1
|
Yang Y, Song L, Yu L, Zhang J, Zhang B. H4K12 lactylation potentiates mitochondrial oxidative stress via the Foxo1 pathway in diabetes-induced cognitive impairment. J Adv Res 2025:S2090-1232(25)00118-3. [PMID: 39965729 DOI: 10.1016/j.jare.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025] Open
Abstract
AIMS To investigate the role and potential mechanisms of H4K12 lactylation modifications in diabetes-related cognitive impairment (DACD). METHODS Behavioral tests, HE staining, and immunohistochemistry were employed to assess cognitive function and the extent of brain tissue injury. Metabolomics and proteomics were applied to profile the metabolic regulatory network. We measured lactic acid and Pan-Kla levels in the brains of T2DM mice and high glucose-treated microglia. CUT&Tag technology was utilized to identify genes regulated by H4K12la. Small interfering RNA (siRNA) sequences and adeno-associated viruses (AAVs) were used to knock down key components in signaling pathways, evaluating the impact of histone lactylation on microglial polarization. RESULTS Lactic acid levels were significantly higher in the brains of T2DM mice and high glucose-treated microglia compared to controls, leading to an increase in pan histone lysine lactylation (Kla). We found that lactate directly induced an increase in H4K12la. CUT&Tag analysis revealed that elevated H4K12la activates the FOXO1/PGC-1α signaling pathway by enhancing binding to the FOXO1 promoter, promoting mitochondrial oxidative stress. CONCLUSION This study demonstrated that elevated H4K12la directly activates the FOXO1 signaling pathway, promoting oxidative stress and contributing to DACD phenotypes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Lulu Song
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Liping Yu
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Jinping Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Bo Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
2
|
Arsiwala TA, Blethen KE, Wolford CP, Pecar GL, Panchal DM, Kielkowski BN, Wang P, Ranjan M, Carpenter JS, Finomore V, Rezai A, Lockman PR. Single Exposure to Low-Intensity Focused Ultrasound Causes Biphasic Opening of the Blood-Brain Barrier Through Secondary Mechanisms. Pharmaceutics 2025; 17:75. [PMID: 39861723 PMCID: PMC11768402 DOI: 10.3390/pharmaceutics17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objective: The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood. This study aimed to characterize the time-dependent changes in BBB permeability, transporter function, and inflammatory responses in both sonicated and non-sonicated brain tissues following LiFUS treatment. Methods: We employed in situ brain perfusion to assess alterations in BBB integrity and transporter function, as well as multiplex cytokine analysis to quantify the inflammatory response. Results: Our findings show that LiFUS significantly increased vascular volume and glucose uptake, with reduced P-gp function in brain tissues six hours post treatment, indicating biphasic BBB disruption. Additionally, elevated levels of pro-inflammatory cytokines, including TNF-α and IL-6, were observed in both sonicated and non-sonicated regions. A comparative analysis between wild-type and immunodeficient mice revealed distinct patterns of cytokine release, with immunodeficient mice showing lower serum concentrations of IFN-γ and TNF-α, highlighting the potential impact of immune status on the inflammatory response to LiFUS. Conclusions: This study provides new insights into the biphasic nature of LiFUS-induced BBB disruption, emphasizing the importance of understanding the timing and extent of secondary physiological changes.
