1
|
Christian LM, Wilson S, Madison AA, Kamp Dush CM, McDade TW, Peng J, Andridge RR, Morgan E, Manning W, Cole SW. Sexual minority stress and epigenetic aging. Brain Behav Immun 2025; 126:24-29. [PMID: 39894063 DOI: 10.1016/j.bbi.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025] Open
Abstract
Lesbian, gay, bisexual, transgender, and queer/questioning (LGBTQ + ) individuals have poorer mental and physical health than heterosexuals, and bisexuals fare worse than individuals who identify as lesbian and gay. However, data on stress biology among sexual minorities are critically insufficient. The current pilot study utilized data from 32 bisexual women - a subset of the National Couples' Health and Time Study - who completed questionnaires and provided blood samples to index biological aging from DNA methylation data (DunedinPACE, GrimAge2). The mean DunedinPACE score was 1.13 (SD = 0.18), which outpaced chronological aging by 13 % (p < 0.001). Likewise, bisexual women in this sample were, on average, 8.67 (SD = 5.96) years older biologically per GrimAge2 as compared to their chronological age. In covariate adjusted models, those reporting greater internalized homonegativity exhibited significantly greater epigenetic age acceleration (GrimAge2: p = 0.01; DunedinPACE: p = 0.041). Those who reported more frequent anti-bisexual experiences also showed accelerated GrimAge2 (p = 0.023). In contrast, those who reported stronger identity centrality (p = 0.017), stronger identity affirmation (p = 0.029), and more friend support (p = 0.018) - a critical type of support for LGBTQ + individuals - had slower GrimAge2. Depressive symptoms, anxiety and loneliness were not associated with GrimAge2 or DunedinPACE. Results suggest that bisexual women are at risk for accelerated aging, and those who have less internal and external affirmation of their sexual identity may be most at risk.
Collapse
Affiliation(s)
- Lisa M Christian
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center Columbus OH USA; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center Columbus OH USA.
| | - Stephanie Wilson
- Department of Psychology, University of Alabama at Birmingham Birmingham AL USA
| | | | | | - Thomas W McDade
- Department of Anthropology, Northwestern University Evanston IL USA; Institute for Policy Research, Northwestern University Evanston IL USA; Child and Brain Development Program, Canadian Institute for Advanced Research Toronto Ontario Canada
| | - Juan Peng
- Center for Biostatistics, College of Medicine, The Ohio State University Columbus OH USA
| | - Rebecca R Andridge
- Division of Biostatistics, College of Public Health, The Ohio State University Columbus OH USA
| | - Ethan Morgan
- College of Nursing and Infectious Disease Institute, The Ohio State University Columbus OH USA
| | - Wendy Manning
- Department of Sociology Bowling Green State University Bowling Green OH USA
| | - Steve W Cole
- Department of Psychiatry & Biobehavioral Sciences, UCLA School of Medicine Los Angeles CA USA
| |
Collapse
|
2
|
Großbach A, Suderman MJ, Hüls A, Lussier AA, Smith ADAC, Walton E, Dunn EC, Simpkin AJ. Maximizing insights from longitudinal epigenetic age data: simulations, applications, and practical guidance. Clin Epigenetics 2024; 16:187. [PMID: 39707425 DOI: 10.1186/s13148-024-01784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Epigenetic age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk. Limited by available data, most studies investigating these relationships have been cross-sectional, using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led to analyses of associations with EA over time. These studies differ in (1) their choice of model; (2) the primary outcome (EA vs. EAA); and (3) in their use of chronological age or age-independent time variables to account for the temporal dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world examples, using biological sex and birthweight as predictors of longitudinal EA. RESULTS Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equation, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact estimates. Applying the optimal model in real-world data uncovered advanced GrimAge in individuals assigned male at birth that decelerates over time. CONCLUSION Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological decisions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.
Collapse
Affiliation(s)
- Anna Großbach
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland.
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland.
