1
|
Xu M, Xu C, Wang R, Tang Q, Zhou Q, Wu W, Wan X, Mo H, Pan J, Wang S. Treating human cancer by targeting EZH2. Genes Dis 2025; 12:101313. [PMID: 40028035 PMCID: PMC11870178 DOI: 10.1016/j.gendis.2024.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), an epigenetic regulator that primarily inhibits downstream gene expression by tri-methylating histone H3, which is usually overexpressed in tumors and participates in many processes such as tumor occurrence and development, invasion, migration, drug resistance, and anti-tumor immunity as an oncogene, making it an important biomarker in cancer therapy. Collectively, several transcription factors and RNAs cooperate to facilitate the elevated expression of EZH2 in cancer. Although the significance of blocking EZH2 in cancer for inhibiting cancer progression is widely recognized, the clinical application of EZH2 inhibitors continues to encounter numerous challenges. In this review, drawing upon our comprehensive understanding of the factual underpinnings of EZH2's role in cancer, we aim to clarify the crucial importance of targeting EZH2 in cancer treatment. Furthermore, we summarize the current research landscape surrounding targeted EZH2 inhibitors and offer insights into potential future applications of these inhibitors.
Collapse
Affiliation(s)
- Mengfei Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Chunyan Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Rui Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qing Tang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qichun Zhou
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xinliang Wan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Handan Mo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Jun Pan
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| |
Collapse
|
2
|
Ge Y, Jia B, Zhang P, Chen B, Liu L, Shi Y, Huang S, Liu X, Wang R, Xie Y, Li Z, Dong J. TBX15 facilitates malignant progression of glioma by transcriptional activation of TXDNC5. iScience 2024; 27:108950. [PMID: 38327797 PMCID: PMC10847739 DOI: 10.1016/j.isci.2024.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
T-box transcription factor 15 (TBX15) plays important role in various cancers; however, its expression and role in glioma is still unclear. In this study, our findings indicated that TBX15 was increased in gliomas compared to normal brain tissues, and high levels of TBX15 were related to poor survival. Furthermore, TBX15 silencing in glioma cells not only inhibited their proliferation, migration, and invasion in vitro, but also weakened their ability to recruit macrophages and polarize the latter to the M2 subtype. Mechanism study indicated that thioredoxin domain containing 5 (TXNDC5) lies downstream of TBX15. Furthermore, rescue assays verified that the role of TBX15 in glioma cells is dependent on TXNDC5. Moreover, sh-TBX15 loaded into DNA origami nanocarrier suppressed the malignant phenotype of glioma in vitro and in vivo. Taken together, the TBX15/TXNDC5 axis is involved in the genesis and progression of glioma, and is a potential therapeutic target.
Collapse
Affiliation(s)
- Yuyuan Ge
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Bin Jia
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Peng Zhang
- Department of Neurosurgery, People’s Hospital of Rugao, Nantong 226500, China
- Department of Neurosurgery, Rugao Clinical College, Jiangsu Health Vocational College, Nantong 226500, China
| | - Baomin Chen
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yan Shi
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shilu Huang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xinglei Liu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
3
|
Imrie G, Gray MB, Raghuraman V, Farhy-Tselnicker I. Gene Expression at the Tripartite Synapse: Bridging the Gap Between Neurons and Astrocytes. ADVANCES IN NEUROBIOLOGY 2024; 39:95-136. [PMID: 39190073 DOI: 10.1007/978-3-031-64839-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes, a major class of glial cells, are an important element at the synapse where they engage in bidirectional crosstalk with neurons to regulate numerous aspects of neurotransmission, circuit function, and behavior. Mutations in synapse-related genes expressed in both neurons and astrocytes are central factors in a vast number of neurological disorders, making the proteins that they encode prominent targets for therapeutic intervention. Yet, while the roles of many of these synaptic proteins in neurons are well established, the functions of the same proteins in astrocytes are largely unknown. This gap in knowledge must be addressed to refine therapeutic approaches. In this chapter, we integrate multiomic meta-analysis and a comprehensive overview of current literature to show that astrocytes express an astounding number of genes that overlap with the neuronal and synaptic transcriptomes. Further, we highlight recent reports that characterize the expression patterns and potential novel roles of these genes in astrocytes in both physiological and pathological conditions, underscoring the importance of considering both cell types when investigating the function and regulation of synaptic proteins.