Collapse
Affiliation(s)
- Tasneem A. Arsiwala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Kathryn E. Blethen
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Cullen P. Wolford
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Geoffrey L. Pecar
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Dhruvi M. Panchal
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Brooke N. Kielkowski
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Peng Wang
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Manish Ranjan
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Jeffrey S. Carpenter
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Victor Finomore
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Ali Rezai
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Paul R. Lockman
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| |
Collapse
|
3
|
Kursancew ACS, Faller CJ, Piva-Uchida EM, Benedet IB, Maciel PM, de Figueredo SM, Petronilho F, Ceretta LB, Streck E, Generoso JS. Metabolic disorders after traumatic brain injury: a narrative review of systemic consequences. Metab Brain Dis 2025; 40:93. [PMID: 39776307 DOI: 10.1007/s11011-024-01524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Traumatic brain injury (TBI) is characterized as a heterogeneous and pathological remodeling of brain physiology because of various external mechanisms, including blows, falls, and rapid acceleration and deceleration of the skull. Its pathophysiology consists of two distinct moments, beginning with a primary lesion resulting from the impact that evolves into a secondary lesion as biochemical and molecular mechanisms are activated. The severity and prognosis after TBI vary widely, depending on factors such as the site of the injury, the patient's premorbid history, and the severity of the injury, and can result in long-term sequelae impacting multiple organs and systems, with a reduction in the life expectancy of these individuals. A relevant point to be investigated is the correlation between metabolic syndrome (MS), defined as the combination of glucose intolerance, dyslipidemia, systemic arterial hypertension (SAH), and acute or chronic coronary heart disease, and the prognosis of these individuals after a TBI. Therefore, this review seeks to verify the correlation between the occurrence of MS in patients who have suffered TBI as a pre-existing comorbidity and whether it develops later, looking for evidence in studies based on animal models and cohort follow-ups of individuals who have suffered TBI in the short and long term to assess the prognosis presented.
Collapse
Affiliation(s)
- Amanda C S Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Eloa M Piva-Uchida
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Isadora B Benedet
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Pedro M Maciel
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Shaiane M de Figueredo
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Luciane B Ceretta
- Postgraduate Program in Collective Health, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Emilio Streck
- Laboratory of Neurometabolic Diseases, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
4
|
Meng L, Gu T, Yu P, Zhang Z, Wei Z. The role of microglia in Neuroinflammation associated with cardiopulmonary bypass. Front Cell Neurosci 2024; 18:1496520. [PMID: 39742156 PMCID: PMC11685197 DOI: 10.3389/fncel.2024.1496520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) are indispensable core techniques in cardiac surgery. Numerous studies have shown that cardiopulmonary bypass and deep hypothermic circulatory arrest are associated with the occurrence of neuroinflammation, accompanied by the activation of microglia. Microglia, as macrophages in the central nervous system, play an irreplaceable role in neuroinflammation. Current research on neuroinflammation induced by microglia activation mainly focuses on neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, neuropathic pain, acquired brain injury, and others. However, there is relatively limited research on microglia and neuroinflammation under conditions of cardiopulmonary bypass and deep hypothermic circulatory arrest. The close relationship between cardiopulmonary bypass, deep hypothermic circulatory arrest, and cardiac surgery underscores the importance of identifying targets for intervening in neuroinflammation through microglia. This could greatly benefit cardiac surgery patients during cardiopulmonary bypass and the perioperative period, significantly improving patient prognosis. This review article provides the first comprehensive discussion on the signaling pathways associated with neuroinflammation triggered by microglia activation, the impact of cardiopulmonary bypass on microglia, as well as the current status and advancements in cardiopulmonary bypass animal models. It provides new insights and methods for the treatment of neuroinflammation related to cardiopulmonary bypass and deep hypothermic circulatory arrest, holding significant importance for clinical treatment by cardiac surgeons, management strategies by cardiopulmonary bypass physicians, and the development of neurologically related medications.
