1
|
Lin K, Luo X, Du C, Zuo C, Li Z, Zhang G, Li C, Zhu L. ANRIL modulates endothelial senescence and angiogenesis through SASP-driven miR146a regulation in age-related vascular dysfunction. Mech Ageing Dev 2025; 225:112058. [PMID: 40222710 DOI: 10.1016/j.mad.2025.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Vascular aging, marked by endothelial cell (EC) dysfunction and compromised angiogenesis, is a central driver of age-related ischemic diseases. Although lncRNAs have emerged as pivotal regulators of endothelial function, their specific roles in endothelial aging remain enigmatic. In this study, we identify the lncRNA ANRIL as a crucial modulator of endothelial dysfunction during aging. By analyzing publicly available lncRNA sequencing datasets comparing young and old ECs, we pinpointed ANRIL and validated its role through a replicative senescence model in human umbilical vein ECs (HUVECs) and FACS sorting of skeletal muscle ECs from aged mice. While ANRIL showed minimal direct effects on angiogenesis, functional assays and transcriptomic analysis revealed its profound impact on the senescence-associated secretory phenotype (SASP). Remarkably, ANRIL regulates the expression of miR146a in ECs, which is transferred to macrophages, where it inhibits VEGF secretion and disrupts endothelial neovascularization. In vivo, ANRIL downregulation in a murine hindlimb ischemia model significantly enhanced neovascularization and restored blood flow, revealing its therapeutic potential for ischemic diseases. These findings position ANRIL as a novel, potent regulator of endothelial senescence, offering new insights into the molecular basis of vascular aging and suggesting ANRIL as a promising therapeutic target to mitigate age-related vascular dysfunction.
Collapse
Affiliation(s)
- Kechuan Lin
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xin Luo
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Can Du
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Chenzhe Zuo
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Zhenyu Li
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Guogang Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Chuanchang Li
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Lingping Zhu
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China.
| |
Collapse
|
2
|
Wang Y, Ling S, Feng H, Hua J, Han Z, Chai R. Recent Advances in the Mutual Regulation of m6A Modification and Non-Coding RNAs in Atherosclerosis. Int J Gen Med 2025; 18:1047-1073. [PMID: 40026815 PMCID: PMC11871936 DOI: 10.2147/ijgm.s508197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Atherosclerosis, a progressive inflammatory disease of the arteries, remains a leading cause of cardiovascular morbidity and mortality worldwide. Recent years have witnessed the pivotal role of N6-methyladenosine (m6A) RNA methylation in regulating various biological processes, including those implicated in atherosclerosis. Current evidence suggested that m6A regulators (writers, erasers, and readers) participated in the modification of multiple non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby affecting their metabolism and functions. Meanwhile, ncRNAs have also emerged as key modulator of m6A regulators expression in turn. Therefore, understanding the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for atherosclerosis and has great clinical application prospects. This review aims to summarize the recent advances in the reciprocal regulation and provide insights into the interaction between m6A modification and ncRNAs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Yanlu Wang
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Sisi Ling
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Hao Feng
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Junkai Hua
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Zhiyu Han
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| | - Renjie Chai
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, People’s Republic of China
| |
Collapse
|
3
|
Huang XY, Fu FY, Qian K, Feng QL, Cao S, Wu WY, Luo YL, Chen WJ, Zhang Z, Huang SC. CircHAT1 regulates the proliferation and phenotype switch of vascular smooth muscle cells in lower extremity arteriosclerosis obliterans through targeting SFRS1. Mol Cell Biochem 2025; 480:203-215. [PMID: 38409514 DOI: 10.1007/s11010-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
This study aimed to decipher the mechanism of circular ribonucleic acids (circRNAs) in lower extremity arteriosclerosis obliterans (LEASO). First, bioinformatics analysis was performed for screening significantly down-regulated cardiac specific circRNA-circHAT1 in LEASO. The expression of circHAT1 in LEASO clinical samples was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of splicing factor arginine/serine-rich 1 (SFRS1), α-smooth muscle actin (α-SMA), Calponin (CNN1), cyclin D1 (CNND1) and smooth muscle myosin heavy chain 11 (SMHC) in vascular smooth muscle cells (VSMCs) was detected by Western blotting. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays were used to evaluate cell proliferation and migration, respectively. RNA immunoprecipitation (RNA-IP) and RNA pulldown verified the interaction between SFRS1 and circHAT1. By reanalyzing the dataset GSE77278, circHAT1 related to VSMC phenotype conversion was screened, and circHAT1 was found to be significantly reduced in peripheral blood mononuclear cells (PBMCs) of LEASO patients compared with healthy controls. Knockdown of circHAT1 significantly promoted the proliferation and migration of VSMC cells and decreased the expression levels of contractile markers. However, overexpression of circHAT1 induced the opposite cell phenotype and promoted the transformation of VSMCs from synthetic to contractile. Besides, overexpression of circHAT1 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced phenotype switch of VSMC cells. Mechanistically, SFRS1 is a direct target of circHAT1 to mediate phenotype switch, proliferation and migration of VSMCs. Overall, circHAT1 regulates SFRS1 to inhibit the cell proliferation, migration and phenotype switch of VSMCs, suggesting that it may be a potential therapeutic target for LEASO.