Collapse
Affiliation(s)
- Gillian Imrie
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Madison B Gray
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vishnuvasan Raghuraman
- Department of Biology, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Isabella Farhy-Tselnicker
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Yan S, Wang M. HCG11 inhibits salivary adenoid cystic carcinoma by upregulating EphA2 via binding to miR-1297. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 135:257-267. [PMID: 36396591 DOI: 10.1016/j.oooo.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Ephrin receptor A2 (EphA2) was reported to be related to the tumorigenesis of salivary adenoid cystic carcinoma (SACC), which is a rare malignancy accounting for less than 1% of all oral and maxillofacial tumors. This research aimed to assess the molecular mechanisms of EphA2 in SACC. STUDY DESIGN The expression of long non-coding RNA human leukocyte antigen complex group 11 (HCG11), microRNA-1297 (miR-1297), and EphA2 in SACC cell lines compared with normal human salivary gland (HSG) cell line was measured by reverse transcription-quantitative polymerase chain reaction. EphA2 protein level was detected by western blot. 5-ethynyl-2'-deoxyuridine (EdU), colony formation, Transwell, and wounding healing experiments were applied to evaluate SACC cell proliferation, migration, and invasion. The relationship among HCG11, miR-1297, and EphA2 was confirmed by luciferase reporter, RNA pulldown, and RNA immunoprecipitation experiments. RESULTS HCG11 and EphA2 were downregulated while miR-1297 was upregulated in SACC cells. EphA2 overexpression suppressed SACC cell proliferation, migration, and invasion. HCG11 bound to miR-1297 to reduce the inhibition of miR-1297 on EphA2 expression. EphA2 knockdown reversed the suppression of HCG11 overexpression on SACC cell phenotypes. CONCLUSION This study identified the HCG11/miR-1297/EphA2 regulatory axis in SACC, which might provide novel therapeutic targets for SACC.
Collapse
Affiliation(s)
- Shujuan Yan
- Department of Oral and Maxillofacial Surgery, Changyi People's Hospital, Weifang 261300, Shandong, China
| | - Meng Wang
- Health Management Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong, China.
| |
Collapse
|
5
|
Zhang P, Zhang T, Chen D, Gong L, Sun M. Prognosis and Novel Drug Targets for Key lncRNAs of Epigenetic Modification in Colorectal Cancer. Mediators Inflamm 2023; 2023:6632205. [PMID: 37091904 PMCID: PMC10116225 DOI: 10.1155/2023/6632205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Background Colorectal cancer (CRC) has been the 3rd most commonly malignant tumor of the gastrointestinal tract in the world. 5-Methylcytosine (m5C) and long noncoding RNAs (lncRNAs) have an essential role in predicting the prognosis and immune response for CRC patients. Therefore, we built a m5C-related lncRNA (m5CRlncRNA) model to investigate the prognosis and treatment methods for CRC patients. Methods Firstly, we secured the transcriptome and clinical data for CRC from The Cancer Genome Atlas (TCGA). Then, m5CRlncRNAs were recognized by coexpression analysis. Then, univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were utilized to build m5C-related prognostic characteristics. Besides, Kaplan-Meier analysis, ROC, PCA, C-index, enrichment analysis, and nomogram were performed to investigate the model. Additionally, immunotherapy responses and antitumor medicines were explored for CRC patients. Results A total of 8 m5C-related lncRNAs (AC093157.1, LINC00513, AC025171.4, AC090948.2, ZEB1-AS1, AC109449.1, AC009041.3, and LINC02516) were adopted to construct a risk model to investigate survival and prognosis for CRC patients. CRC samples were separated into low- and high-risk groups, with the latter having a worse prognosis. The m5C-related lncRNA model helps us to better distinguish immunotherapy responses and IC50 of antitumor medicines in different groups of CRC patients. Conclusion The research may give new perspectives on tailored therapy approaches as well as novel theories for forecasting the prognosis of CRC patients.