Collapse
Affiliation(s)
- Lingda Meng
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianxiang Gu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Yu
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiwei Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhijing Wei
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Cheng H, Men Y, An Y, Yu J, Zhang G, Li J, Wang X, Sun G, Wu Y. Overexpression of endothelial S1pr2 promotes blood-brain barrier disruption via JNK/c-Jun/MMP-9 pathway after traumatic brain injury in both in vivo and in vitro models. Front Pharmacol 2024; 15:1448570. [PMID: 39679379 PMCID: PMC11637860 DOI: 10.3389/fphar.2024.1448570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024] Open
Abstract
Objectives The disruption of blood-brain barrier (BBB) is associated with poor outcomes of TBI patients. Sphingosine-1-phosphate receptor 2 (S1pr2), a member of the G protein-coupled receptor family, is involved in endothelial activation and the regulation of vascular integrity. We hypothesized that the inhibition of S1pr2 may alleviate BBB disruption and explored potential underlying molecular mechanisms. Methods Lesion volumes were assessed utilizing Nissl staining; neurological outcomes were evaluated through a battery of neurobehavioral assessments; phenotype-associated proteins were scrutinized via Western blot analysis; levels of reactive oxygen species (ROS), neuronal apoptosis, and S1pr2 expression were determined using immunofluorescence staining. The impact of S1pr2 inhibition after TBI and its underlying mechanism were elucidated using the selective S1pr2 inhibitor JTE-013, the JNK phosphorylation inhibitor SP600125, and cellular models. Chip-qPCR was employed to further elucidate the binding sites of the transcription factor c-Jun. Results The expression of S1pr2 significantly increased following TBI in mice. Pharmacological inhibition of S1pr2 alleviated secondary injury with reduced lesion volume, ROS generation, cerebral oedema, neurological deficits, and neuronal apoptosis; BBB disruption was also mitigated, accompanied by reduced degradation of tight junction proteins and decreased induction of matrix metalloproteinases-9 (MMP-9) post-TBI. Mechanistically, TBI induces an increase in S1pr2 specifically in endothelial cells, leading to the promotion of MMP-9 transactivation by enhancing JNK/c-Jun signaling. This results in the degradation of tight junction proteins and increased BBB permeability. Through in vitro and in vivo Chip-qPCR experiments, we verified that AP-1a and AP-1b of MMP-9 promoter function as binding sites for phosphorylated c-Jun. Conclusion Our findings identify a previously undisclosed role of S1pr2 in the pathophysiology of TBI. The S1pr2 inhibition presents a novel approach to alleviate BBB disruption after TBI through regulating the JNK/c-Jun/MMP-9 pathway.
Collapse
Affiliation(s)
- Hongbo Cheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijiao Men
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaqing An
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiegang Yu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaming Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Cui C, Zheng J, Zhang H, Xing Z. Pterostilbene ameliorates oxidative stress and neuronal apoptosis after intracerebral hemorrhage via the sirtuin 1-mediated Nrf2 pathway in vivo and in vitro. J Stroke Cerebrovasc Dis 2024; 33:107950. [PMID: 39173685 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION Oxidative stress and neuroapoptosis are significant pathological processes that occur in response to intracerebral hemorrhage (ICH), however, the optimal therapeutic strategy to treat these responses remains unknown. Pterostilbene (PTE) influences neural cell survival in in the pathology of a number of neurological diseases, but the mechanisms underlying this influence at present are not clear. The objective of the present study was to examine the potential impact of PTE on mitigating oxidative stress and neuronal apoptosis following ICH, while also elucidating the potential underlying pathways. MATERIAL & METHOD For in vivo experimentation, male C57BL/6 mice were used to establish ICH models. Wet-to-dry weight ratios were utilized to assess the degree of cerebral edema in the context of PTE intervention. Behavioral experiments were conducted to evaluate neurological dysfunction and cognitive impairment, and hematoxylin and eosin staining was employed to observe histopathological changes in the brain. Furthermore, oxidative stress levels in hippocampal tissues were measured, and cell apoptosis was examined using TUNEL staining and western blotting techniques. In vitro experiments were conducted to evaluate the extent of oxidative stress and neural apoptosis after sirtuin 1 (SIRT1) siRNA treatment. Immunofluorescence cytochemistry was used to analyze the immunofluorescence colocalization of SIRT1 and NeuN. RESULT Mice that experienced ICH exhibited worsening neurological deterioration, increased oxidative stress and neuronal cell apoptosis. However, the addition of PTE was found to lessen these effects. Furthermore, PTE was found to activate the SIRT1-mediated Nrf2 pathway in mice with ICH. When SIRT1 was inhibited, levels of oxidative stress and neuronal apoptosis increased, even in the presence of PTE. CONCLUSION The present study provided evidence to indicate that PTE can suppress oxidative damage and neuronal apoptosis following ICH by activating the SIRT1/Nrf2 pathway.
