (miRNAs) in osteosarcoma (OS) development has not been fully elucidated. Further, the contribution of the immune response to OS progression is not well defined. However, it is known that circRNAs and miRNAs can serve as biomarkers for the diagnosis, prognosis, and therapy of many cancers. Thus, the aim of this study was to identify novel key serum biomarkers for the diagnosis and metastatic prediction of OS by analysis of immune cell infiltration and associated RNA molecules.
Methods
Human OS differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified by analysis of microarray data downloaded from Gene Expression Omnibus (GEO) datasets. Further, characteristic patterns of OS-infiltrating immune cells were analyzed. On this basis, we identified statistically significant transcription factors. Moreover we performed pathway enrichment analysis, constructed protein–protein interaction networks, and devised competitive endogenous RNA (ceRNA) networks. Biological targets of the ceRNA networks were evaluated and potential OS biomarkers confirmed by RT-qPCR analysis of the patients’ serum.
Results
Seven differentially expressed circRNAs, 166 differentially expressed miRNAs, and 175 differentially expressed mRNAs were identified. An evaluation of cellular OS infiltration identified the highest level of infiltration by M0 macrophages, M2 macrophages, and CD8+ T cells, with M0 macrophages and CD8+ T cells as the most prominent. Significant patterns of tumor-infiltrating immune cells were identified by principal component analysis. Moreover, 185 statistically significant transcription factors were associated with OS. Further, in association with immune cell infiltration, hsa-circ-0010220, hsa-miR-326, hsa-miR-338-3p, and FAM98A were identified as potential novel biomarkers for OS diagnosis. Of these, FAM98A had the most promise as a diagnostic marker for OS and OS metastasis. Most importantly, a novel diagnostic model consisting of these four biomarkers (hsa-circ-0010220, hsa-miR-326, hsa-miR-338-3p, and FAM98A) was established with a 0.928 AUC value.
Conclusions
In summary, potential serum biomarkers for OS diagnosis and metastatic prediction were identified based on an analysis of immune cell infiltration. A novel diagnostic model consisting of these four promising serum biomarkers was established. Taken together, the results of this study provide a new perspective by which to understand immunotherapy of OS.
Collapse
|
10
|
Ma W, Zhao X, Gao Y, Yao X, Zhang J, Xu Q. Circular RNA circ_UBAP2 facilitates the progression of osteosarcoma by regulating microRNA miR-637/high-mobility group box (HMGB) 2 axis. Bioengineered 2022; 13:4411-4427. [PMID: 35114890 PMCID: PMC8974191 DOI: 10.1080/21655979.2022.2033447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Circular RNA circ_UBAP2 has been reported to be closely associated with various tumors. The present work focused on exploring the roles of circ_UBAP2 and its molecular mechanism in osteosarcoma (OS). Circ_UBAP2, miR-637, and high-mobility group box (HMGB) 2 levels in OS cells and tissues were detected by quantitative real-time polymerase chain reaction. The relationship between miR-637 and circ_UBAP2, as well as between miR-637 and HMGB2, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), Transwell and flow cytometry assays, respectively. HMGB2 protein levels were measured using Western blotting. Xenograft tumor formation assay was also performed. Circ_UBAP2 showed high expression levels in OS tissues and cells, which was directly proportional to metastasis and clinical stage of OS. The overexpression of circ_UBAP2 enhanced the growth, invasion, and migration of OS cells, but suppressed their apoptosis. In contrast, circ_UBAP2 silencing had opposite effects. Furthermore, miR-637 served as a downstream target of circ_UBAP2, which played opposite roles to circ_UBAP2 in OS. More importantly, HMGB2 served as miR-637's downstream target. The xenograft experiments in nude mice also proved that knockdown of circ_UBAP2 could increase miR-637 expression, but decrease HMGB2 expression, thus alleviating OS progression. Mechanistically, circ_UBAP2 exerts a cancer-promoting effect on OS by downregulating miR-637 and upregulating the expression of HMGB2. Circ_UBAP2 plays a promoting role in OS, and the circ_UBAP2/miR-637/HMGB2 axis is involved in OS progression.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Digestive Tumor Markers, Cancer Hospital of Zhengzhou University, Zhengzhou China