Collapse
Affiliation(s)
- Peng Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tingting Zhang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Denggang Chen
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Gong
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
6
|
Ghaemi S, Fekrirad Z, Zamani N, Rahmani R, Arefian E. Non-coding RNAs Enhance the Apoptosis Efficacy of Therapeutic Agents Used for the Treatment of Glioblastoma Multiform. J Drug Target 2022; 30:589-602. [DOI: 10.1080/1061186x.2022.2047191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nina Zamani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Sabaie H, Moghaddam MM, Moghaddam MM, Ahangar NK, Asadi MR, Hussen BM, Taheri M, Rezazadeh M. Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia. Sci Rep 2021; 11:24413. [PMID: 34952924 PMCID: PMC8709859 DOI: 10.1038/s41598-021-03993-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia (SCZ) is a serious psychiatric condition with a 1% lifetime risk. SCZ is one of the top ten global causes of disabilities. Despite numerous attempts to understand the function of genetic factors in SCZ development, genetic components in SCZ pathophysiology remain unknown. The competing endogenous RNA (ceRNA) network has been demonstrated to be involved in the development of many kinds of diseases. The ceRNA hypothesis states that cross-talks between coding and non-coding RNAs, including long non-coding RNAs (lncRNAs), via miRNA complementary sequences known as miRNA response elements, creates a large regulatory network across the transcriptome. In the present study, we developed a lncRNA-related ceRNA network to elucidate molecular regulatory mechanisms involved in SCZ. Microarray datasets associated with brain regions (GSE53987) and lymphoblasts (LBs) derived from peripheral blood (sample set B from GSE73129) of SCZ patients and control subjects containing information about both mRNAs and lncRNAs were downloaded from the Gene Expression Omnibus database. The GSE53987 comprised 48 brain samples taken from SCZ patients (15 HPC: hippocampus, 15 BA46: Brodmann area 46, 18 STR: striatum) and 55 brain samples taken from control subjects (18 HPC, 19 BA46, 18 STR). The sample set B of GSE73129 comprised 30 LB samples (15 patients with SCZ and 15 controls). Differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the limma package of the R software. Using DIANA-LncBase, Human MicroRNA Disease Database (HMDD), and miRTarBase, the lncRNA- associated ceRNA network was generated. Pathway enrichment of DEmRNAs was performed using the Enrichr tool. We developed a protein-protein interaction network of DEmRNAs and identified the top five hub genes by the use of STRING and Cytoscape, respectively. Eventually, the hub genes, DElncRNAs, and predictive miRNAs were chosen to reconstruct the subceRNA networks. Our bioinformatics analysis showed that twelve key DEmRNAs, including BDNF, VEGFA, FGF2, FOS, CD44, SOX2, NRAS, SPARC, ZFP36, FGG, ELAVL1, and STARD13, participate in the ceRNA network in SCZ. We also identified DLX6-AS1, NEAT1, MINCR, LINC01094, DLGAP1-AS1, BABAM2-AS1, PAX8-AS1, ZFHX4-AS1, XIST, and MALAT1 as key DElncRNAs regulating the genes mentioned above. Furthermore, expression of 15 DEmRNAs (e.g., ADM and HLA-DRB1) and one DElncRNA (XIST) were changed in both the brain and LB, suggesting that they could be regarded as candidates for future biomarker studies. The study indicated that ceRNAs could be research candidates for investigating SCZ molecular pathways.