Collapse
Affiliation(s)
- Xian-Ying Huang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Fang-Yong Fu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Kai Qian
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Qiao-Li Feng
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Sai Cao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Wei-Yu Wu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yuan-Lin Luo
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Wei-Jie Chen
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Zhi Zhang
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China.
| | - Shui-Chuan Huang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
4
|
Moglad E, Kaur P, Menon SV, Abida, Ali H, Kaur M, Deorari M, Pant K, Almalki WH, Kazmi I, Alzarea SI. ANRIL's Epigenetic Regulation and Its Implications for Cardiovascular Disorders. J Biochem Mol Toxicol 2024; 38:e70076. [PMID: 39620406 DOI: 10.1002/jbt.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024]
Abstract
Cardiovascular disorders (CVDs) are a major global health concern, but their underlying molecular mechanisms are not fully understood. Recent research highlights the role of long noncoding RNAs (lncRNAs), particularly ANRIL, in cardiovascular development and disease. ANRIL, located in the human genome's 9p21 region, significantly regulates cardiovascular pathogenesis. It controls nearby tumor suppressor genes CDKN2A/B through epigenetic pathways, influencing cell growth and senescence. ANRIL interacts with epigenetic modifiers, leading to altered histone modifications and gene expression changes. It also acts as a transcriptional regulator, impacting key genes in CVD development. ANRIL's involvement in cardiovascular epigenetic regulation suggests potential therapeutic strategies. Manipulating ANRIL and its associated epigenetic modifiers could offer new approaches to managing CVDs and preventing their progression. Dysregulation of ANRIL has been linked to various cardiovascular conditions, including coronary artery disease, atherosclerosis, ischemic stroke, and myocardial infarction. This abstract provides insights from recent research, emphasizing ANRIL's significance in the epigenetic landscape of cardiovascular disorders. By shedding light on ANRIL's role in cellular processes and disease development, the abstract highlights its potential as a therapeutic target for addressing CVDs.
Collapse
Affiliation(s)
- Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Mohali, Punjab, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
- Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
5
|
Ma CN, Shi SR, Zhang XY, Xin GS, Zou X, Li WL, Guo SD. Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review. Biomolecules 2024; 14:1446. [PMID: 39595622 PMCID: PMC11592287 DOI: 10.3390/biom14111446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases.
Collapse
Affiliation(s)
- Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Guo-Song Xin
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Xiang Zou
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Wen-Lan Li
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| |
Collapse
|
6
|
Li J, Xiao F, Wang S, Fan X, He Z, Yan T, Zhang J, Yang M, Yang D. LncRNAs are involved in regulating ageing and age-related disease through the adenosine monophosphate-activated protein kinase signalling pathway. Genes Dis 2024; 11:101042. [PMID: 38966041 PMCID: PMC11222807 DOI: 10.1016/j.gendis.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2024] Open
Abstract
A long noncoding RNA (lncRNA) is longer than 200 bp. It regulates various biological processes mainly by interacting with DNA, RNA, or protein in multiple kinds of biological processes. Adenosine monophosphate-activated protein kinase (AMPK) is activated during nutrient starvation, especially glucose starvation and oxygen deficiency (hypoxia), and exposure to toxins that inhibit mitochondrial respiratory chain complex function. AMPK is an energy switch in organisms that controls cell growth and multiple cellular processes, including lipid and glucose metabolism, thereby maintaining intracellular energy homeostasis by activating catabolism and inhibiting anabolism. The AMPK signalling pathway consists of AMPK and its upstream and downstream targets. AMPK upstream targets include proteins such as the transforming growth factor β-activated kinase 1 (TAK1), liver kinase B1 (LKB1), and calcium/calmodulin-dependent protein kinase β (CaMKKβ), and its downstream targets include proteins such as the mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1), hepatocyte nuclear factor 4α (HNF4α), and silencing information regulatory 1 (SIRT1). In general, proteins function relatively independently and cooperate. In this article, a review of the currently known lncRNAs involved in the AMPK signalling pathway is presented and insights into the regulatory mechanisms involved in human ageing and age-related diseases are provided.