| | - Matthew J Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew D A C Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Erin C Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Sociology, College of Liberal Arts, Purdue University, West Lafayette, IN, USA
| | - Andrew J Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| |
Collapse
|
3
|
Reynolds LM, Houston DK, Skiba MB, Whitsel EA, Stewart JD, Li Y, Zannas AS, Assimes TL, Horvath S, Bhatti P, Baccarelli AA, Tooze JA, Vitolins MZ. Diet Quality and Epigenetic Aging in the Women's Health Initiative. J Acad Nutr Diet 2024; 124:1419-1430.e3. [PMID: 38215906 PMCID: PMC11236955 DOI: 10.1016/j.jand.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Higher diet quality scores are associated with a lower risk for many chronic diseases and all-cause mortality; however, it is unclear if diet quality is associated with aging biology. OBJECTIVE This study aimed to examine the association between diet quality and a measure of biological aging known as epigenetic aging. DESIGN A cross-sectional data analysis was used to examine the association between three diet quality scores based on self-reported food frequency questionnaire data and five measures of epigenetic aging based on DNA methylation (DNAm) data from peripheral blood. PARTICIPANTS/SETTING This study included 4,500 postmenopausal women recruited from multiple sites across the United States (1993-98), aged 50 to 79 years, with food frequency questionnaire and DNAm data available from the Women's Health Initiative baseline visit. MAIN OUTCOME MEASURES Five established epigenetic aging measures were generated from HumanMethylation450 Beadchip DNAm data, including AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno, AgeAccelGrim, and DunedinPACE. STATISTICAL ANALYSES PERFORMED Linear mixed models were used to test for associations between three diet quality scores (Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores) and epigenetic aging measures, adjusted for age, race and ethnicity, education, tobacco smoking, physical activity, Women's Health Initiative substudy from which DNAm data were obtained, and DNAm-based estimates of leukocyte proportions. RESULTS Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores were all inversely associated with AgeAccelPheno, AgeAccelGrim, and DunedinPACE (P < 0.05), with the largest effects with DunedinPACE. A one standard deviation increment in diet quality scores was associated with a decrement (β ± SE) in DunedinPACE z score of -0.097 ± 0.014 (P = 9.70 x 10-13) for Healthy Eating Index, -0.107 ± 0.014 (P = 1.53 x 10-14) for Dietary Approaches to Stop Hypertension, and -0.068 ± 0.013 (P = 2.31 x 10-07) for the alternate Mediterranean diet. CONCLUSIONS In postmenopausal women, diet quality scores were inversely associated with DNAm-based measures of biological aging, particularly DunedinPACE.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| | - Denise K Houston
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Meghan B Skiba
- Division of Biobehavioral Health Science, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Yun Li
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Steve Horvath
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California; Altos Labs, San Diego, California
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Janet A Tooze
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mara Z Vitolins
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
4
|
Harvanek ZM, Kudinova AY, Wong SA, Xu K, Brick L, Daniels TE, Marsit C, Burt A, Sinha R, Tyrka AR. Childhood adversity, accelerated GrimAge, and associated health consequences. J Behav Med 2024; 47:913-926. [PMID: 38762606 PMCID: PMC11365810 DOI: 10.1007/s10865-024-00496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
Childhood adversity is linked to psychological, behavioral, and physical health problems, including obesity and cardiometabolic disease. Epigenetic alterations are one pathway through which the effects of early life stress and adversity might persist into adulthood. Epigenetic mechanisms have also been proposed to explain why cardiometabolic health can vary greatly between individuals with similar Body Mass Index (BMIs). We evaluated two independent cross-sectional cohorts of adults without known medical illness, one of which explicitly recruited individuals with early life stress (ELS) and control participants (n = 195), and the other a general community sample (n = 477). In these cohorts, we examine associations between childhood adversity, epigenetic aging, and metabolic health. Childhood adversity was associated with increased GrimAge Acceleration (GAA) in both cohorts, both utilizing a dichotomous yes/no classification (both p < 0.01) as well as a continuous measure using the Childhood Trauma Questionnaire (CTQ) (both p < 0.05). Further investigation demonstrated that CTQ subscales for physical and sexual abuse (both p < 0.05) were associated with increased GAA in both cohorts, whereas physical and emotional neglect were not. In both cohorts, higher CTQ was also associated with higher BMI and increased insulin resistance (both p < 0.05). Finally, we demonstrate a moderating effect of BMI on the relationship between GAA and insulin resistance where GAA correlated with insulin resistance specifically at higher BMIs. These results, which were largely replicated between two independent cohorts, suggest that interactions between epigenetics, obesity, and metabolic health may be important mechanisms through which childhood adversity contributes to long-term physical and metabolic health effects.
Collapse
Affiliation(s)
- Zachary M Harvanek
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Yale Stress Center, Yale University, New Haven, CT, USA.
