1
|
Jiang Y, Xiao H, Yang Y, Chen G, Zhang Y, Wu X, Zhang Q, Huang Q, Gao H, Han Y, Zhang A, Jiang D, Zheng L, Li Y, Gao Y. Inhibition of Purine Metabolism Promotes the Differentiation of Neuroblastoma Driven by MYCN. Cancer Med 2025; 14:e70953. [PMID: 40353332 PMCID: PMC12067188 DOI: 10.1002/cam4.70953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Neuroblastoma (NB), the common extracranial solid tumor in children, is associated with a poor prognosis, particularly in high-risk patients. MYCN amplification stands as the most prominent molecular hallmark within this high-risk subgroup. However, MYCN protein is considered "undruggable" due to its lack of a conventional enzymatic binding pocket and its predominant nuclear localization, which precludes targeting by standard small-molecule inhibitors or antibody-based therapeutics. Consequently, current therapeutic strategies have achieved limited efficacy against MYCN-driven NB. Notably, MYCN not only orchestrates diverse metabolic reprogramming pathways in tumors but also exerts a pivotal influence on cellular differentiation. To overcome this therapeutic barrier, we seek to elucidate the contribution of purine metabolism to stemness maintenance in MYCN-amplified NBs and to discover novel small-molecule inhibitors capable of inducing differentiation in high-risk NBs. METHODS Metabolomic profiling via mass spectrometry was employed to delineate differential metabolite signatures between MYCN-amplified and non-amplified NB cells. Bioinformatics analysis of publicly available RNA sequencing datasets facilitated the systematic evaluation of purine metabolic enzyme expression. Cell differentiation, proliferation, colony formation, and cell migration assays were employed to assess the inhibitor's effects. Additionally, an in vivo xenograft model of NB was established to examine the therapeutic potential of lometrexol (LMX), a selective inhibitor of the purine biosynthesis enzyme phosphoribosylglycinamide formyltransferase (GART). RESULTS Significant changes in nucleotide metabolism were identified in NB cell lines with high MYCN expression compared to those with low MYCN expression. The expression of purine metabolic enzyme genes was positively correlated with MYCN expression, prognosis, and differentiation status in NBs. Pharmacological inhibition of GART using LMX elicited a robust pro-differentiation response, concomitant with a significant suppression of tumorigenic potential. CONCLUSIONS These findings establish purine metabolic enzyme inhibition as a viable therapeutic strategy to induce differentiation and attenuate tumor progression in high-risk MYCN-amplified NBs.
Collapse
Affiliation(s)
- Yufeng Jiang
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Hui Xiao
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Yi Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Guoyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji‐Med X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingwen Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji‐Med X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoyu Wu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Qi Zhang
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Qingyi Huang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Hongxiang Gao
- Department of General Surgery, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yali Han
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Anan Zhang
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liang Zheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| | - Yijin Gao
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of MedicineKey Laboratory of Pediatric Hematology & Oncology of China Ministry of HealthShanghaiChina
| |
Collapse
|
2
|
Liu Y, Sheng S, Wu L, Wang H, Xue H, Wang R. Flavonoid-rich extract of Paederia scandens (Lour.) Merrill improves hyperuricemia by regulating uric acid metabolism and gut microbiota. Food Chem 2025; 471:142857. [PMID: 39823906 DOI: 10.1016/j.foodchem.2025.142857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Paederia scandens (Lour.) Merrill flavonoid-rich extract (PSMF) has shown excellent xanthine oxidase (XOD) inhibitory activity in our previous study. However, the efficacy of PSMF in mitigating hyperuricemia (HUA) remains to be elucidated. In this study, we investigated the effects and mechanisms of PSMF on alleviating in HUA mice. The results showed that PSMF intervention reduced serum levels of uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN), and inhibited the activities of XOD and adenosine deaminase (ADA). In addition, PSMF treatment not only attenuated the inflammatory response and renal damage but also regulated the expression of UA synthesis genes and UA excretion genes. Finally, PSMF ameliorated gut microbiota dysbiosis in HUA mice by enriching the abundance of short-chain fatty acid (SCFA)-producing bacteria. In summary, PSMF appears to be a promising natural source for the prevention and treatment of HUA.