| |
Collapse
|
11
|
Lakiotaki E, Kanakoglou DS, Pampalou A, Karatrasoglou EA, Piperi C, Korkolopoulou P. Dissecting the Role of Circular RNAs in Sarcomas with Emphasis on Osteosarcomas. Biomedicines 2021; 9:1642. [PMID: 34829872 PMCID: PMC8615931 DOI: 10.3390/biomedicines9111642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs generated from exons back-splicing from a single pre-mRNA, forming covalently closed loop structures which lack 5'-3'-polarity or polyadenylated tail. Ongoing research depicts that circRNAs play a pivotal role in tumorigenesis, tumor progression, metastatic potential and chemoresistance by regulating transcription, microRNA (miRNA) sponging, RNA-binding protein interactions, alternative splicing and to a lesser degree, protein coding. Sarcomas are rare malignant tumors stemming from mesenchymal cells. Due to their clinically insidious onset, they often present at advanced stage and their treatment may require aggressive chemotherapeutic or surgical options. This review is mainly focused on the regulatory functions of circRNAs on osteosarcoma progression and their potential role as biomarkers, an area which has prompted lately extensive research. The attributed oncogenic role of circRNAs on other mesenchymal tumors such as Kaposi Sarcoma (KS), Rhabdomyosarcoma (RMS) or Gastrointestinal Stromal Tumors (GISTs) is also described. The involvement of circRNAs on sarcoma oncogenesis and relevant emerging diagnostic, prognostic and therapeutic applications are expected to gain more research interest in the future.
Collapse
Affiliation(s)
- Eleftheria Lakiotaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Dimitrios S. Kanakoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Andromachi Pampalou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Eleni A. Karatrasoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| |
Collapse
|
12
|
Zhong J, Zhang G, Yao W. Clinicopathologic significance and prognostic value of circRNAs in osteosarcoma: a systematic review and meta-analysis. J Orthop Surg Res 2021; 16:578. [PMID: 34620208 PMCID: PMC8495992 DOI: 10.1186/s13018-021-02568-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022] Open
Abstract
Abstract Background Osteosarcoma is the most prevalent malignant osseous sarcoma in children and adolescents, whose prognosis is still relatively poor nowadays. Recent studies have shown the critical function and potential clinical applications of circular RNAs (circRNAs) in osteosarcoma. Our review aimed to perform an updated meta-analysis to explore their clinicopathologic significance and prognostic value. Methods The structured literature was conducted via eight electronic databases and four gray literature sources until 20 Feb 2021 to identify eligible studies. The data was extracted directly from the articles or reconstructed based on Kaplan-Meier curves. The Newcastle-Ottawa Scale (NOS) tool was used to assess study quality. The clinicopathologic significance of circRNAs was measured through odds ratios (ORs) and their 95% confidence intervals (CIs), while the prognostic value was evaluated through hazard ratios (HRs) and their 95% CIs of overall survival (OS) and disease-free survival (DFS). Heterogeneity and publication bias were assessed. Sensitivity analyses were conducted. Subgroup analyses were performed according to study characteristics. An additional analysis was performed to investigate the relation between circ_0002052 and osteosarcoma. Results Fifty-two studies were identified, in which 38 on clinicopathologic features and 36 on survival prognosis were included in quantitative analysis. The overall study quality was moderate with a median NOS score of 5.5 stars (range 3 to 8). For clinicopathologic features, dysregulated circRNAs were related to larger tumor size (OR 2.122, 95%CI 1.418–3.175), advanced clinical stage (OR 2.847, 95%CI 2.059–3.935), and present of metastasis (OR 2.630, 95%CI 1.583–4.371). For chemotherapy, dysregulated circRNAs suggest a better response (OR 0.443, 95%CI 0.231–0.849), but a higher probability of resistance (OR 9.343, 95%CI 5.352–16.309). For survival prognosis, dysregulated circRNAs were significantly correlated with poor OS (HR 