Collapse
Affiliation(s)
- Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jia Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610017, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
7
|
de la Cruz-Thea B, Natali L, Ho-Xuan H, Bruckmann A, Coll-Bonfill N, Strieder N, Peinado VI, Meister G, Musri MM. Differentiation and Growth-Arrest-Related lncRNA ( DAGAR): Initial Characterization in Human Smooth Muscle and Fibroblast Cells. Int J Mol Sci 2024; 25:9497. [PMID: 39273443 PMCID: PMC11394763 DOI: 10.3390/ijms25179497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Vascular smooth muscle cells (SMCs) can transition between a quiescent contractile or "differentiated" phenotype and a "proliferative-dedifferentiated" phenotype in response to environmental cues, similar to what in occurs in the wound healing process observed in fibroblasts. When dysregulated, these processes contribute to the development of various lung and cardiovascular diseases such as Chronic Obstructive Pulmonary Disease (COPD). Long non-coding RNAs (lncRNAs) have emerged as key modulators of SMC differentiation and phenotypic changes. In this study, we examined the expression of lncRNAs in primary human pulmonary artery SMCs (hPASMCs) during cell-to-cell contact-induced SMC differentiation. We discovered a novel lncRNA, which we named Differentiation And Growth Arrest-Related lncRNA (DAGAR) that was significantly upregulated in the quiescent phenotype with respect to proliferative SMCs and in cell-cycle-arrested MRC5 lung fibroblasts. We demonstrated that DAGAR expression is essential for SMC quiescence and its knockdown hinders SMC differentiation. The treatment of quiescent SMCs with the pro-inflammatory cytokine Tumor Necrosis Factor (TNF), a known inducer of SMC dedifferentiation and proliferation, elicited DAGAR downregulation. Consistent with this, we observed diminished DAGAR expression in pulmonary arteries from COPD patients compared to non-smoker controls. Through pulldown experiments followed by mass spectrometry analysis, we identified several proteins that interact with DAGAR that are related to cell differentiation, the cell cycle, cytoskeleton organization, iron metabolism, and the N-6-Methyladenosine (m6A) machinery. In conclusion, our findings highlight DAGAR as a novel lncRNA that plays a crucial role in the regulation of cell proliferation and SMC differentiation. This paper underscores the potential significance of DAGAR in SMC and fibroblast physiology in health and disease.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Fibroblasts/metabolism
- Cell Differentiation/genetics
- Myocytes, Smooth Muscle/metabolism
- Cell Proliferation/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/pathology
- Cells, Cultured
Collapse
Affiliation(s)
- Benjamin de la Cruz-Thea
- Mercedes and Martin Ferreyra Medical Research Institute, National Council for Scientific and Technical Research, National University of Córdoba (INIMEC-CONICET-UNC), Córdoba 5016, Argentina
| | - Lautaro Natali
- Mercedes and Martin Ferreyra Medical Research Institute, National Council for Scientific and Technical Research, National University of Córdoba (INIMEC-CONICET-UNC), Córdoba 5016, Argentina
| | - Hung Ho-Xuan
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Núria Coll-Bonfill
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Nicholas Strieder
- NGS-Core, LIT-Leibniz-Institute for Immunotherapy, 93053 Regensburg, Germany
| | - Víctor I Peinado
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Department of Pulmonary Medicine, Hospital Clínic, Biomedical Research Institut August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Melina M Musri
- Mercedes and Martin Ferreyra Medical Research Institute, National Council for Scientific and Technical Research, National University of Córdoba (INIMEC-CONICET-UNC), Córdoba 5016, Argentina
| |
Collapse
|
8
|
