1
|
Jiang S, Jiang X, Li D, Lyu Q, Li W. Telomere length of granulosa cells is positively associated with oocyte maturation and fertilization. Reprod Biomed Online 2025:104803. [PMID: 40316493 DOI: 10.1016/j.rbmo.2025.104803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 05/04/2025]
Abstract
RESEARCH QUESTION Is it feasible to use the telomere length of granulosa cells as a biomarker for ovarian function and embryological outcomes during IVF? DESIGN This prospective cohort study included 240 patients undergoing their first IVF cycle between October 2022 and December 2022. The main outcomes were the associations between relative telomere length of granulosa cells, collected during oocyte retrieval, and ovarian reserve, ovarian response and embryological outcomes. RESULTS The mean ± SD relative telomere length was -5.35 ± 2.55. No significant relationships were found between telomere length and ovarian reserve and ovarian response. Telomere length was positively correlated with maturation rate (r = 0.386, P < 0.001) and fertilization rate (retrieved oocytes: r = 0.408, P < 0.001; matured oocytes: r = 0.203, P = 0.002). However, telomere length was not significantly correlated with oocyte retrieval or viable embryo rate. On multifactor linear regression, relative telomere length was associated with oocyte maturation rate (P < 0.001) and fertilization rate of matured oocytes (P = 0.011). The receiver operating characteristic curve of telomere length as a predictor of oocyte maturity showed that the area under the curve (AUC) was 0.719 (P < 0.001), while the AUC of telomere length as a predictor of fertilization (of matured oocytes) was 0.613 (P = 0.005). CONCLUSION Telomere length is correlated with embryological outcomes in IVF, mainly by affecting oocyte maturation and fertilization, rather than early embryo development. Telomere length alone cannot be used as a biomarker for ovarian reserve or ovarian response. When dealing with recurrent oocyte maturity or fertilization disorders, therapies oriented to lengthen telomeres or increase telomerase expression or function would facilitate cell division of granulosa cells, leading to higher oocyte maturation and fertilization rates.
Collapse
Affiliation(s)
- Shutian Jiang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xueyi Jiang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Danjun Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Wenzhi Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Escandon P, Nicholas SE, Vasini B, Cunningham RL, Murphy DA, Riaz KM, Karamichos D. Selective Modulation of the Keratoconic Stromal Microenvironment by FSH and LH. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1762-1775. [PMID: 36822267 PMCID: PMC10726429 DOI: 10.1016/j.ajpath.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Keratoconus (KC) affects the corneal structure, with thinning and bulging outward into a conelike shape. Irregular astigmatism and decreased visual acuity appear during puberty and progress into the mid-30s, with unpredictable disease severity. The cause of KC is recognized as multifactorial, but remains poorly understood. Hormone imbalances are a significant modulator of the onset of KC. This study sought to investigate the role of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in KC, using a three-dimensional, self-assembled matrix in vitro model. Healthy corneal fibroblasts and human KC cells in the corneal stroma were isolated, cultured, and stimulated with stable vitamin C to promote extracellular matrix assembly. Cultures were further stimulated with 2.5 or 10 mIU/mL FSH and 5 or 35 mIU/mL LH. Samples were evaluated for cell proliferation and morphology via BrdU assay and imaging; protein expression was assessed via Western blot analysis. Proliferation was significantly greater in human KC cells compared to healthy corneal fibroblasts with LH stimulation, but no changes were found with FSH stimulation. Additionally, in sex hormone receptors, fibrotic markers, proteoglycans, and members of the gonadotropin signaling pathway were significantly changed, largely driven by exogenous LH. The impact of exogenous FSH/LH in the KC stromal microenvironment was demonstrated. These results highlight the need to further examine the role of FSH/LH in KC and in human corneal homeostasis.
Collapse
Affiliation(s)
- Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - David A Murphy
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kamran M Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas.