| | - Anastacia Y Kudinova
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Bradley Hospital, Providence, RI, USA
| | - Samantha A Wong
- New York University Grossman School of Medicine, New York, USA
| | - Ke Xu
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychiatry, Connecticut Veteran Healthcare System, West Haven, CT, USA
| | - Leslie Brick
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Teresa E Daniels
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Bradley Hospital, Providence, RI, USA
- Initiative for Stress, Trauma, and Resilience, Alpert Medical School of Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Yale Stress Center, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Initiative for Stress, Trauma, and Resilience, Alpert Medical School of Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
5
|
Gigliotti G, Joshi R, Khalid A, Widmer D, Boccellino M, Viggiano D. Epigenetics, Microbiome and Personalized Medicine: Focus on Kidney Disease. Int J Mol Sci 2024; 25:8592. [PMID: 39201279 PMCID: PMC11354516 DOI: 10.3390/ijms25168592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Personalized medicine, which involves modifying treatment strategies/drug dosages based on massive laboratory/imaging data, faces large statistical and study design problems. The authors believe that the use of continuous multidimensional data, such as those regarding gut microbiota, or binary multidimensional systems properly transformed into a continuous variable, such as the epigenetic clock, offer an advantageous scenario for the design of trials of personalized medicine. We will discuss examples focusing on kidney diseases, specifically on IgA nephropathy. While gut dysbiosis can provide a treatment strategy to restore the standard gut microbiota using probiotics, transforming epigenetic omics data into epigenetic clocks offers a promising tool for personalized acute and chronic kidney disease care. Epigenetic clocks involve a complex transformation of DNA methylome data into estimated biological age. These clocks can identify people at high risk of developing kidney problems even before symptoms appear. Some of the effects of both the epigenetic clock and microbiota on kidney diseases seem to be mediated by endothelial dysfunction. These "big data" (epigenetic clocks and microbiota) can help tailor treatment plans by pinpointing patients likely to experience rapid declines or those who might not need overly aggressive therapies.
Collapse
Affiliation(s)
| | - Rashmi Joshi
- Department Translational Medical Sciences, University of Campania, 81100 Naples, Italy; (R.J.); (A.K.); (D.V.)
| | - Anam Khalid
- Department Translational Medical Sciences, University of Campania, 81100 Naples, Italy; (R.J.); (A.K.); (D.V.)
| | | | - Mariarosaria Boccellino
- Department Experimental Medicine, University of Campania, 81100 Naples, Italy
- Department Life Sciences, Health and Health Professions, Link University, 00165 Rome, Italy
| | - Davide Viggiano
- Department Translational Medical Sciences, University of Campania, 81100 Naples, Italy; (R.J.); (A.K.); (D.V.)
| |
Collapse
|
6
|
Großbach A, Suderman MJ, Hüls A, Lussier AA, Smith AD, Walton E, Dunn EC, Simpkin AJ. Maximizing Insights from Longitudinal Epigenetic Age Data: Simulations, Applications, and Practical Guidance. RESEARCH SQUARE 2024:rs.3.rs-4482915. [PMID: 38947070 PMCID: PMC11213208 DOI: 10.21203/rs.3.rs-4482915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Epigenetic Age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk. Limited by available data, most studies investigating these relationships have been cross-sectional - using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led to analyses of associations with EA over time. These studies differ in (i) their choice of model; (ii) the primary outcome (EA vs. EAA); and (iii) in their use of chronological age or age-independent time variables to account for the temporal dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world examples, using biological sex and birthweight as predictors of longitudinal EA. Results Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equation, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact estimates. Applying the optimal model in real-world data uncovered an accelerated EA rate in males and an advanced EA that decelerates over time in children with higher birthweight. Conclusion Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological decisions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.
Collapse
Affiliation(s)
- Anna Großbach
- School of Mathematical and Statistical Sciences, University of Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Matthew J. Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Alexandre A. Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew D.A.C. Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Erin C. Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| |
Collapse
|
7
|
Schmidt S. Marking Time: Epigenetic Aging May Partially Explain the Arsenic-Cardiovascular Disease Link. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:24001. [PMID: 38319882 PMCID: PMC10846676 DOI: 10.1289/ehp14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
New epigenetic clocks point to DNA methylation as a mechanism in the well-known link between arsenic exposure and cardiovascular disease risk. The results validate the use of these clocks in Native American populations.
Collapse
|
8
|
Gladwell LR, Ahiarah C, Rasheed S, Rahman SM, Choudhury M. Traditional Therapeutics and Potential Epidrugs for CVD: Why Not Both? Life (Basel) 2023; 14:23. [PMID: 38255639 PMCID: PMC10820772 DOI: 10.3390/life14010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. In addition to the high mortality rate, people suffering from CVD often endure difficulties with physical activities and productivity that significantly affect their quality of life. The high prevalence of debilitating risk factors such as obesity, type 2 diabetes mellitus, smoking, hypertension, and hyperlipidemia only predicts a bleak future. Current traditional CVD interventions offer temporary respite; however, they compound the severe economic strain of health-related expenditures. Furthermore, these therapeutics can be prescribed indefinitely. Recent advances in the field of epigenetics have generated new treatment options by confronting CVD at an epigenetic level. This involves modulating gene expression by altering the organization of our genome rather than altering the DNA sequence itself. Epigenetic changes are heritable, reversible, and influenced by environmental factors such as medications. As CVD is physiologically and pathologically diverse in nature, epigenetic interventions can offer a ray of hope to replace or be combined with traditional therapeutics to provide the prospect of addressing more than just the symptoms of CVD. This review discusses various risk factors contributing to CVD, perspectives of current traditional medications in practice, and a focus on potential epigenetic therapeutics to be used as alternatives.
