1
|
Wang CC, Lin JY, Wang CY, Shen WJ, Liao PC, Ho YF, Lin CW, Wang SA, Ko CC, Dey S, Ta HDK, Xuan DTM, Kumar S, William BT, Wang JM, Wang WJ. DSG2 attenuates gemcitabine efficacy through PTX3 in lung adenocarcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167881. [PMID: 40316058 DOI: 10.1016/j.bbadis.2025.167881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/21/2025] [Accepted: 04/30/2025] [Indexed: 05/04/2025]
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer, often diagnosed at an advanced stage with poor prognosis and limited treatment options. The Desmoglein (DSG) family plays a crucial role in maintaining cell adhesion and tissue integrity. Upregulation of DSG proteins has been implicated in tumorigenesis, invasion, and metastasis across various cancers. However, the role of DSG in lung cancer, particularly as a biomarker influencing the efficacy of anti-cancer drugs, remains unclear. In this study, DSG2 was significantly overexpressed in LUAD tumor tissues and correlated with poor prognosis, as revealed by TCGA database analysis. Additionally, analyses of single-cell sequencing, KEGG, and GSEA multi-omics databases demonstrated that DSG2 modulates multiple oncogenic pathways, particularly the apoptosis pathway, with a strong positive correlation between DSG2 and PTX3 expression. In vitro experiments showed that DSG2 knockdown enhanced gemcitabine-induced apoptosis by downregulating the NFκB/STAT3/PTX3 signaling axis. Furthermore, adding recombinant PTX3 protein in DSG2 knockdown cells restored STAT3 activation, reducing gemcitabine efficacy, indicating that DSG2 contributes to gemcitabine resistance through PTX3-mediated mechanisms. This study identifies DSG2 as a critical mediator of gemcitabine resistance in LUAD through its regulation of the PTX3/NFκB/STAT3 pathway. The findings suggest that targeting DSG2 could enhance the therapeutic efficacy of gemcitabine in LUAD patients, offering a novel therapeutic strategy and biomarker for overcoming chemoresistance in this aggressive cancer subtype.
Collapse
Affiliation(s)
- Chin-Chou Wang
- Divisions of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Jo-Ying Lin
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Pin-Chen Liao
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Yu-Fang Ho
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Che-Wei Lin
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Shao-An Wang
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan; Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Do Thi Minh Xuan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Viet Nam
| | - Sachin Kumar
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Faculty of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, India
| | - Bianca Tobias William
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl Pulomas Barat Kav 88, Jakarta Timur 13210, Indonesia
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
2
|
Sun H, Qiao X, Peng X, Zhu H, Zhang L, Jiang L, Wang L, Xue C, Yang J, Yi W, Zhang B, Liu J, Duan W. The m6A modification of SOX18 leads to increased PTX3 and cardiomyocyte pyroptosis in sepsis-induced cardiomyopathy. Theranostics 2025; 15:3532-3550. [PMID: 40093897 PMCID: PMC11905121 DOI: 10.7150/thno.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/30/2025] [Indexed: 03/19/2025] Open
Abstract
Rationale: Sepsis-induced cardiomyopathy (SIC) is a rapidly progressing condition with poor prognosis in the absence of effective therapeutic interventions. Cardiomyocyte pyroptosis is a critical factor contributing to cardiac dysfunction in SIC. Currently, research on this mechanism remains unclear. Methods: We performed LPS-induced primary mouse cardiomyocyte modeling and mouse SIC modeling. Through mRNA-Seq, we found significant pyroptosis in the cardiac tissue of SIC mice. Further confocal microscopy and immunoprecipitation results confirmed that PTX3 is an important participant in cardiomyocyte pyroptosis. We then used ChIP and dual-luciferase reporter assays to confirm that SOX18 exerts a transcriptional repression effect on PTX3. M6A-Seq and RNA stability assays confirmed that the m6A modification mediated/recognized by RBM15/YTHDF2 is a crucial factor in the changes of SOX18 in SIC. Results: Our experiments demonstrated that the abnormally elevated PTX3 in SIC plays a key role in mediating pyroptosis. Under physiological conditions, PTX3 transcription is repressed by SOX18. However, during septic cardiomyopathy, SOX18 stability is compromised by RBM15/YTHDF2-mediated m6A modification, leading to increased PTX3 levels and the subsequent induction of cardiomyocyte pyroptosis. Conclusion: In summary, we have delineated the RBM15/YTHDF2-SOX18-PTX3 axis in SIC. It provides a new approach for the treatment of cardiomyocyte pyroptosis in SIC and for improving prognosis.