Collapse
Affiliation(s)
- Yuyi Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shanling Sheng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Linye Wu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Huixian Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hui Xue
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruimin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
Jiang Z, Huang C, Guo E, Zhu X, Li N, Huang Y, Wang P, Shan H, Yin Y, Wang H, Huang L, Han Z, Ouyang K, Sun L. Platelet-Rich Plasma in Young and Elderly Humans Exhibits a Different Proteomic Profile. J Proteome Res 2024; 23:1788-1800. [PMID: 38619924 DOI: 10.1021/acs.jproteome.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As people age, their ability to resist injury and repair damage decreases significantly. Platelet-rich plasma (PRP) has demonstrated diverse therapeutic effects on tissue repair. However, the inconsistency of patient outcomes poses a challenge to the practical application of PRP in clinical practice. Furthermore, a comprehensive understanding of the specific impact of aging on PRP requires a systematic investigation. We derived PRP from 6 young volunteers and 6 elderly volunteers, respectively. Subsequently, 95% of high-abundance proteins were removed, followed by mass spectrometry analysis. Data are available via ProteomeXchange with the identifier PXD050061. We detected a total of 739 proteins and selected 311 proteins that showed significant differences, including 76 upregulated proteins in the young group and 235 upregulated proteins in the elderly group. Functional annotation and enrichment analysis unveiled upregulation of proteins associated with cell apoptosis, angiogenesis, and complement and coagulation cascades in the elderly. Conversely, IGF1 was found to be upregulated in the young group, potentially serving as the central source of enhanced cell proliferation ability. Our investigation not only provides insights into standardizing PRP preparation but also offers novel strategies for augmenting the functionality of aging cells or tissues.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yu Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peihe Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hong Wang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lu Sun
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
5
|
Xie C, Yang Y, Yu H, He Q, Yuan M, Dong B, Zhang L, Yang M. RNA velocity prediction via neural ordinary differential equation. iScience 2024; 27:109635. [PMID: 38623336 PMCID: PMC11016905 DOI: 10.1016/j.isci.2024.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
RNA velocity is a crucial tool for unraveling the trajectory of cellular responses. Several approaches, including ordinary differential equations and machine learning models, have been proposed to interpret velocity. However, the practicality of these methods is constrained by underlying assumptions. In this study, we introduce SymVelo, a dual-path framework that effectively integrates high- and low-dimensional information. Rigorous benchmarking and extensive studies demonstrate that SymVelo is capable of inferring differentiation trajectories in developing organs, analyzing gene responses to stimulation, and uncovering transcription dynamics. Moreover, the adaptable architecture of SymVelo enables customization to accommodate intricate data and diverse modalities in forthcoming research, thereby providing a promising avenue for advancing our understanding of cellular behavior.