Collapse
Affiliation(s)
- Hani Sabaie
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Madiheh Mazaheri Moghaddam
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | | | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Lv W, Tan Y, Zhao C, Wang Y, Wu M, Wu Y, Ren Y, Zhang Q. Identification of pyroptosis-related lncRNAs for constructing a prognostic model and their correlation with immune infiltration in breast cancer. J Cell Mol Med 2021; 25:10403-10417. [PMID: 34632690 PMCID: PMC8581320 DOI: 10.1111/jcmm.16969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/28/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022] Open
Abstract
The inflammasome-dependent cell death, which is denoted as pyroptosis, might be abnormally regulated during oncogenesis and tumour progression. Long non-coding RNAs (LncRNAs) are pivotal orchestrators in breast cancer (BC), which have the potential to be a biomarker for BC diagnosis and therapy. The present study aims to explore the correlation between pyroptosis-related lncRNAs and BC prognosis. In this study, a profile of 8 differentially expressed lncRNAs was screened in the TCGA database and used to construct a prognostic model. The BC patients were divided into high- and low-risk groups dependent on the median cutoff of the risk score in the model. Interestingly, the risk model significantly distinguished the clinical characteristics of BC patients between high- and low-risk groups. Then, the risk score of the model was identified to be an excellent independent prognostic factor. Notably, the GO, KEGG, GSEA and ssGSEA analyses revealed the different immune statuses between the high- and low-risk groups. Particularly, the 8 lncRNAs expressed differentially in BC tissues between two risk subgroups in vitro validation. Collectively, this constructed well-validated model is of high effectiveness to predict the prognosis of BC, which will provide novel means that is applicable for BC prognosis recognition.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yufang Tan
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chongru Zhao
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yichen Wang
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Min Wu
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yiping Wu
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuping Ren
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qi Zhang
- Department of Plastic and Cosmetic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Lu J, Chen Y, Wen L, Zhou Q, Yan S. LncRNA CDKN2B-AS1 contributes to glioma development by regulating the miR-199a-5p/DDR1 axis. J Gene Med 2021; 24:e3389. [PMID: 34559933 DOI: 10.1002/jgm.3389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) is upregulated in glioma, its function and potential mechanism in glioma remain unclear. METHODS CDKN2B-AS1 level in glioma tissues and cell lines LN229, U251, and U87 was measured by qRT-PCR. Loss-of-function assays using short hairpin RNA for CDKN2B-AS1 (sh-CDKN2B-AS1) were performed to evaluate the effect of CDKN2B-AS1 on cell invasion, migration, proliferation, and apoptosis. The relationship among CDKN2B-AS1, miR-199a-5p, and DDR1 was determined by bioinformatics analysis and luciferase reporter assay. Rescue experiments were conducted to explore the function of CDKN2B-AS1 and miR-199a-5p in glioma. An in vivo animal model of lentivirally transduced U87 glioma xenografts in mice was established to confirm the role of CDKN2B-AS1. RESULTS CDKN2B-AS1 is significantly upregulated in glioma tissues and cell lines. CDKN2B-AS1 knockdown significantly inhibits cell proliferation, invasion, and migration, while promoting apoptosis of glioma cell lines U251 and U87. Further, a miR-199a-5p inhibitor attenuates the inhibitory effects of sh-CDKN2B-AS1 on these cell phenotypes. CDKN2B-AS1 positively regulates DDR1 expression by directly sponging miR-199a-5p. Moreover, CDKN2B-AS1 knockdown efficiently inhibits U87 tumor xenograft growth in mice. CONCLUSION Our study reveals that CDKN2B-AS1 promotes glioma development by regulating the miR-199a-5p/DDR1 axis, suggesting that this lncRNA might be a potential therapeutic target.
Collapse
Affiliation(s)
- Jiachao Lu
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yuanjun Chen
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Liangbao Wen
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Quan Zhou
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Sheng Yan
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|