2.437, 95%CI 2.224–2.670) and DFS (HR 2.125, 95%CI 1.621–2.786). The results did not show differences among subgroups. Higher circ_0002052 expression showed a relation with poor OS (HR 3.197, 95%CI 2.054–4.976). Conclusions Our review demonstrated that abnormally expressed circRNAs have a relation with advanced clinicopathologic features and better response, but a higher probability of resistance and poor survival prognosis in osteosarcoma patients. However, more studies are encouraged to provide more robust evidence to translate circRNAs into clinical practice. Trial registration PROSPERO ID: CRD42021235031 Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02568-2.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
13
|
Liu Z, Wang Y, Ding Y. Circular RNA circPRKDC promotes tumorigenesis of gastric cancer via modulating insulin receptor substrate 2 (IRS2) and mediating microRNA-493-5p. Bioengineered 2021; 12:7631-7643. [PMID: 34605348 PMCID: PMC8806545 DOI: 10.1080/21655979.2021.1981798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CircPRKDC has been disclosed to participate in the tumorigenesis of serval tumors, but the regulatory mechanisms of circPRKDC in GC are still unknown. CircPRKDC, miR-493-5p, and insulin receptor substrate 2 (IRS2) levels were tested by RT-qPCR. The epithelial-mesenchymal transition (EMT)-related protein levels were evaluated via western blot. The cell viability, migration and invasion were evaluated through CCK-8 and Transwell assays. Luciferase reporter and RIP assays were employed to confirm the binding ability between miR-493-5p and circPRKDC or IRS2. CircPRKDC was upregulated in GC samples, and circPRKDC silencing restrained GC cell viability, metastasis, and EMT and suppressed GC tumor growth. Besides, miR-493-5p was a target of circPRKDC, and the repressive impact of circPRKDC knockdown on GC development was neutralized by miR-493-5p inhibition. Moreover, miR-493-5p targeted IRS2 and IRS2 addition rescued the effects of circPRKDC depletion on GC progression. Finally, circPRKDC knockdown could regulate IRS2 expression by targeting miR-493-5p. These results elaborated that circPRKDC accelerated GC development via sponging miR-493-5p and increasing IRS2, which might provide novel potential targets for GC treatment.
Collapse
Affiliation(s)
- Zhipeng Liu
- Department of Emergency General Surgery, Weifang People's Hospital, Weifang, China
| | - Yangang Wang
- Department of Emergency General Surgery, Weifang People's Hospital, Weifang, China
| | - Yunlong Ding
- Department of Emergency General Surgery, Weifang People's Hospital, Weifang, China
| |
Collapse
|
14
|
Ren Z, Yang Q, Guo J, Huang H, Li B, Yang Z, Tian X. Circular RNA hsa_circ_0000073 Enhances Osteosarcoma Cells Malignant Behavior by Sponging miR-1252-5p and Modulating CCNE2 and MDM2. Front Cell Dev Biol 2021; 9:714601. [PMID: 34568326 PMCID: PMC8459753 DOI: 10.3389/fcell.2021.714601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Objective: An increasing number of studies have demonstrated that circular RNAs (circRNAs) are involved in tumor progression. However, the role of hsa_circ_0000073 in osteosarcoma (OS) is still not fully elucidated. Methods: Quantitative reverse transcription-polymerase chain reaction or Western blot was used to detect the gene expression. GeneChip analysis, bioinformatics, luciferase reporter, and RNA immunoprecipitation assays were adopted to predict and verify the relationships between genes. Counting Kit-8 Assay, clone formation assay, wound-healing assay, transwell assays, cell cycle assays, and in vivo tumorigenesis were used to evaluate cell function. Results: hsa_circ_0000073 was highly expressed in OS cell lines and could promote OS progression, including proliferation, migration, invasion, and cell cycle in vitro as well as tumorigenesis in vivo. Mechanically, hsa_circ_0000073 could readily downregulate the expression of CCNE2 and MDM2 through miR-1252-5p. Rescue experiments validated miR-1252-5p mimics, or CCNE2/MDM2 short hairpin RNA could reverse the hsa_circ_0000073 overexpressing-induced impairment of malignant tumor behavior. Conclusion: hsa_circ_0000073 functions as a tumor promoter in OS to increase malignant tumor behavior through sponging miR-1252-5p and regulating CCNE2 and MDM2 expression, which could be a novel target for OS therapy.