Collapse
Affiliation(s)
- Chenxi Xie
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Hao Yu
- Peking University, Beijing 100871, China
| | - Qiushun He
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Bin Dong
- Peking University, Beijing 100871, China
| | - Li Zhang
- Peking University, Beijing 100871, China
| | - Meng Yang
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
6
|
Zaqout S, Mannaa A, Klein O, Krajewski A, Klose J, Luise-Becker L, Elsabagh A, Ferih K, Kraemer N, Ravindran E, Makridis K, Kaindl AM. Proteome changes in autosomal recessive primary microcephaly. Ann Hum Genet 2023; 87:50-62. [PMID: 36448252 DOI: 10.1111/ahg.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND/AIM Autosomal recessive primary microcephaly (MCPH) is a rare and genetically heterogeneous group of disorders characterized by intellectual disability and microcephaly at birth, classically without further organ involvement. MCPH3 is caused by biallelic variants in the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the corresponding Cdk5rap2 mutant or Hertwig's anemia mouse model, congenital microcephaly as well as defects in the hematopoietic system, germ cells and eyes have been reported. The reduction in brain volume, particularly affecting gray matter, has been attributed mainly to disturbances in the proliferation and survival of early neuronal progenitors. In addition, defects in dendritic development and synaptogenesis exist that affect the excitation-inhibition balance. Here, we studied proteomic changes in cerebral cortices of Cdk5rap2 mutant mice. MATERIAL AND METHODS We used large-gel two-dimensional gel (2-DE) electrophoresis to separate cortical proteins. 2-DE gels were visualized by a trained observer on a light box. Spot changes were considered with respect to presence/absence, quantitative variation and altered mobility. RESULT We identified a reduction in more than 30 proteins that play a role in processes such as cell cytoskeleton dynamics, cell cycle progression, ciliary functions and apoptosis. These proteome changes in the MCPH3 model can be associated with various functional and morphological alterations of the developing brain. CONCLUSION Our results shed light on potential protein candidates for the disease-associated phenotype reported in MCPH3.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Atef Mannaa
- Higher Institute of Engineering and Technology, New Borg AlArab City, Alexandria, Egypt.,Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Angelika Krajewski
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Joachim Klose
- Charité-Universitätsmedizin, Institute of Human Genetics, Berlin, Germany
| | - Lena Luise-Becker
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ahmed Elsabagh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Khaled Ferih
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nadine Kraemer
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ethiraj Ravindran
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Konstantin Makridis
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
7
|
Xiao H, Wang S, Tang Y, Li S, Jiang Y, Yang Y, Zhang Y, Han Y, Wu X, Zheng L, Li Y, Gao Y. Absence of terminal deoxynucleotidyl transferase expression in T-ALL/LBL accumulates chromosomal abnormalities to induce drug resistance. Int J Cancer 2023; 152:2383-2395. [PMID: 36757202 DOI: 10.1002/ijc.34465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
T-acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is a malignant neoplasm of immature lymphoblasts. Terminal deoxynucleotidyl transferase (TDT) is a template-independent DNA polymerase that plays an essential role in generating diversity for immunoglobulin genes. T-ALL/LBL patients with TDT- have a worse prognosis. However, how TDT- promotes the disease progression of T-ALL/LBL remains unknown. Here we analyzed the prognosis of T-ALL/LBL patients in Shanghai Children's Medical Center (SCMC) and confirmed that TDT- patients had a higher rate of recurrence and remission failure and worse outcomes. Cellular experiments demonstrated that TDT was involved in DNA damage repair. TDT knockout delayed DNA repair, arrested the cell cycle and decreased apoptosis to induce the accumulation of chromosomal abnormalities and tolerance to abnormal karyotypes. Our study demonstrated that the poor outcomes in TDT- T-ALL/LBL might be due to the drug resistance (VP16 and MTX) induced by chromosomal abnormalities. Our findings revealed novel functions and mechanisms of TDT in T-ALL/LBL and supported that hematopoietic stem cell transplantation (HSCT) might be a better choice for these patients.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Siqi Wang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yuejia Tang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Shanshan Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yufeng Jiang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yi Yang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yinwen Zhang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yali Han
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Xiaoyu Wu
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Liang Zheng