Collapse
Affiliation(s)
- Chengxi Cui
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Jie Zheng
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Hongyun Zhang
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Zhenyi Xing
- Department of Neurosurgery, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan 453000, PR China.
| |
Collapse
|
7
|
Redhwan MAM, Hariprasad MG, Samaddar S, Bafail DA, Hard SAAA, Guha S. Chitosan/siRNA nanoparticles targeting PARP-1 attenuate Neuroinflammation and apoptosis in hyperglycemia-induced oxidative stress in Neuro2a cells. Int J Biol Macromol 2024; 282:136964. [PMID: 39490472 DOI: 10.1016/j.ijbiomac.2024.136964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Hyperglycemia induces an excessive production of superoxide by the mitochondria's electron-transport chain triggers several pathways of injury contributing to the development of diabetic complications. This increase in oxidative and nitrosative stress triggers the activation of PARP-1, a nuclear enzyme, through mechanisms such as DNA damage. siRNA-chitosan nanoparticles were formed based on electrostatic interaction, their particle size, zeta potential, STEM, and cellular uptake were characterized. Neuro2a cells were treated with low glucose (LG) and high glucose (HG) for 24 and 48 h. Neuro2a cells were pre-treated with negative siRNA, naked siRNA, siRNA-Lipofectamine™300, and ChNPs-5. qRT-PCR was used to analyze the expression of regulatory, inflammatory, and apoptotic biomarkers. The siRNA-chitosan complex at the weight ratio 1:3000 were approximately uniform spheres with particle size 150.5 nm and a positive zeta potential of about +41.5 mV. The uptake of FITC-labeled nanoparticles into Neuro2a cells was visualized using fluorescence microscopy with no significant cytotoxicity compared to the control cells. High glucose stimulation of Neuro2a cells increased PARP1 expression, and with siRNA-ChNP (1:3000) treatment, significant inhibition of PARP1 expression is observed that consequently reversed the expression of regulatory genes like SIRT1, FOXO1, FOXO3, and p53. PARP-1 inhibition reduced HG-induced inflammatory response, including NF-kB, IL6, IL1β, TNFα, iNOS, and TGF-β expression, and HG-induced apoptosis response, such as Cas-3, Cas-9, BAK, BAX, and AIF expression. This study highlights the crucial role of siRNA delivery via ChNPs and PARP-1 inhibition in hyperglycemia-induced oxidative stress in Neuro2a cells and PARP-1 inhibition may be a feasible strategy for the treatment of hyperglycemia-induced oxidative stress.
Collapse
Affiliation(s)
- Moqbel Ali Moqbel Redhwan
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - M G Hariprasad
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India.
| | - Suman Samaddar
- Research Institute, BGS Global Institute of Medical Sciences, Bengaluru, Karnataka, India.
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sumaia Abdulbari Ahmed Ali Hard
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India; Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Karnataka, India
| | - Sourav Guha
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, Karnataka, India; Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Wang S, Liu A, Xu C, Hou J, Hong J. GLP-1(7-36) protected against oxidative damage and neuronal apoptosis in the hippocampal CA region after traumatic brain injury by regulating ERK5/CREB. Mol Biol Rep 2024; 51:313. [PMID: 38374452 PMCID: PMC10876747 DOI: 10.1007/s11033-024-09244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Aijun Liu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Chaopeng Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jingxuan Hou
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jun Hong
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
9
|