Rodríguez-Esparragón F, Torres-Mata LB, Cazorla-Rivero SE, Serna Gómez JA, González Martín JM, Cánovas-Molina Á, Medina-Suárez JA, González-Hernández AN, Estupiñán-Quintana L, Bartolomé-Durán MC, Rodríguez-Pérez JC, Varas BC. Analysis of ANRIL Isoforms and Key Genes in Patients with Severe Coronary Artery Disease. Int J Mol Sci 2023; 24:16127. [PMID: 38003316 PMCID: PMC10671206 DOI: 10.3390/ijms242216127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), also named CDKN2B-AS1, is a long non-coding RNA with outstanding functions that regulates genes involved in atherosclerosis development. ANRIL genotypes and the expression of linear and circular isoforms have been associated with coronary artery disease (CAD). The CDKN2A and the CDKN2B genes at the CDKN2A/B locus encode the Cyclin-Dependent Kinase inhibitor protein (CDKI) p16INK4a and the p53 regulatory protein p14ARF, which are involved in cell cycle regulation, aging, senescence, and apoptosis. Abnormal ANRIL expression regulates vascular endothelial growth factor (VEGF) gene expression, and upregulated Vascular Endothelial Growth Factor (VEGF) promotes angiogenesis by activating the NF-κB signaling pathway. Here, we explored associations between determinations of the linear, circular, and linear-to-circular ANRIL gene expression ratio, CDKN2A, VEGF and its receptor kinase insert domain-containing receptor (KDR) and cardiovascular risk factors and all-cause mortality in high-risk coronary patients before they undergo coronary artery bypass grafting surgery (CABG). We found that the expression of ANRIL isoforms may help in the prediction of CAD outcomes. Linear isoforms were correlated with a worse cardiovascular risk profile while the expression of circular isoforms of ANRIL correlated with a decrease in oxidative stress. However, the determination of the linear versus circular ratio of ANRIL did not report additional information to that determined by the evaluation of individual isoforms. Although the expressions of the VEFG and KDR genes correlated with a decrease in oxidative stress, in binary logistic regression analysis it was observed that only the expression of linear isoforms of ANRIL and VEGF significantly contributed to the prediction of the number of surgical revascularizations.
Collapse
Affiliation(s)
- Francisco Rodríguez-Esparragón
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, 38296 San Cristobal de La Laguna, Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura B. Torres-Mata
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Specific Didactics, University of Las Palmas de Gran Canaria, 35004 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Sara E. Cazorla-Rivero
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Internal Medicine, University of La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Jaime A. Serna Gómez
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Deparment of Cardiovascular Surgery, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Jesús M. González Martín
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángeles Cánovas-Molina
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - José A. Medina-Suárez
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Specific Didactics, University of Las Palmas de Gran Canaria, 35004 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Ayose N. González-Hernández
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Deparment of Neurology and Clinical Neurophysiology, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Lidia Estupiñán-Quintana
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - María C. Bartolomé-Durán
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - José C. Rodríguez-Pérez
- Vice Chancellor of Research, Universidad Fernando Pessoa Canarias, 35002 Santa María de Guía de Gran Canaria, Gran Canaria, Spain;
| | - Bernardino Clavo Varas
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain; (L.B.T.-M.); (S.E.C.-R.); (J.A.S.G.); (J.M.G.M.); (Á.C.-M.); (J.A.M.-S.); (A.N.G.-H.); (L.E.-Q.); (M.C.B.-D.)