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yanxin Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yijin Gao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| |
Collapse
|
8
|
Yang Y, Wang S, Cai J, Liang J, Zhang Y, Xie Y, Luo F, Tang J, Gao Y, Shen S, Feng H, Li Y. Targeting ARHGEF12 promotes neuroblastoma differentiation, MYCN degradation, and reduces tumorigenicity. Cell Oncol (Dordr) 2023; 46:133-143. [PMID: 36520365 DOI: 10.1007/s13402-022-00739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Neuroblastoma arises from developmental block of embryonic neural crest cells and is one of the most common and deadly pediatric tumors. However, the mechanism underlying this block is still unclear. Here, we show that targeting Rho guanine nucleotide exchange factor 12 (ARHGEF12, also named LARG) promotes MYCN degradation and neuroblastoma differentiation, leading to reduced neuroblastoma malignancy. METHODS The neuroblastoma TARGET dataset was downloaded to assess ARHGEF12 expression. Cell differentiation, proliferation, colony formation and cell migration analyses were performed to investigate the effects of ARHGEF12 knockdown on neuroblastoma cells. Western blotting and immunohistochemistry were employed to determine protein expression. Animal xenograft models were used to investigate antitumor effects after ARHGEF12 knockdown or treatment with the ARHGEF12 inhibitor Y16 in vivo. RESULTS We found that the expression level of ARHGEF12 was higher in neuroblastoma than in better-differentiated ganglioneuroblastoma. Knockdown of ARHGEF12 promoted neuroblastoma differentiation, decreased stemness-related gene expression, and increased differentiation-related gene expression. ARHGEF12 knockdown reduced tumor growth, and the resulting tumors showed bigger tumor cells compared to those in control neuroblastoma xenografts. In addition, it was found that ARHGEF12 knockdown promoted MYCN ubiquitination and degradation in MYCN-amplified tumors through RhoA/ROCK/GSK3β signaling. Targeting ARHGEF12 with the small molecular inhibitor Y16 induced cell differentiation and attenuated neuroblastoma tumorigenicity. CONCLUSION Our findings provide new insight into the mechanism by which ARHGEF12 regulates neuroblastoma tumorigenicity and suggest a translatable therapeutic approach by targeting ARHGEF12 with a small molecular inhibitor.
Collapse
Affiliation(s)
- Yi Yang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Siqi Wang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Jiaoyang Cai
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Jianwei Liang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Yingwen Zhang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Yangyang Xie
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Fei Luo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingyan Tang
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Yijin Gao
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China.
| | - Shuhong Shen
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China.
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China.
| |
Collapse
|
9
|
Ugbogu EA, Schweizer LM, Schweizer M. Contribution of Model Organisms to Investigating the Far-Reaching Consequences of PRPP Metabolism on Human Health and Well-Being. Cells 2022; 11:1909. [PMID: 35741038 PMCID: PMC9221600 DOI: 10.3390/cells11121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase (PRS EC 2.7.6.1) is a rate-limiting enzyme that irreversibly catalyzes the formation of phosphoribosyl pyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate (ATP). This key metabolite is required for the synthesis of purine and pyrimidine nucleotides, the two aromatic amino acids histidine and tryptophan, the cofactors nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), all of which are essential for various life processes. Despite its ubiquity and essential nature across the plant and animal kingdoms, PRPP synthetase displays species-specific characteristics regarding the number of gene copies and architecture permitting interaction with other areas of cellular metabolism. The impact of mutated PRS genes in the model eukaryote Saccharomyces cerevisiae on cell signalling and metabolism may be relevant to the human neuropathies associated with PRPS mutations. Human PRPS1 and PRPS2 gene products are implicated in drug resistance associated with recurrent acute lymphoblastic leukaemia and progression of colorectal cancer and hepatocellular carcinoma. The investigation of PRPP metabolism in accepted model organisms, e.g., yeast and zebrafish, has the potential to reveal novel drug targets for treating at least some of the diseases, often characterized by overlapping symptoms, such as Arts syndrome and respiratory infections, and uncover the significance and relevance of human PRPS in disease diagnosis, management, and treatment.
Collapse
Affiliation(s)
- Eziuche A. Ugbogu
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Lilian M. Schweizer
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Michael Schweizer
- Institute of Biological Chemistry, Biophysics & Engineering (IB3), School of Engineering &Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|