Collapse
Affiliation(s)
- Zhijing Ren
- Medical College of Guizhou University, Guiyang, China.,Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qinqin Yang
- Medical College of Guizhou University, Guiyang, China
| | - Jiajia Guo
- Medical College of Guizhou University, Guiyang, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhen Yang
- Medical College of Guizhou University, Guiyang, China.,Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaobin Tian
- Medical College of Guizhou University, Guiyang, China.,Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
15
|
Xu YJ, Zhao JM, Gao C, Ni XF, Wang W, Hu WW, Wu CP. Hsa_circ_0136666 activates Treg-mediated immune escape of colorectal cancer via miR-497/PD-L1 pathway. Cell Signal 2021; 86:110095. [PMID: 34320370 DOI: 10.1016/j.cellsig.2021.110095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE In the rankings of cancer mortality and incidence worldwide, colorectal cancer ranks fourth and the third, respectively. Circular RNA hsa_circ_0136666 (hsa_circ_0136666) is reported to participate in the growth of colorectal cancer. However, the mechanism by which hsa_circ_0136666 regulates the tumorigenesis of colorectal cancer needs to be further explored. In this study, we report here the role of hsa_circ_0136666 in the aberrant activation of Treg cells and immune evasion of tumor cells, providing a new strategy for the treatment of colorectal cancer. METHODS Western blotting assay and qRT-PCR assay were used to determine protein and mRNA expression levels. Dual-luciferase reporter assay was used to evaluate the targeted regulatory relationship. RNA immunoprecipitation was used to detect RNA binding. Colony formation assay was utilized to measure the cell proliferation. Flow cytometry was used to assess cell apoptosis. Xenograft model was setup to evaluate tumor growth. RESULTS The results showed that hsa_circ_0136666 and PD-L1 was increased in colorectal cancer cells while miR-497 was decreased in colorectal cancer cells when compared with normal colon epithelial cell line. Hsa_circ_0136666 was demonstrated to directly target miR-497, which also regulated PD-L1 by binding to its 3'UTR. Further mechanistic studies identified that hsa_circ_0136666 controlled cell proliferation and apoptosis via targeting miR-497 and regulating PD-L1 expression. Of note, hsa_circ_0136666 stimulated Treg cells mediated by miR-497/PD-L1 axis and its downstream signal pathway in Treg cells. Finally, hsa_circ_0136666 was found to accelerate the tumor growth in vivo. CONCLUSIONS Our findings demonstrated that hsa_circ_0136666 promoted the expression of PD-L1 by inhibiting miR-497 level in colorectal cancer, thus inducing the activation of Treg cells and leading to the immune escape of tumor, providing a novel mechanistic insight into the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Yan-Jie Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Jie-Min Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Cao Gao
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Xue-Feng Ni
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Wei Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China
| | - Wen-Wei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China.
| | - Chang-Ping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu Province, PR China.
| |
Collapse
|
16
|
Circular RNA hsa_circ_0032463 Acts as the Tumor Promoter in Osteosarcoma by Regulating the MicroRNA 498/LEF1 Axis. Mol Cell Biol 2021; 41:e0010021. [PMID: 34096776 PMCID: PMC8300801 DOI: 10.1128/mcb.00100-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several studies have examined the relationship between osteosarcoma (OS) and microRNAs (miRNAs). However, only a few researchers have investigated the underlying mechanism of circular RNAs (circRNAs) in OS development. Our paper aimed to assess how hsa_circ_0032463 (abbreviated “circ_0032463” here) initiates and regulates OS progression. We detected circ_0032463 expression in OS tissues and cell lines by using reverse transcription-quantitative PCR (RT-qPCR) analysis and then investigated the interaction between circ_0032463, miRNA 489 (miR-498), and LEF1 using RNA pulldown, RNA immunoprecipitation (RIP), and luciferase assays. The effect of the circ_0032463/miR-498/LEF1 axis on the migration, proliferation, and apoptosis levels of OS cells was explored using CCK-8, bromodeoxyuridine (BrdU), wound healing, and fluorescein isothiocyanate (FITC) assays. Our findings revealed that circ_0032463 expression was upregulated in OS tissues and cell lines. We also found that circ_0032463 interacted with miR-498, thereby reducing the expression of miR-498 in OS cells. Experimental results indicated that miR-498 could directly target LEF1 in OS cells and that circ_0032463 could abrogate the tumor-inhibitory effect of miR-498 by upregulating LEF1 in OS. More specifically, by binding to miR-498 and inhibiting LEF1 expression, circ_0032463 promoted the migration and proliferation abilities of OS cells and suppressed the apoptosis ability of OS cells. Overall, this research suggested that circ_0032463 could promote OS development by regulating the miR-498/LEF1 axis.