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, 38296 San Cristobal de La Laguna, Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Universitary Institute for Research in Biomedicine and Health (iUIBS), Molecular and Translational Pharmacology Group, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Gran Canaria, Spain
- Spanish Group of Clinical Research in Radiation Oncology (GICOR), 28290 Madrid, Spain
| |
Collapse
|
9
|
Petkovic A, Erceg S, Munjas J, Ninic A, Vladimirov S, Davidovic A, Vukmirovic L, Milanov M, Cvijanovic D, Mitic T, Sopic M. LncRNAs as Regulators of Atherosclerotic Plaque Stability. Cells 2023; 12:1832. [PMID: 37508497 PMCID: PMC10378138 DOI: 10.3390/cells12141832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Current clinical data show that, despite constant efforts to develop novel therapies and clinical approaches, atherosclerotic cardiovascular diseases (ASCVD) are still one of the leading causes of death worldwide. Advanced and unstable atherosclerotic plaques most often trigger acute coronary events that can lead to fatal outcomes. However, despite the fact that different plaque phenotypes may require different treatments, current approaches to prognosis, diagnosis, and classification of acute coronary syndrome do not consider the diversity of plaque phenotypes. Long non-coding RNAs (lncRNAs) represent an important class of molecules that are implicated in epigenetic control of numerous cellular processes. Here we review the latest knowledge about lncRNAs' influence on plaque development and stability through regulation of immune response, lipid metabolism, extracellular matrix remodelling, endothelial cell function, and vascular smooth muscle function, with special emphasis on pro-atherogenic and anti-atherogenic lncRNA functions. In addition, we present current challenges in the research of lncRNAs' role in atherosclerosis and translation of the findings from animal models to humans. Finally, we present the directions for future lncRNA-oriented research, which may ultimately result in patient-oriented therapeutic strategies for ASCVD.
Collapse
Affiliation(s)
- Aleksa Petkovic
- Clinical-Hospital Centre "Dr Dragiša Mišović-Dedinje", 11000 Belgrade, Serbia
| | - Sanja Erceg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Davidovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
- Department for Internal Medicine, Faculty of Dentistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Luka Vukmirovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Marko Milanov
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Dane Cvijanovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Tijana Mitic
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Lu BH, Liu HB, Guo SX, Zhang J, Li DX, Chen ZG, Lin F, Zhao GA. Long non-coding RNAs: Modulators of phenotypic transformation in vascular smooth muscle cells. Front Cardiovasc Med 2022; 9:959955. [PMID: 36093159 PMCID: PMC9458932 DOI: 10.3389/fcvm.2022.959955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Long non-coding RNA (lncRNAs) are longer than 200 nucleotides and cannot encode proteins but can regulate the expression of genes through epigenetic, transcriptional, and post-transcriptional modifications. The pathophysiology of smooth muscle cells can lead to many vascular diseases, and studies have shown that lncRNAs can regulate the phenotypic conversion of smooth muscle cells so that smooth muscle cells proliferate, migrate, and undergo apoptosis, thereby affecting the development and prognosis of vascular diseases. This review discusses the molecular mechanisms of lncRNA as a signal, bait, stent, guide, and other functions to regulate the phenotypic conversion of vascular smooth muscle cells, and summarizes the role of lncRNAs in regulating vascular smooth muscle cells in atherosclerosis, hypertension, aortic dissection, vascular restenosis, and aneurysms, providing new ideas for the diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Bing-Han Lu
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui-Bing Liu
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
- Henan Normal University, Xinxiang, China
| | - Shu-Xun Guo
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Dong-Xu Li
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhi-Gang Chen
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Guo-An Zhao
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| |
Collapse
|
11
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
12
|
Deng L, Han X, Wang Z, Nie X, Bian J. The Landscape of Noncoding RNA in Pulmonary Hypertension. Biomolecules 2022; 12:biom12060796. [PMID: 35740920 PMCID: PMC9220981 DOI: 10.3390/biom12060796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
The transcriptome of pulmonary hypertension (PH) is complex and highly genetically heterogeneous, with noncoding RNA transcripts playing crucial roles. The majority of RNAs in the noncoding transcriptome are long noncoding RNAs (lncRNAs) with less circular RNAs (circRNAs), which are two characteristics gaining increasing attention in the forefront of RNA research field. These noncoding transcripts (especially lncRNAs and circRNAs) exert important regulatory functions in PH and emerge as potential disease biomarkers and therapeutic targets. Recent technological advancements have established great momentum for discovery and functional characterization of ncRNAs, which include broad transcriptome sequencing such as bulk RNA-sequence, single-cell and spatial transcriptomics, and RNA-protein/RNA interactions. In this review, we summarize the current research on the classification, biogenesis, and the biological functions and molecular mechanisms of these noncoding RNAs (ncRNAs) involved in the pulmonary vascular remodeling in PH. Furthermore, we highlight the utility and challenges of using these ncRNAs as biomarkers and therapeutics in PH.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaofeng Han
- Department of Diagnostic and Interventional Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China;
| | - Ziping Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaowei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China
- Correspondence: (X.N.); (J.B.)