Collapse
Affiliation(s)
- Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Chidinma Ahiarah
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shireen Rasheed
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa 616, Oman
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| |
Collapse
|
9
|
Wang F, Chen Y, Kong J, Xu S, Xu S, Shuai Z, Cai G, Pan F. Differences of RUNX2 gene promoter methylation and transcription level in ankylosing spondylitis. Int J Rheum Dis 2023; 26:2526-2533. [PMID: 37902280 DOI: 10.1111/1756-185x.14955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Ankylosing spondylitis is a refractory immune disease that seriously affects the life and work of patients. Epigenetic modifications, especially DNA methylation, have become a research hotspot in complex diseases. We aim to explore the changes in runt-related transcription factor 2 (RUNX2) gene promoter methylation and transcription level in AS. METHOD We detected the RUNX2 gene promoter methylation in 83 AS patients and 83 healthy controls (HCs), then inspected the mRNA difference of RUNX2 between 30 AS patients and 30 HCs by the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). RESULTS The RUNX2 gene promoter was hypomethylated in AS patients compared to HCs (p < .001). The research involved 4 CpG regions and 74 CpG sites of RUNX2, of which CpG-2, CpG-4 regions, and 18 CpG sites have been differentially methylated. The CpG-4 island methylation was negatively correlated with C-reactive protein (p < .05) in AS patients. In the qRT-PCR validation phase, the mRNA level of RUNX2 in AS patients was significantly higher than HCs (p < .05), and in AS patients who were treated with biologics, the methylation level of CpG-2 island showed a negative correlation to mRNA (p < .05). ROC results indicated that RUNX2 methylation and its transcription level have good potential to distinguish AS patients from HCs. CONCLUSION The RUNX2 gene promoter was hypomethylated in AS patients. Meanwhile, the qRT-PCR verified the up-regulated expression on the transcription level, suggesting the abnormal methylation of RUNX2 contributes to the pathogenesis of AS.
Collapse
Affiliation(s)
- Feier Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Jiangping Kong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Marra PS, Nishizawa Y, Yamanashi T, Sullivan EJ, Comp KR, Crutchley KJ, Wahba NE, Shibata K, Nishiguchi T, Yamanishi K, Noiseux NO, Karam MD, Shinozaki G. NSAIDs use history: impact on the genome-wide DNA methylation profile and possible mechanisms of action. Clin Exp Med 2023; 23:3509-3516. [PMID: 37341931 DOI: 10.1007/s10238-023-01119-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND AND OBJECTIVE NSAIDs inhibit cyclooxygenase, but their role in aging and other diseases is not well understood. Our group previously showed the potential benefit of NSAIDs in decreasing the risk of delirium and mortality. Concurrently, epigenetics signals have also been associated with delirium. Therefore, we sought to find differentially methylated genes and biological pathways related to exposure with NSAIDs by comparing the genome-wide DNA methylation profiles of patients with and without a history of NSAIDs use. METHODS Whole blood samples were collected from 171 patients at the University of Iowa Hospital and Clinics from November 2017 to March 2020. History of NSAIDs use was assessed through a word-search function in the subjects' electronic medical records. DNA was extracted from the blood samples, processed with bisulfite conversion, and analyzed using Illumina's EPIC array. The analysis of top differentially methylated CpG sites and subsequent enrichment analysis were conducted using an established pipeline using R statistical software. RESULTS Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) showed several biological pathways relevant to NSAIDs' function. The identified GO terms included "arachidonic acid metabolic process," while KEGG results included "linoleic acid metabolism," "cellular senescence," and "circadian rhythm." Nonetheless, none of the top GO and KEGG pathways and the top differentially methylated CpG sites reached statistical significance. CONCLUSION Our results suggest a potential role of epigenetics in the mechanisms of the action of NSAIDs. However, the results should be viewed with caution as exploratory and hypothesis-generating given the lack of statistically significant findings.
Collapse
Affiliation(s)
- Pedro S Marra
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3165 Porter Dr. Room 2175, Palo Alto, CA, 94304, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Yoshitaka Nishizawa
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3165 Porter Dr. Room 2175, Palo Alto, CA, 94304, USA
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University Faculty of Medicine, Takatsuki, Osaka, Japan
| | - Takehiko Yamanashi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3165 Porter Dr. Room 2175, Palo Alto, CA, 94304, USA
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago-Shi, Tottori, Japan
| | - Eleanor J Sullivan
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Katie R Comp
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - Nadia E Wahba
- Department of Psychiatry, Oregon Health and Science University School of Medicine, Portland, OR, USA
| | - Kazuki Shibata
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3165 Porter Dr. Room 2175, Palo Alto, CA, 94304, USA
- Sumitomo Pharma Co. Ltd, Osaka, Osaka, Japan
| | - Tsuyoshi Nishiguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3165 Porter Dr. Room 2175, Palo Alto, CA, 94304, USA
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago-Shi, Tottori, Japan
| | - Kyosuke Yamanishi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3165 Porter Dr. Room 2175, Palo Alto, CA, 94304, USA
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Nicolas O Noiseux
- Department of Orthopedic Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Matthew D Karam
- Department of Orthopedic Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Gen Shinozaki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3165 Porter Dr. Room 2175, Palo Alto, CA, 94304, USA.