Xu K, Ren Y, Fan L, Zhao S, Feng J, Zhong Q, Tu D, Wu W, Chen J, Xie P. TCF4 and RBFOX1 as peripheral biomarkers for the differential diagnosis and treatment of major depressive disorder. J Affect Disord 2024; 345:252-261. [PMID: 37890537 DOI: 10.1016/j.jad.2023.10.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Recent genome-wide association studies on major depressive disorder (MDD) have indicated the involvement of LRFN5 and OLFM4; however, the expression levels and roles of these molecules in MDD remain unclear. The present study aimed to determine the serum levels of TCF4 and RBFOX1 in patients with MDD and to investigate whether these molecules could be used as biomarkers for MDD diagnosis. METHODS The study included 99 drug-naïve MDD patients, 90 drug-treated MDD patients, and 81 healthy controls (HCs). Serum TCF4 and RBFOX1 levels were measured by ELISA. Pearson's correlation analysis was conducted to determine the association between TCF4/RBFOX1 and clinical variables. Linear support vector machine classifier was used to evaluate the diagnostic capabilities of TCF4 and RBFOX1. RESULTS Serum TCF4 and RBFOX1 levels were substantially higher in MDD patients than in HCs and significantly lower in drug-treated MDD patients than in drug-naïve MDD patients. Moreover, serum TCF4 and RBFOX1 levels were associated with the Hamilton Depression Scale score, duration of illness, serum lipids levels, and hepatic function. Thus, both these molecules showed potential as biomarkers for MDD. TCF4 and RBFOX1 combination exhibited a higher diagnostic performance, with the mean area under the curve values of 0.9861 and 0.9936 in the training and testing sets, respectively. LIMITATIONS Small sample size and investigation of only the peripheral nervous system. CONCLUSIONS TCF4 and RBFOX1 may be involved in the pathogenesis of MDD, and their combination may serve as a diagnostic biomarker panel for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing 400016, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wentao Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Wei X, Xing Z, Huang T, Zhang M, Song J, Zhao Y. Hyperglycemia disrupted the integrity of the blood-brain barrier following diffuse axonal injury through the sEH/NF-κB pathway. Immun Inflamm Dis 2023; 11:e1105. [PMID: 38156378 PMCID: PMC10698817 DOI: 10.1002/iid3.1105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVES We aimed to investigate the role of soluble epoxide hydrolase for hyperglycemia induced-disruption of blood-brain barrier (BBB) integrity after diffuse axonal injury (DAI). METHODS Rat DAI hyperglycemia model was established by a lateral head rotation device and intraperitoneal injection of 50% glucose. Glial fibrillary acidic protein, ionized calcium-binding adapter molecule-1, β-amyloid precursor protein, neurofilament light chain, and neurofilament heavy chain was detected by immunohistochemistry. Cell apoptosis was examined by terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) assay. The permeability of blood-brain barrier (BBB) was assessed by expression of tight junction proteins, leakage of Evans blue and brain water content. The soluble epoxide hydrolase (sEH) pathway was inhibited by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) and the nuclear transcription factor kappa B (NF-κB) pathway was inhibited by pyrrolidine dithiocarbamate and activated by phorbol-12-myristate-13-acetate in vivo and/or vitro, respectively. The inflammatory factors were detected by enzyme-linked immunosorbent assay. RESULTS Hyperglycemia could exacerbate axonal injury, aggravate cell apoptosis and glial activation, worsen the loss of BBB integrity, increase the release of inflammatory factors, and upregulate the expression of sEH and NF-κB. Inhibition of sEH could reverse all these damages and protect BBB integrity by upregulating the expression of tight junction proteins and downregulating the levels of inflammatory factors in vivo and vitro, while the agonist of NF-κB pathway abrogated the protective effects of TPPU on BBB integrity in vitro. CONCLUSIONS sEH was involved in mediating axonal injury induced by hyperglycemia after DAI by disrupting BBB integrity through inducing inflammation via the NF-κB pathway.