Collapse
|
17
|
Huang Q, Peng L, Sun Y, Huang J, Han T, Li Y, Peng H. miR-593-3p Promotes Proliferation and Invasion in Prostate Cancer Cells by Targeting ADIPOR1. Onco Targets Ther 2021; 14:3729-3737. [PMID: 34163175 PMCID: PMC8214564 DOI: 10.2147/ott.s310198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023] Open
Abstract
Background Accumulating evidence has indicated that dysregulation of microRNAs (miRNAs) contributes to the tumorigenesis of prostate cancer (PCa). Nevertheless, the role of miR-593-3p in the development of PCa remains unclear. The objective of this study was to investigate the role and mechanisms of miR-593-3p in PCa cells. Methods RT-PCR was used to detect the expression levels of miR-593-3p. CCK-8, colony formation, spheroid formation and transwell assays were performed to examine the proliferation, migration and invasion of C4-2, DU145 and RWPE-1 cells. And then, transcriptome sequencing, dual-luciferase reporter assay and Western blot were taken to identify the target gene and downstream mechanisms of miR-593-3p. Results Here, we found that miR-593-3p promoted PCa cell proliferation, colony formation, spheroid formation, migration and invasion. Further mechanistic studies revealed that miR-593-3p possessed binding sites of ADIPOR1 3ʹ-UTR and played an important role in 5ʹ-AMP-activated protein kinase (AMPK) signaling pathway and epithelial–mesenchymal transition (EMT) process. In addition, the transfection of si-ADIPOR1 also enhanced the PCa cell proliferation and invasion. Conclusion Our study provides an empirical investigation of miR-593-3p, which exerts oncogenic function through targeting ADIPOR1 in PCa cells.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Nephrology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Long Peng
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Yuxiang Sun
- Department of Nephrology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Jiayu Huang
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, People's Republic of China
| | - Tong Han
- Department of Nephrology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Yongjie Li
- Department of Nephrology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Hui Peng
- Department of Nephrology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| |
Collapse
|
18
|
Lu Z, Wang C, Lv X, Dai W. Hsa_circ_0010220 regulates miR-198/Syntaxin 6 axis to promote osteosarcoma progression. J Bone Oncol 2021; 28:100360. [PMID: 33996428 PMCID: PMC8105664 DOI: 10.1016/j.jbo.2021.100360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
hsa_circ_0010220 expression is increased in osteosarcoma. hsa_circ_0010220 knockdown represses cell proliferation, migration and invasion. hsa_circ_0010220 regulates Syntaxin 6 via miR-198. hsa_circ_0010220 silence decreases xenograft tumor growth.
Background Circular RNAs (circRNAs) are a class of endogenous RNAs that are involved in osteosarcoma progression. Hsa_circ_0010220 (circ_0010220) is a circRNA generated by gene Rho Guanine Nucleotide Exchange Factor 10 Like (ARHGEF10L) and is upregulated in osteosarcoma, but its functional role in osteosarcoma is limited studied. This study aimed to illustrate the regulatory mechanism underlying circ_0010220 in osteosarcoma. Methods 51 paired tumor and normal tissues were obtained from osteosarcoma patients. circ_0010220, microRNA (miR)-198 and Syntaxin 6 (STX6) abundances were examined by quantitative reverse transcription polymerase chain reaction and western blot. Cell proliferation, cell cycle, apoptosis, migration and invasion were analyzed via Cell Counting Kits-8 (CCK-8), colony formation, flow cytometry and transwell analyses. Target relationship was verified via dual-luciferase reporter analysis, RNA immunoprecipitation and pull-down. The in vivo function was analyzed using a xenograft model. Results Circ_0010220 was elevated in osteosarcoma tissues and cells, and was related to the lower survival rate of osteosarcoma patients. Circ_0010220 knockdown inhibited cell proliferation, migration and invasion, but induced cell cycle arrest and apoptosis in vitro. Besides, circ_0010220 silence curbed the growth of xenograft osteosarcoma tumors in vivo. Mechanistic research revealed that miR-198 is a target of circ_0010220, and directly targets STX6. Moreover, circ_0010220 upregulated the expression of STX6 by sponging miR-198 to regulate cell proliferation, migration, invasion, cell cycle, and apoptosis. Conclusion Circ_0010220 contributes to osteosarcoma progression through mediating miR-198/STX6 axis, which might be a novel therapeutic target for osteosarcoma therapy.