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
11
|
Holloway TD, Harvanek ZM, Xu K, Gordon DM, Sinha R. Greater stress and trauma mediate race-related differences in epigenetic age between Black and White young adults in a community sample. Neurobiol Stress 2023; 26:100557. [PMID: 37501940 PMCID: PMC10369475 DOI: 10.1016/j.ynstr.2023.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Black Americans suffer lower life expectancy and show signs of accelerated aging compared to other Americans. While previous studies observe these differences in children and populations with chronic illness, whether these pathologic processes exist or how these pathologic processes progress has yet to be explored prior to the onset of significant chronic illness, within a young adult population. Therefore, we investigated race-related differences in epigenetic age in a cross-sectional sample of young putatively healthy adults and assessed whether lifetime stress and/or trauma mediate those differences. Biological and psychological data were collected from self-reported healthy adult volunteers within the local New Haven area (399 volunteers, 19.8% Black, mean age: 29.28). Stress and trauma data was collected using the Cumulative Adversity Inventory (CAI) interview, which assessed specific types of stressors, including major life events, traumatic events, work, financial, relationship and chronic stressors cumulatively over time. GrimAge Acceleration (GAA), determined from whole blood collected from participants, measured epigenetic age. In order to understand the impact of stress and trauma on GAA, exploratory mediation analyses were then used. We found cumulative stressors across all types of events (mean difference of 6.9 p = 2.14e-4) and GAA (β = 2.29 years [1.57-3.01, p = 9.70e-10] for race, partial η2 = 0.091, model adjusted R2 = 0.242) were significantly greater in Black compared to White participants. Critically, CAI total score (proportion mediated: 0.185 [0.073-0.34, p = 6e-4]) significantly mediated the relationship between race and GAA. Further analysis attributed this difference to more traumatic events, particularly assaultive traumas and death of loved ones. Our results suggest that, prior to development of significant chronic disease, Black individuals have increased epigenetic age compared to White participants and that increased cumulative stress and traumatic events may contribute significantly to this epigenetic aging difference.
Collapse
Affiliation(s)
| | - Zachary M. Harvanek
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Yale Stress Center, Yale University, New Haven, CT, USA
| | - Ke Xu
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychiatry, Connecticut Veteran Healthcare System, West Haven, CT, USA
| | | | - Rajita Sinha
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Yale Stress Center, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Gaylord A, Cohen A, Kupsco A. Biomarkers of aging through the life course: A Recent Literature Update. CURRENT OPINION IN EPIDEMIOLOGY AND PUBLIC HEALTH 2023; 2:7-17. [PMID: 38130910 PMCID: PMC10732539 DOI: 10.1097/pxh.0000000000000018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Purpose of review The development of biomarkers of aging has greatly advanced epidemiological studies of aging processes. However, much debate remains on the timing of aging onset and the causal relevance of these biomarkers. In this review, we discuss the most recent biomarkers of aging that have been applied across the life course. Recent findings The most recently developed aging biomarkers that have been applied across the life course can be designated into three categories: epigenetic clocks, epigenetic markers of chronic inflammation, and mitochondrial DNA copy number. While these have been applied at different life stages, the development, validation, and application of these markers has been largely centered on populations of older adults. Few studies have examined trajectories of aging biomarkers across the life course. As the wealth of molecular and biochemical data increases, emerging biomarkers may be able to capture complex and system-specific aging processes. Recently developed biomarkers include novel epigenetic clocks; clocks based on ribosomal DNA, transcriptomic profiles, proteomics, metabolomics, and inflammatory markers; clonal hematopoiesis of indeterminate potential gene mutations; and multi-omics approaches. Summary Attention should be placed on aging at early and middle life stages to better understand trajectories of aging biomarkers across the life course. Additionally, novel biomarkers will provide greater insight into aging processes. The specific mechanisms of aging reflected by these biomarkers should be considered when interpreting results.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Alan Cohen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging and Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
13
|
Tang B, Li X, Wang Y, Sjölander A, Johnell K, Thambisetty M, Ferrucci L, Reynolds CA, Finkel D, Jylhävä J, Pedersen NL, Hägg S. Longitudinal associations between use of antihypertensive, antidiabetic, and lipid-lowering medications and biological aging. GeroScience 2023:10.1007/s11357-023-00784-8. [PMID: 37032369 PMCID: PMC10400489 DOI: 10.1007/s11357-023-00784-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/26/2023] [Indexed: 04/11/2023] Open
Abstract