Collapse
Affiliation(s)
- Xing Wei
- Department of Gynaecology and ObstetricsThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhiguo Xing
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Tingqin Huang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ming Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jinning Song
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yonglin Zhao
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
11
|
Du Q, Liu C, Liu Y, Li J, Gong X, Zhang Q, Li K. Investigation of long-term symptoms and influencing factors in patients with mild traumatic brain injury: A cross-sectional study. Int Emerg Nurs 2023; 69:101313. [PMID: 37348243 DOI: 10.1016/j.ienj.2023.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Traumatic brain injury is the leading cause of death and disability in individuals under the age of 45, which places a heavy disease burden on patients and society. However, the prevalence of long-term symptoms in individuals who suffered from mild traumatic brain injury and how psychosocial factors affect their long-term symptoms remain unclear. OBJECTIVE To determine howpsychosocial factors influence long-term symptomsin individuals who suffered from mild traumatic brain injury as well as the prevalence of long-term symptoms. METHODS A demographic characteristics questionnaire, adapted self-report questionnaire of family relationship quality, revised Chinese version of the disease perception questionnaire, Rivermead postconcussion syndrome symptom questionnaire, Glasgow Outcome Scale-Extended, and Brief Symptoms Inventory 18 were used to collect data anonymously. Psychosocial factors associated with long-term symptoms in individuals who suffered from mild traumatic brain injury weremeasuredusingmultiple linear regression. RESULTS More than half of individuals who suffered from mild traumatic brain injury showed at least 1 long-term symptom after injury. Our results indicated that family relationship quality, disease perception, and demographic characteristics were related to the long-term symptoms of individuals who suffered from mild traumatic brain injury. CONCLUSIONS Our study shows that theprevalence of long-term symptomsfollowingmild traumatic brain injuryishigh. Psychosocial factors are related to patients' long-term symptoms. The findings indicate that healthcare administrators ought to adopt a robust health promotion strategy that prioritizes familial support and health education of diseases to ameliorate long-term symptoms in individuals who suffered from mild traumatic brain injury.
Collapse
Affiliation(s)
- Qiujing Du
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Changqing Liu
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yuwei Liu
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jiafei Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xiaotong Gong
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qi Zhang
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Ka Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Abbasloo E, Amiresmaili S, Shirazpour S, Khaksari M, Kobeissy F, Thomas TC. Satureja khuzistanica Jamzad essential oil and pure carvacrol attenuate TBI-induced inflammation and apoptosis via NF-κB and caspase-3 regulation in the male rat brain. Sci Rep 2023; 13:4780. [PMID: 36959464 PMCID: PMC10036533 DOI: 10.1038/s41598-023-31891-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
Traumatic brain injury (TBI) causes progressive dysfunction that induces biochemical and metabolic changes that lead to cell death. Nevertheless, there is no definitive FDA-approved therapy for TBI treatment. Our previous immunohistochemical results indicated that the cost-effective natural Iranian medicine, Satureja khuzistanica Jamzad essential oil (SKEO), which consists of 94.16% carvacrol (CAR), has beneficial effects such as reducing neuronal death and inflammatory markers, as well as activating astrocytes and improving neurological outcomes. However, the molecular mechanisms of these neuroprotective effects have not yet been elucidated. This study investigated the possible mechanisms involved in the anti-inflammatory and anti-apoptotic properties of SKEO and CAR after TBI induction. Eighty-four male Wistar rats were randomly divided into six groups: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg), and TBI + SKEO (200 mg/kg) groups. After establishing the "Marmarou" weight drop model, diffuse TBI was induced in the rat brain. Thirty minutes after TBI induction, SKEO & CAR were intraperitoneally injected. One day after TBI, injured rats exhibited significant brain edema, neurobehavioral dysfunctions, and neuronal apoptosis. Western blot results revealed upregulation of the levels of cleaved caspase-3, NFκB p65, and Bax/Bcl-2 ratio, which was attenuated by CAR and SKEO (200 mg/kg). Furthermore, the ELISA results showed that CAR treatment markedly prevents the overproduction of the brain pro-inflammatory cytokines, including IL-1β, TNF-α, and IL-6. Moreover, the neuron-specific enolase (NSE) immunohistochemistry results revealed the protective effect of CAR and SKEO on post-TBI neuronal death. The current study revealed that the possible neuroprotective mechanisms of SKEO and CAR might be related to (at least in part) modulating NF-κB regulated inflammation and caspase-3 protein expression. It also suggested that CAR exerts more potent protective effects than SKEO against TBI. Nevertheless, the administration of SKEO and CAR may express a novel therapeutic approach to ameliorate TBI-related secondary phase neuropathological outcomes.