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
- Correspondence: (X.N.); (J.B.)
| |
Collapse
|
13
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
14
|
Razeghian-Jahromi I, Karimi Akhormeh A, Zibaeenezhad MJ. The Role of ANRIL in Atherosclerosis. DISEASE MARKERS 2022; 2022:8859677. [PMID: 35186169 PMCID: PMC8849964 DOI: 10.1155/2022/8859677] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
Abstract
There is a huge number of noncoding RNA (ncRNA) transcripts in the cell with important roles in modulation of different mechanisms. ANRIL is a long ncRNA with 3.8 kb length that is transcribed in the opposite direction of the INK4/ARF locus in chromosome 9p21. It was shown that polymorphisms within this locus are associated with vascular disorders, notably coronary artery disease (CAD), which is considered as a risk factor for life-threatening events like myocardial infarction and stroke. ANRIL is subjected to a variety of splicing patterns producing multiple isoforms. Linear isoforms could be further transformed into circular ones by back-splicing. ANRIL regulates genes in atherogenic network in a positive or negative manner. This regulation is implemented both locally and remotely. While CAD is known as a proliferative disorder and cell proliferation plays a crucial role in the progression of atherosclerosis, the functions of ANRIL and CAD development are intertwined remarkably. This makes ANRIL a suitable target for diagnostic, prognostic, and even therapeutic aims. In this review, we tried to present a comprehensive appraisal on different aspects of ANRIL including its location, structure, isoforms, expression, and functions. In each step, the contribution of ANRIL to atherosclerosis is discussed.
Collapse
Affiliation(s)
| | - Ali Karimi Akhormeh
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
15
|
Xu D, Dai R, Chi H, Ge W, Rong J. Long Non-Coding RNA MEG8 Suppresses Hypoxia-Induced Excessive Proliferation, Migration and Inflammation of Vascular Smooth Muscle Cells by Regulation of the miR-195-5p/RECK Axis. Front Mol Biosci 2021; 8:697273. [PMID: 34790697 PMCID: PMC8592128 DOI: 10.3389/fmolb.2021.697273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
It has been recognized that rebalancing the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) helps relieve vascular injury. Presently, we aim to investigate whether long non-coding RNA (lncRNA) maternally expressed 8 (MEG8) plays a role in affecting the excessive proliferation and migration of VSMCs following hypoxia stimulation. A percutaneous transluminal angioplasty balloon dilatation catheter was adopted to establish vascular intimal injury, the levels of MEG8 and miR-195-5p in the carotid artery were tested by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Hypoxia was used to stimulate VSMCs, then the cell counting kit-8 (CCK-8) assay, Transnwell assay, and wound healing assay were conducted to evaluate the proliferation, and migration of VSMCs. The protein levels of RECK (reversion inducing cysteine rich protein with kazal motifs), MMP (matrix metalloproteinase) 3/9/13, COX2 (cytochrome c oxidase subunit II), macrophage inflammatory protein (MIP)-1beta, VCAM-1 (vascular cell adhesion molecule 1), ICAM-1 (intercellular adhesion molecule 1), and HIF-1α (hypoxia inducible factor 1 subunit alpha) were determined by western blot or cellular immunofluorescence. As the data showed, MEG8 was down-regulated in the carotid artery after balloon injury in rats and hypoxia-treated VSMCs, and miR-195-5p was overexpressed. Forced MEG8 overexpression or inhibiting miR-195-5p attenuated hypoxia-promoted cell proliferation and migration of VSMCs. In addition, miR-195-5p up-regulation reversed MEG8-mediated effects. Hypoxia hindered the RECK expression while boosted MMP3/9/13 levels, and the effect was markedly reversed with MEG8 up-regulation or miR-195-5p down-regulation. Mechanistically, MEG8 functioned as a competitive endogenous (ceRNA) by sponging miR-195-5p which targeted RECK. Moreover, the HIF-1α inhibitor PX478 prevented hypoxia-induced proliferation, and migration of VSMCs, upregulated MEG8, and restrained miR-195-5p expression. Overall, lncRNA MEG8 participated in hypoxia-induced excessive proliferation, inflammation and migration of VSMCs through the miR-195-5p/RECK axis.