Collapse
Affiliation(s)
- Zhaoan Lu
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| | - Chuanwen Wang
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| | - Xiaolong Lv
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| | - Wen Dai
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| |
Collapse
|
19
|
Wu X, Yan L, Liu Y, Shang L. Circ_0000527 promotes osteosarcoma cell progression through modulating miR-646/ARL2 axis. Aging (Albany NY) 2021; 13:6091-6102. [PMID: 33617480 PMCID: PMC7950279 DOI: 10.18632/aging.202602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023]
Abstract
Accumulating evidence shows that circRNAs play critical roles in the development of human tumors. We observed that circ_0000527 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared in hFOB1.19 cells. We demonstrated that the circ_0000527 level was higher in osteosarcoma specimens than in non-tumor specimens. The ectopic expression of circ_0000527 was shown to induce cell growth, cell cycle progression and the secretion of inflammatory mediators, including IL-1β, IL-6, IL-8 and TNF-α. We demonstrated that circ_0000527 sponges miR-646 in osteosarcoma cells and that ARL2 is a target gene of miR-646. MiR-646 expression was decreased and ARL2 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared to hFOB1.19 cells. Overexpression of circ_0000527 was demonstrated to induce ARL2 expression in MG-63 cells. We showed that miR-646 was downregulated in osteosarcoma specimens compared to that of non-tumor specimens and that the level of circ_0000527 was negatively correlated with miR-646 expression in osteosarcoma specimens. The elevated expression of circ_0000527 was shown to promote cell growth and cell cycle progression by modulating miR-646 expression. The ectopic expression of circ_0000527 was shown to promote cell growth, cell cycle progression and the secretion of inflammatory mediators by modulating ARL2. The present study suggested that the circ_0000527/miR-646/ARL2 axis may be a potential treatment target for osteosarcoma.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lilin Shang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| |
Collapse
|
20
|
Ling Z, Fang ZG, Wu JY, Liu JJ. The depletion of Circ-PRKDC enhances autophagy and apoptosis in T-cell acute lymphoblastic leukemia via microRNA-653-5p/Reelin mediation of the PI3K/AKT/mTOR signaling pathway. Kaohsiung J Med Sci 2021; 37:392-401. [PMID: 33615686 DOI: 10.1002/kjm2.12352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
A range of circular (Circ) RNAs have been demonstrated to be of therapeutic significance for the treatment of acute lymphoblastic leukemia (ALL). Here, we investigated the mechanisms underlying the action of Circ-PRKDC and the microRNA-653-5p/Reelin (miR-653-5p/RELN) axis in T-cell ALL (T-ALL).Clinical specimens were obtained from patients with T-ALL (n = 39) and healthy controls (n = 30). In each specimen, we determined the expression levels of Circ-PRKDC, miR-653-5p, and RELN. Human T-ALL cells (Jurkat) were transfected with Circ-PRKDC- or miR-653-5p-related sequences to investigate cell proliferation, apoptosis, and autophagy. We also determined the levels of Circ-PRKDC, miR-653-5p, RELN, and signaling proteins related to phosphoinositide 3-kinase (PI3K), AKT, and mammalian target of rapamycin (mTOR). Finally, we decoded the interactions between Circ-PRKDC, miR-653-5p, and RELN. The expression levels of Circ-PRKDC and RELN were upregulated in T-ALL tissues and cells while the levels of miR-653-5p were downregulated. Thereafter, then silencing of Circ-PRKDC, or the enforced expression of miR-653-5p, repressed the expression of RELN and the activation of the PI3K/AKT/mTOR signaling pathway, thus enhancing cell autophagy and apoptosis, and disrupting cell proliferation. Circ-PRKDC acted a sponge for miR-653-5p while miR-653-5p targeted RELN. The knockdown of miR-653-5p abrogated the silencing of Circ-PRKDC-induced effects in T-ALL cells. The depletion of Circ-PRKDC elevated miR-653-5p to silence RELN-mediated PI3K/AKT/mTOR signaling activation, thereby enhancing autophagy and apoptosis in T-ALL cells.