Aging is a major risk factor for many chronic diseases. This study aimed to examine the effects of antihypertensive, lipid-lowering, and antidiabetic drugs on biological aging. We included 672 participants and 2746 repeated measurements from the Swedish Adoption/Twin Study of Aging. Self-reported medicine uses were categorized into antidiabetic, antihypertensive, and lipid-lowering drugs. A total of 12 biomarkers for biological aging (BA biomarkers) were included as outcomes. Conditional generalized estimating equations were applied conditioning on individuals to estimate the drug effect on BA biomarker level within the same person when using or not using the drug. Chronological age, body mass index, smoking status, number of multiple medication uses, blood pressure, blood glucose level, and apoB/apoA ratio were adjusted for as covariates in the model. Overall, using antihypertensive drugs was associated with a decrease in one DNA-methylation age (PCGrimAge: beta = - 0.39, 95%CI = - 0.67 to - 0.12). When looking into drug subcategories, calcium channel blockers (CCBs) were associated with a decrease in several DNA-methylation ages (PCHorvathAge beta = - 1.28, 95%CI = - 2.34 to - 0.21; PCSkin&bloodAge beta = - 1.34, 95%CI = - 2.61 to - 0.07; PCPhenoAge beta = - 1.74, 95%CI = - 2.58 to - 0.89; PCGrimAge beta = - 0.57, 95%CI = - 0.96 to - 0.17) and in functional biological ages (functional age index beta = - 2.18, 95%CI = - 3.65 to - 0.71; frailty index beta = - 1.31, 95%CI = - 2.43 to - 0.18). However, the results within other drug subcategories were inconsistent. Calcium channel blockers may decrease biological aging captured by the BA biomarkers measured at epigenetic and functional level. Future studies are warranted to confirm these effects and understand the underlying biological mechanisms.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Xia Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Yunzhang Wang
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Arvid Sjölander
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kristina Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Madhav Thambisetty
- Brain Aging and Behavior Section, National Institute on Aging, Baltimore, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, USA
| | | | - Deborah Finkel
- Aging Research Network-Jönköping (ARN-J), School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), University of Tampere, Tampere, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
14
|
Petrovic D, Carmeli C, Sandoval JL, Bodinier B, Chadeau-Hyam M, Schrempft S, Ehret G, Dhayat NA, Ponte B, Pruijm M, Vineis P, Gonseth-Nusslé S, Guessous I, McCrory C, Bochud M, Stringhini S. Life-course socioeconomic factors are associated with markers of epigenetic aging in a population-based study. Psychoneuroendocrinology 2023; 147:105976. [PMID: 36417838 DOI: 10.1016/j.psyneuen.2022.105976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Adverse socioeconomic circumstances negatively affect the functioning of biological systems, but the underlying mechanisms remain only partially understood. Here, we explore the associations between life-course socioeconomic factors and four markers of epigenetic aging in a population-based setting. We included 684 participants (52 % women, mean age 52.6 ± 15.5 years) from a population and family-based Swiss study. We used nine life-course socioeconomic indicators as the main exposure variables, and four blood-derived, second generation markers of epigenetic aging as the outcome variables (Levine's DNAmPhenoAge, DunedinPoAm38, GrimAge epigenetic age acceleration (EAA), and the mortality risk score (MS)). First, we investigated the associations between socioeconomic indicators and markers of epigenetic aging via mixed-effect linear regression models, adjusting for age, sex, participant's recruitment center, familial structure (random-effect covariate), seasonality of blood sampling, and technical covariates. Second, we implemented counterfactual mediation analysis to investigate life-course and intermediate mechanisms underlying the socioeconomic gradient in epigenetic aging. Effect-size estimates were assessed using regression coefficients and counterfactual mediation parameters, along with their respective 95 % confidence intervals. Individuals reporting a low father's occupation, adverse financial conditions in childhood, a low income, having financial difficulties, or experiencing unfavorable socioeconomic trajectories were epigenetically older and had a higher mortality risk score than their more advantaged counterparts. Specifically, this corresponded to an average increase of 1.1-1.5 years for Levine's epigenetic age (β and 95 %CI range, β (minimum and maximum): 1.1-1.5 95 %CI[0.0-0.2; 2.3-3.0]), 1.1-1.5 additional years for GrimAge (β: 1.1-1.5 95 %CI[0.2-0.6; 1.9-3.0]), a 1-3 % higher DunedinPoAm38 age acceleration (β: 0.01-0.03 95 %CI[0.00; 0.03-0.04]), and a 10-50 % higher MS score (β: 0.1-0.4 95 %CI[0.0-0.2; 0.3-0.4]) for the aforementioned socioeconomic indicators. By exploring the life-course mechanisms underlying the socioeconomic gradient in epigenetic aging, we found that both childhood and adulthood socioeconomic factors contributed to epigenetic aging, and that detrimental lifestyle factors mediated the relation between socioeconomic circumstances in adulthood and EAA (31-89 % mediated proportion). This study provides emerging evidence for an association between disadvantaged life-course socioeconomic circumstances and detrimental epigenetic aging patterns, supporting the "sensitive-period" life-course model. Counterfactual mediation analyses further indicated that the effect of socioeconomic factors in adulthood operates through detrimental lifestyle factors, whereas associations involving early-life socioeconomic factors were less clear.