Collapse
Affiliation(s)
- Dexing Xu
- Department of Cardiology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Ruozhu Dai
- Department of Cardiology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Hao Chi
- Department of Cardiothoracic Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Ge
- Department of Cardiothoracic Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingfeng Rong
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Li J, Chen J, Zhang F, Li J, An S, Cheng M, Li J. LncRNA CDKN2B-AS1 hinders the proliferation and facilitates apoptosis of ox-LDL-induced vascular smooth muscle cells via the ceRNA network of CDKN2B-AS1/miR-126-5p/PTPN7. Int J Cardiol 2021; 340:79-87. [PMID: 34384839 DOI: 10.1016/j.ijcard.2021.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The patterns of lncRNA CDKN2B-AS1 in coronary heart disease (CHD) have been extensively studied. This study investigated the competing endogenous RNA (ceRNA) network of CDKN2B-AS1 in coronary atherosclerosis (CAS). METHODS Microarray analyses were performed to screen out the CHD-related lncRNAs (CDKN2B-AS1) and the downstream microRNAs (miR-126-5p). The expression of CDKN2B-AS1 in serum of patients with CHD and healthy volunteers was detected. Vascular smooth muscle cells (VSMCs) were treated with oxidized low density lipoprotein (ox-LDL) to establish the cell model. Then pcDNA-CDKN2B-AS1 and/or miR-126-5p mimic were transfected into ox-LDL-treated VSMCs to estimate cell proliferation, apoptosis and inflammation. The ceRNA network of CDKN2B-AS1 along with the possible pathway in CHD was testified. RESULTS CDKN2B-AS1 expression was low in patients with CHD and ox-LDL-treated VSMCs. Upon CDKN2B-AS1 overexpression, TNF-α, NF-κB and IL-1β levels in VSMCs were decreased, the proliferation of VSMCs was inhibited and the apoptosis rate was increased. Overexpression of miR-126-5p could reverse these trends. CDKN2B-AS1 as a ceRNA competitively bound to miR-126-5p to upregulate PTPN7. CDKN2B-AS1 inhibited VSMC proliferation and accelerated apoptosis by inhibiting the PI3K-Akt pathway. CONCLUSION LncRNA CDKN2B-AS1 upregulates PTPN7 by absorbing miR-126-5p and inhibits the PI3K-Akt pathway, thus hindering the proliferation and accelerating apoptosis of VSMCs induced by ox-LDL, thus being a therapeutic approach for CAS.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Jia Chen
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Fan Zhang
- Department of Cardiac Vascular Surgery, Linfen City Center Hospital, Linfen 041000, Shanxi, China
| | - Jianfeng Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shoukuan An
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ming Cheng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| | - Junquan Li
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
17
|
Kansakar U, Jankauskas SS, Gambardella J, Santulli G. Targeting the phenotypic switch of vascular smooth muscle cells to tackle atherosclerosis. Atherosclerosis 2021; 324:117-120. [PMID: 33832772 PMCID: PMC8195811 DOI: 10.1016/j.atherosclerosis.2021.03.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Urna Kansakar
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, 10461, NY, United States
| | - Stanislovas S Jankauskas
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, 10461, NY, United States; Department of Medicine (Division of Cardiology), Albert Einstein College of Medicine - Montefiore University Hospital, New York City, 10461, NY, United States
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, 10461, NY, United States; Department of Medicine (Division of Cardiology), Albert Einstein College of Medicine - Montefiore University Hospital, New York City, 10461, NY, United States; Department of Advanced Biomedical Sciences, "Federico II" University, Naples, 80131, Italy
| | - Gaetano Santulli
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, 10461, NY, United States; Department of Medicine (Division of Cardiology), Albert Einstein College of Medicine - Montefiore University Hospital, New York City, 10461, NY, United States; Department of Advanced Biomedical Sciences, "Federico II" University, Naples, 80131, Italy; International Translational Research and Medical Education (ITME), Naples, 80100, Italy.
| |
Collapse
|