Collapse
Affiliation(s)
- Elham Abbasloo
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Sara Shirazpour
- Department of Physiology and Pharmacology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, USA
- Translational Neurotrauma Research Program, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|
13
|
Wei X, Zhou Y, Song J, Zhao J, Huang T, Zhang M, Zhao Y. Hyperglycemia Aggravates Blood-Brain Barrier Disruption Following Diffuse Axonal Injury by Increasing the Levels of Inflammatory Mediators through the PPARγ/Caveolin-1/TLR4 Pathway. Inflammation 2023; 46:129-145. [PMID: 35857154 DOI: 10.1007/s10753-022-01716-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Hyperglycemia aggravates brain damage after diffuse axonal injury (DAI), but the underlying mechanisms are not fully defined. In this study, we aimed to investigate a possible role for hyperglycemia in the disruption of blood-brain barrier (BBB) integrity in a rat model of DAI and the underlying mechanisms. Accordingly, 50% glucose was intraperitoneally injected after DAI to establish the hyperglycemia model. Hyperglycemia treatment aggravated neurological impairment and axonal injury, increased cell apoptosis and glial activation, and promoted the release of inflammatory factors, including TNF-α, IL-1β, and IL-6. It also exacerbated BBB disruption and decreased the expression of tight junction-associated proteins, including ZO-1, claudin-5, and occludin-1, whereas the PPARγ agonist rosiglitazone (RSG) had the opposite effects. An in vitro BBB model was established by a monolayer of human microvascular endothelial cells (HBMECs). Hyperglycemia induction worsened the loss of BBB integrity induced by oxygen and glucose deprivation (OGD) by increasing the release of inflammatory factors and decreasing the expression of tight junction-associated proteins. Hyperglycemia further reduced the expression of PPARγ and caveolin-1, which significantly decreased after DAI and OGD. Hyperglycemia also further increased the expression of toll-like receptor 4 (TLR4), which significantly increased after OGD. Subsequently, the PPARγ agonist RSG increased caveolin-1 expression and decreased TLR4 expression and inflammatory factor levels. In contrast, caveolin-1 siRNA abrogated the protective effects of RSG in the in vitro BBB model of hyperglycemia by increasing TLR4 and Myd88 expression and the levels of inflammatory factors, including TNF-α, IL-1β, and IL-6. Collectively, we demonstrated that hyperglycemia was involved in mediating secondary injury after DAI by disrupting BBB integrity by inducing inflammation through the PPARγ/caveolin-1/TLR4 pathway.
Collapse
Affiliation(s)
- Xing Wei
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yaqing Zhou
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, People's Republic of China
| | - Jinning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junjie Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tingqin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ming Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yonglin Zhao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, People's Republic of China.
| |
Collapse
|
14
|
XGBoost machine learning algorism performed better than regression models in predicting mortality of moderate to severe traumatic brain injury. World Neurosurg 2022; 163:e617-e622. [PMID: 35430400 DOI: 10.1016/j.wneu.2022.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) brings severe mortality and morbidity risk to patients. Predicting outcome of these patients is necessary for physicians to make suitable treatments to improve prognosis. The aim of this study is to develop a mortality prediction approach using the XGBoost (extreme gradient boosting) in moderate to severe TBI. METHODS 368 patients hospitalized in West China hospital for TBI with GCS below 13 were identified. To construct XGBoost prediction approach, patients were divided into training set and test set with ratio of 7:3. Logistic regression prediction model was also constructed and compared with XGBoost model. Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were calculated to compare the prognostic value between XGBoost and logistic regression. RESULTS 205 patients suffered poor outcome with mortality of 55.7%. Non-survivors had lower Glasgow Coma Scale (GCS) (5 vs 7, p<0.001) and higher Injury Severit Score (ISS) than survivors (25 vs 16, p<0.001). Platelet (p<0.001), albumin (p<0.001), hemoglobin (p<0.001) were significantly lower in non-survivors while glucose (p<0.001) and prothrombin time (PT) (p<0.001)was significantly higher in non-survivors. Among the XGBoost approach, GCS, PT and glucose had the most significant feature importance. The AUC (0.955 vs 0.805) and accuracy (0.955 vs 0.70) of XGBoost were both higher than logistic regression. CONCLUSION Predicting mortality of moderate to severe TBI patients using XGBoost algorism is more effective and precise than logistic regression. The XGBoost prediction approach is beneficial for physicians to evaluate TBI patients at high risk of poor outcome.
Collapse
|