Collapse
Affiliation(s)
- Dusan Petrovic
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland; Centre for Environment and Health, School of Public Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
| | - Cristian Carmeli
- Population Health Laboratory, University of Fribourg, Fribourg, Switzerland
| | - José Luis Sandoval
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Barbara Bodinier
- Centre for Environment and Health, School of Public Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Marc Chadeau-Hyam
- Centre for Environment and Health, School of Public Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Stephanie Schrempft
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Georg Ehret
- Department of Cardiology, Geneva University Hospitals, Geneva, Switzerland
| | - Nasser Abdalla Dhayat
- Nephrology & Renal Care Center, B. Braun Medical Care AG, Hochfelden, Zurich, Switzerland
| | - Belén Ponte
- Department of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| | - Menno Pruijm
- Department of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paolo Vineis
- Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland
| | - Sémira Gonseth-Nusslé
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
| | - Idris Guessous
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Cathal McCrory
- Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland
| | - Murielle Bochud
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
| | - Silvia Stringhini
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland; Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
15
|
Spartano NL, Wang R, Yang Q, Chernofsky A, Murabito JM, Levy D, Vasan RS, DeCarli C, Maillard P, Seshadri S, Beiser AS. Association of Physical Inactivity with MRI Markers of Brain Aging: Assessing Mediation by Cardiometabolic and Epigenetic Factors. J Alzheimers Dis 2023; 95:561-572. [PMID: 37574733 PMCID: PMC11694349 DOI: 10.3233/jad-230289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Cardiometabolic risk factors and epigenetic patterns, increased in physically inactive individuals, are associated with an accelerated brain aging process. OBJECTIVE To determine whether cardiometabolic risk factors and epigenetic patterns mediate the association of physical inactivity with unfavorable brain morphology. METHODS We included dementia and stroke free participants from the Framingham Heart Study Third Generation and Offspring cohorts who had accelerometery and brain MRI data (n = 2,507, 53.9% women, mean age 53.9 years). We examined mediation by the 2017-revised Framingham Stroke Risk Profile (FSRP, using weights for age, cardiovascular disease, atrial fibrillation, diabetes and smoking status, antihypertension medications, and systolic blood pressure) and the homeostatic model of insulin resistance (HOMA-IR) in models of the association of physical inactivity with brain aging, adjusting for age, age-squared, sex, accelerometer wear time, cohort, time from exam-to-MRI, and season. We similarly assessed mediation by an epigenetic age-prediction algorithm, GrimAge, in a smaller sample of participants who had DNA methylation data (n = 1,418). RESULTS FSRP and HOMA-IR explained 8.3-20.5% of associations of higher moderate-to-vigorous physical activity (MVPA), higher steps, and lower sedentary time with higher brain volume. Additionally, FSRP and GrimAge explained 10.3-22.0% of associations of physical inactivity with lower white matter diffusivity and FSRP explained 19.7% of the association of MVPA with lower free water accumulation. CONCLUSION Our results suggest that cardiometabolic risk factors and epigenetic patterns partially mediate the associations of physical inactivity with lower brain volume, higher white matter diffusivity, and aggregation of free water in the extracellular compartments of the brain.