| |
Collapse
|
3
|
Li X, Ma M, Zhao B, Li N, Fang L, Wang D, Luan T. Chlorinated Polycyclic Aromatic Hydrocarbons Induce Immunosuppression in THP-1 Macrophages Characterized by Disrupted Amino Acid Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16012-16023. [PMID: 36282008 DOI: 10.1021/acs.est.2c06471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Frequent chlorinated polycyclic aromatic hydrocarbon (Cl-PAH) occurrence in environmental samples and emerging detection in human serum have warned of their underestimated risks. Studies showed that some Cl-PAHs exhibit dioxin-like properties, implying immunotoxic potential but lacking direct evidence and specific mechanisms. Here, we integrated a high-content screening (HCS) system and high-resolution mass spectrometry to investigate the immune dysfunction and metabolic disruption induced by Cl-PAHs and their parent PAHs (PPAHs) in THP-1 macrophages. Both 9-chloroanthracene and 2,7-dichlorofluorene exerted clear immunosuppression on THP-1 mφs, while their PPAHs exhibited different immune disturbances. Interestingly, Cl-PAH/PPAHs induced complex alterations in the multicytokine/chemokine network, including biphasic alterations with initial inhibition and later enhancement. Furthermore, the protein-protein interaction results revealed that inflammatory cytokines are the core of this complicated network regulation. Connecting immune phenotypes and metabolomics, amino acid metabolism reprogramming was identified as a potential cause of Cl-PAH/PAH-induced immunotoxicity. Phytosphingosine and l-kynurenine were proposed as candidate immunosuppression biomarkers upon Cl-PAH exposure. This article provides direct immunotoxicity evidence of Cl-PAHs without activating AhR for the first time and discusses the contribution of metabolites to Cl-PAH/PPAH-induced immune responses in macrophages, highlighting the potential of developing new methods based on immunometabolism mechanisms for toxic risk evaluation of environmental chemicals.
Collapse
Affiliation(s)
- Xinyan Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang515200, China
| | - Mei Ma
- China Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Bilin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
| | - Na Li
- China Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ling Fang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou510275, China
| | - Donghong Wang
- China Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang515200, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, China
| |
Collapse
|
4
|
Zou D, Qin J, Hu W, Wei Z, Zhan Y, He Y, Zhao C, Li L. Macrophages Rapidly Seal off the Punctured Zebrafish Larval Brain through a Vital Honeycomb Network Structure. Int J Mol Sci 2022; 23:ijms231810551. [PMID: 36142462 PMCID: PMC9503817 DOI: 10.3390/ijms231810551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
There is accumulating evidence that macrophages play additional important roles in tissue damage besides their typical phagocytosis. Although the aggregation of macrophages on injured sites has long been observed, few researchers have focused on the role of the overall structure of macrophage aggregation. In this study, we developed a standardized traumatic brain injury (TBI) model in zebrafish larvae to mimic edema and brain tissue spillage symptoms after severe brain trauma. Using time-lapse imaging, we showed that macrophages/microglia in zebrafish larvae responded rapidly and dominated the surface of injured tissue, forming a meaningful honeycomb network structure through their compact aggregation and connection. Disrupting this structure led to fatal edema-like symptoms with severe loss of brain tissue. Using the RNA-Seq, together with the manipulation of in vitro cell lines, we found that collagen IV was indispensable to the formation of honeycomb network structures. Our study thus revealed a novel perspective regarding macrophages forming a protective compact structure with collagen IV. This honeycomb network structure acted as a physical barrier to prevent tissue loss and maintain brain homeostasis after TBI. This study may provide new evidence of macrophages’ function for the rapid protection of brain tissue after brain injury.
Collapse
Affiliation(s)
- Dandan Zou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jie Qin
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Wenlong Hu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Zongfang Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yandong Zhan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yuepeng He
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Biomedical Engineering and Informatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Correspondence:
| |
Collapse
|
5
|
Zhang JH, Zhan L, Zhao MY, Wang JJ, Xie FF, Xu ZY, Xu Q, Cao YX, Liu QW. Role of EGFR expressed on the granulosa cells in the pathogenesis of polycystic ovarian syndrome. Front Endocrinol (Lausanne) 2022; 13:971564. [PMID: 36440230 PMCID: PMC9691951 DOI: 10.3389/fendo.2022.971564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the most common endocrinological disorders affecting between 6 to 20% of reproductive aged women. However, the etiology of PCOS is still unclear. Epidermal growth factor receptor (EGFR) plays a critical role in the growth and development of ovarian follicles. In our previous study, we showed that the expression level of EGFR was significantly higher in the cumulus granulosa cells from women with PCOS than that of normal women, suggesting that EGFR may play a potential role in the pathogenesis of PCOS. The present study further evaluated the association between EGFR and PCOS through both in clinical observation and animal experiments. We firstly validated the differential expression of EGFR in cumulus granulosa cells between PCOS patients and normal subjects by qRT-PCR and immunofluorescence staining. Then we generated a mouse model (n=20) of PCOS by injecting dehydroepiandrosterone (DHEA). The PCOS mice were then injected with an E corpus GFR inhibitor (AG1478) (n=10), which significantly improved the sex hormone levels in the estrous cycle stage, and the serum levels of LH, FSH and testosterone were compared with the PCOS mice without EGFR inhibitor treatment (n=10). Decreasing the expression level of EGFR in the PCOS mice also improved the ovulatory function of their ovaries which was indicated by the multifarious follicle stage in these mice as compared with the PCOS mice without EGFR inhibitor treatment. Also, the number of corpopa lutea were higher in the control group and the EGFR inhibitor treated group than in the PCOS group. The sex hormone levels and reproductive function were not significantly different between the control mice and the PCOS mice treated with the EGFR inhibitor. Our results demonstrated that EGF/EGFR signaling affected the proliferation of cumulus granulosa cells, oocyte maturation and meiosis, and played a potential role in the pathogenesis of PCOS. Therefore, the selective inhibition of EGFR may serve as a novel strategy for the clinical management of PCOS.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming-Ye Zhao
- Interventional Operating Room, Weihai Central Hospital, Weihai, Shandong, China
| | - Jin-Juan Wang
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fen-Fen Xie
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui, China
| | - Zu-Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
| | - Qian Xu
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- *Correspondence: Yun-Xia Cao, ; Qi-Wei Liu,
| | - Qi-Wei Liu
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Yun-Xia Cao, ; Qi-Wei Liu,
| |
Collapse
|
6
|
Abstract
Many studies have shown that oestrogen affects late follicular development, but whether oestrogen is involved in other aspects of folliculogenesis remains unclear. In this study, two antagonists of oestrogen, tamoxifen and G15, were used to determine the effects of oestrogen on folliculogenesis. Mouse preantral follicles and cumulus-oocyte complexes (COCs) were cultured in vitro. The results showed that follicle growth stimulated using pregnant mare serum gonadotrophin (PMSG) was inhibited using tamoxifen, whether in vivo or in vitro. The average diameters, the maximum diameters of follicles and the numbers of follicles with a diameter of more than 300 μm decreased significantly following a 4-day culture with tamoxifen. G15, the antagonist of oestrogen via the membrane receptor, did not change follicular growth stimulated by PMSG in vitro. Results of in vitro maturation of COCs showed that germinal vesicle breakdown (GVBD) occurred spontaneously (95.1%) after 2 h in culture, and the GVBD ratio changed little with the addition of either oestrogen or 10 μM G15. However, first polar body (PBI) extrusion was driven by oestrogen markedly and supplementation with 10 μM G15 inhibited PBI extrusion (82.4% vs 55.0%) significantly. These results demonstrated that oestrogen promotes follicle growth through the nuclear receptor during follicle growth and then triggers the transition of metaphase to anaphase through the membrane receptor during meiotic resumption. So oestrogen plays a progressive role in the two phases of follicle growth and oocyte meiotic resumption.
Collapse
|
7
|
Wang J, Zhuo Z, Ma X, Liu Y, Xu J, He C, Fu Y, Wang F, Ji P, Zhang L, Liu G. Melatonin Alleviates the Suppressive Effect of Hypoxanthine on Oocyte Nuclear Maturation and Restores Meiosis via the Melatonin Receptor 1 (MT1)-Mediated Pathway. Front Cell Dev Biol 2021; 9:648148. [PMID: 33937242 PMCID: PMC8083900 DOI: 10.3389/fcell.2021.648148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
It is well known that hypoxanthine (HX) inhibits nuclear maturation of oocytes by elevating the intracellular cAMP level, while melatonin (MT) is a molecule that reduces cAMP production, which may physiologically antagonize this inhibition and restore the meiosis process. We conducted in vitro and in vivo studies to examine this hypothesis. The results showed that 10-3 M MT potentiated the inhibitory effect of HX on mouse oocyte meiosis by lowering the rate of germinal vesicle breakdown (GVBD) and the first polar body (PB1). However, 10-5 M and 10-7 M MT significantly alleviated the nuclear suppression induced by HX and restored meiosis in 3- and 6-week-old mouse oocytes, respectively. We identified that the rate-limiting melatonin synthetic enzyme AANAT and melatonin membrane receptor MT1 were both expressed in oocytes and cumulus cells at the GV and MII stages. Luzindole, a non-selective melatonin membrane receptor antagonist, blocked the activity of MT on oocyte meiotic recovery (P < 0.05). This observation indicated that the activity of melatonin was mediated by the MT1 receptor. To understand the molecular mechanism further, MT1 knockout (KO) mice were constructed. In this MT1 KO animal model, the PB1 rate was significantly reduced with the excessive expression of cAPM synthases (Adcy2, Adcy6, Adcy7, and Adcy9) in the ovaries of these animals. The mRNA levels of Nppc and Npr2 were upregulated while the genes related to progesterone synthesis (Cyp11a11), cholesterol biosynthesis (Insig1), and feedback (Lhcgr, Prlr, and Atg7) were downregulated in the granulosa cells of MT1 KO mice (P < 0.05). The altered gene expression may be attributed to the suppression of oocyte maturation. In summary, melatonin protects against nuclear inhibition caused by HX and restores oocyte meiosis via MT1 by reducing the intracellular concentration of cAMP.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Zhuo
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Keao Xieli Feed Co., Ltd., Beijing, China
| | - Xiao Ma
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunjie Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Xu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changjiu He
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|