Collapse
Affiliation(s)
- Zhang Ling
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Gang Fang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie-Yong Wu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-Jun Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Zhang C, He J, Qi L, Wan L, Wang W, Tu C, Li Z. Diagnostic and Prognostic Significance of Dysregulated Expression of Circular RNAs in Osteosarcoma. Expert Rev Mol Diagn 2021; 21:235-244. [PMID: 33428501 DOI: 10.1080/14737159.2021.1874922] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE This study aimed to perform an updated meta-analysis to explore the clinical, diagnostic, and prognostic values of circRNAs in osteosarcoma. METHODS : PubMed, Web of Science, EMBASE, Scopus, and Cochrane Library were systematically searched up to December 15, 2020. Eligible studies regarding the relationship between circRNAs levels and clinicopathological, diagnostic, and prognostic values in osteosarcoma were included for study. RESULTS 31 studies involving 1979 osteosarcoma patients were enrolled, with 22 studies on clinicopathological parameters, eleven on diagnosis, and 23 on prognosis. For clinical parameters, overexpression of oncogenic circRNAs was intimately correlated with larger tumor size, advanced Enneking stage, poor differentiation, and distant metastasis (DM). In contrast, the downregulated circRNAs showed negative correlation with Enneking stage and DM. For the diagnostic values, the summary area under the curve of circRNA for the discriminative efficacy between osteosarcoma patients and non-cancer counterparts was estimated to be 0.87, with a weighted sensitivity of 0.79, specificity of 0.81, respectively. For the prognostic significance, oncogenic circRNAs had poor overall survival (OS) and disease-free survival, while elevated expression of tumor-suppressor circRNAs were closely related to longer OS. CONCLUSION This study showed that aberrantly expressed circRNA signatures could serve as potential biomarkers in diagnosis and prognosis in osteosarcoma.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Hata T, Mizuma M, Masuda K, Chiba K, Ishida M, Ohtsuka H, Nakagawa K, Morikawa T, Kamei T, Unno M. MicroRNA-593-3p Expression in Peritoneal Lavage Fluid as a Prognostic Marker for Pancreatic Cancer Patients Undergoing Staging Laparoscopy. Ann Surg Oncol 2021; 28:2235-2245. [PMID: 33393045 DOI: 10.1245/s10434-020-09440-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Some presumed resectable pancreatic cancer patients harbor radiographically occult metastases that are incidentally identified at the time of abdominal exploration. This study aims to identify novel diagnostic or predictive microRNA (miRNA) markers for subclinical peritoneal dissemination in patients with pancreatic cancer undergoing abdominal exploration. METHODS Peritoneal lavage fluid samples were harvested from 74 patients with pancreatic cancer at the time of staging laparoscopy. Microarray analysis was performed using peritoneal lavage fluids with positive and negative cytology. Candidate microRNA expression was quantified and validated by droplet-digital PCR assays. RESULTS In the miRNA array analysis, miR-593-3p showed significant upregulation in peritoneal lavage fluids with positive cytology. Of the 74 patients validated, peritoneal lavage fluids with positive cytology had significantly higher expression of miR-593-3p than those with negative cytology (P < 0.001). Even in cases with no peritoneal dissemination and negative cytology, multivariate analysis revealed that elevated miR-593-3p expression was significantly correlated with worse overall survival than those with low expression (hazard ratio: 3.474, P = 0.042). Of the 48 patients who underwent pancreatectomy, multivariate analysis also demonstrated that higher expression of miR-593-3p in peritoneal lavage was the only significant poor prognostic marker influencing both overall survival (hazard ratio: 23.38, P = 0.005) and recurrence-free survival (hazard ratio: 5.700, P = 0.002). CONCLUSIONS Elevated miR-593-3p expression in peritoneal lavage suggests the presence of subclinical micrometastasis even in cases with localized pancreatic cancer, and miR-593-3p could be a useful prognostic predictor for pancreatic cancer patients undergoing staging laparoscopy.
Collapse
Affiliation(s)
- Tatsuo Hata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kunihiro Masuda
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuharu Chiba
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|