Collapse
Affiliation(s)
- Nicole L. Spartano
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avedisian School of Medicine (BUCASM), Boston, MA, USA
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
| | - Ruiqi Wang
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA, USA
| | - Ariel Chernofsky
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA, USA
| | - Joanne M. Murabito
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Section of General Internal Medicine, Department of Medicine, BUCASM, Boston, MA, USA
| | - Daniel Levy
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramachandran S. Vasan
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Section of Preventive Medicine and Epidemiology, Evans Department of Medicine, BUSM, Boston, MA, USA
- Department of Epidemiology, BUSPH, Boston, MA, USA
- UT School of Public Health in San Antonio, TX, and UT Health Sciences Center in San Antonio, TX, USA
| | - Charles DeCarli
- Department of Neurology University of California Davis, Davis, CA, USA
| | - Pauline Maillard
- Department of Neurology University of California Davis, Davis, CA, USA
| | - Sudha Seshadri
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, BUSM, Boston, MA, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Alexa S. Beiser
- National Heart Lung and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health (BUSPH), Boston, MA, USA
- Department of Neurology, BUSM, Boston, MA, USA
| |
Collapse
|
16
|
Jokinen J, Andersson P, Chatzittofis A, Savard J, Rask-Andersen M, Åsberg M, Boström ADE. Accelerated epigenetic aging in suicide attempters uninfluenced by high intent-to-die and choice of lethal methods. Transl Psychiatry 2022; 12:224. [PMID: 35654772 PMCID: PMC9163048 DOI: 10.1038/s41398-022-01998-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Suicide attempts (SA) are associated with excess non-suicidal mortality, putatively mediated in part by premature cellular senescence. Epigenetic age (EA) estimators of biological age have been previously demonstrated to strongly predict physiological dysregulation and mortality risk. Herein, we investigate if violent SA with high intent-to-die is predictive of epigenetics-derived estimates of biological aging. The genome-wide methylation pattern was measured using the Illumina Infinium Methylation EPIC BeadChip in whole blood of 88 suicide attempters. Subjects were stratified into two groups based on the putative risk of later committed suicide (low- [n = 58] and high-risk [n = 30]) in dependency of SA method (violent or non-violent) and/or intent-to-die (high/low). Estimators of intrinsic and extrinsic EA acceleration, one marker optimized to predict physiological dysregulation (DNAmPhenoAge/AgeAccelPheno) and one optimized to predict lifespan (DNAmGrimAge/AgeAccelGrim) were investigated for associations to severity of SA, by univariate and multivariate analyses. The study was adequately powered to detect differences of 2.2 years in AgeAccelGrim in relation to SA severity. Baseline DNAmGrimAge exceeded chronological age by 7.3 years on average across all samples, conferring a mean 24.6% increase in relation to actual age. No individual EA acceleration marker was differentiated by suicidal risk group (p > 0.1). Thus, SA per se but not severity of SA is related to EA, implicating that excess non-suicidal mortality in SA is unrelated to risk of committed suicide. Preventative healthcare efforts aimed at curtailing excess mortality after SA may benefit from acting equally powerful to recognize somatic comorbidities irrespective of the severity inherent in the act itself.
Collapse
Affiliation(s)
- Jussi Jokinen
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
- Department of Clinical Neuroscience/Psychology, Karolinska Institute, Stockholm, Sweden
| | - Peter Andersson
- Department of Clinical Neuroscience/Psychology, Karolinska Institute, Stockholm, Sweden
- Centre for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Andreas Chatzittofis
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - Josephine Savard
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marie Åsberg
- Department of Clinical Neuroscience/Psychology, Karolinska Institute, Stockholm, Sweden
| | - Adrian Desai E Boström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden.
- Department of Women's and Children's Health/Neuropediatrics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Gene expression correlates of advanced epigenetic age and psychopathology in postmortem cortical tissue. Neurobiol Stress 2021; 15:100371. [PMID: 34458511 PMCID: PMC8377489 DOI: 10.1016/j.ynstr.2021.100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Psychiatric stress has been associated with accelerated epigenetic aging (i.e., when estimates of cellular age based on DNA methylation exceed chronological age) in both blood and brain tissue. Little is known about the downstream biological effects of accelerated epigenetic age on gene expression. In this study we examined associations between DNA methylation-derived estimates of cellular age that range from decelerated to accelerated relative to chronological age (“DNAm age residuals”) and transcriptome-wide gene expression. This was examined using tissue from three post-mortem cortical regions (ventromedial and dorsolateral prefrontal cortex and motor cortex, n = 97) from the VA National PTSD Brain Bank. In addition, we examined how posttraumatic stress disorder (PTSD) and alcohol-use disorders (AUD) moderated the association between DNAm age residuals and gene expression. Transcriptome-wide results across brain regions, psychiatric diagnoses, and cohorts (full sample and male and female subsets) revealed experiment-wide differential expression of 11 genes in association with PTSD or AUD in interaction with DNAm age residuals. This included the inflammation-related genes IL1B, RCOR2, and GCNT1. Candidate gene class analyses and gene network enrichment analyses further supported differential expression of inflammation/immune gene networks as well as glucocorticoid, circadian, and oxidative stress-related genes. Gene co-expression network modules suggested enrichment of myelination related processes and oligodendrocyte enrichment in association with DNAm age residuals in the presence of psychopathology. Collectively, results suggest that psychiatric stress accentuates the association between advanced epigenetic age and expression of inflammation genes in the brain. This highlights the role of inflammatory processes in the pathophysiology of accelerated cellular aging and suggests that inflammatory pathways may link accelerated cellular aging to premature disease onset and neurodegeneration, particularly in stressed populations. This suggests that anti-inflammatory interventions may be an important direction to pursue in evaluating ways to prevent or delay cellular aging and increase resilience to diseases of aging.
Collapse
|