Collapse
Affiliation(s)
- He Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xinan Qiao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xiangyan Peng
- School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Liyun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Longteng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Chao Xue
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Jian Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Bin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
- Department of Surgery, The 954th Hospital of the Chinese People's Liberation Army, Shannan, Tibet 856100, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
3
|
Chen L, Song S, Chen M, Liu Q, Zhou H. Serum pentraxin-3 as a potential biomarker for diagnosis and prognosis in primary liver cancer: An observational study. Medicine (Baltimore) 2024; 103:e40421. [PMID: 39686456 PMCID: PMC11651449 DOI: 10.1097/md.0000000000040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/18/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to examine serum pentraxin 3 levels in patients with primary liver cancer and to assess its potential as a diagnostic and prognostic biomarker. Serum samples were obtained from 180 patients with primary liver cancer and 180 healthy control subjects. The concentration of PTX3 in these samples was measured using an ELISA kit. The study also investigated the correlation between PTX3 levels and the clinicopathological characteristics of patients with primary liver cancer. The effectiveness of serum PTX3 in diagnosing primary liver cancer was evaluated using receiver operating characteristic (ROC) curves and their corresponding areas under the curve (AUC). The prognostic significance of serum PTX3 in patients with primary liver cancer was assessed using Kaplan-Meier survival curves. Serum PTX3 levels were elevated in patients with primary liver cancer compared to those in healthy control subjects. These levels were significantly correlated with drinking history, TNM stage, BCLC stage, tumor size, tumor number, and vascular invasion. However, no significant correlations were observed between PTX3 levels and other factors, such as age, sex, BMI, liver cirrhosis, histological grade, and histological type. With a cut-off value of 5.1 ng/mL, PTX3 effectively differentiated patients with primary liver cancer from healthy control subjects, achieving an AUC of 0.734, a sensitivity of 73.24%, and a specificity of 84.78%. Patients with higher serum PTX3 levels had lower overall survival rates and recurrence-free survival rates than those with lower PTX3 levels. Serum PTX3 levels are elevated in patients with primary liver cancer and high serum PTX3 levels are associated with poor prognosis. This suggests that serum PTX3 has the potential to be a novel biomarker for both the diagnosis and prognosis of primary liver cancer. These findings may improve patient outcomes by enabling early detection and continuous monitoring.
Collapse
Affiliation(s)
- Li Chen
- Department of Radiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shifu Song
- Department of Emergency Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Mao Chen
- Department of Emergency Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qin Liu
- Department of Emergency Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hongchi Zhou
- Department of Hepatobiliary and Vascular Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
Zhou J, Li X, Wang X, Yang Y, Nai A, Shi H, Zhao J, Zhang J, Ding S, Han Y, Liu Q, Zhang L, Chen T, Liu B, Yue W, Lv L, Li W. Levels of neuronal pentraxin 2 in plasma is associated with cognitive function in patients with schizophrenia. Psychopharmacology (Berl) 2024; 241:865-874. [PMID: 38191677 DOI: 10.1007/s00213-023-06515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
RATIONALE The precise diagnosis and treatment of cognitive impairment remains a major challenge in the field of schizophrenia (SCZ) research. Synaptic dysfunction and loss are thought to be closely related to the occurrence and development of SCZ and may be involved in cognitive dysfunction. OBJECTIVES The purpose of this study was to investigate whether neuronal pentraxins (NPTXs) plays a role in the etiology of SCZ and provide evidence of its possible therapeutic value a new target for drug development. METHODS We recruited 275 participants, of whom 148 were SCZ from psychiatric hospital and 127 healthy control (HC) subjects from communities. Plasma concentrations of NPTXs were measured in HC and SCZ at baseline and after 8 weeks of antipsychotic treatment. The MATRICS Cognitive Consensus Battery was used to evaluate cognitive function. Furthermore, the brain is parcellated into 246 subregions using the Brainnetome atlas, and we extracted regional white matter volumes from magnetic resonance images of the SCZ groups. RESULTS Plasma NPTX2 levels were significantly lower in SCZ compared with HC subjects, but were significantly raised in SCZ after 8 weeks of antipsychotic treatment compared to baseline. In addition, baseline plasma NPTX2 levels were positively correlated with cognitive performance. CONCLUSIONS These findings indicate that NPTX2 may reveal novel aspects of disease etiology and act as a promising target for new drug development.
Collapse
Affiliation(s)
- Jiahui Zhou
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xiaojing Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xiujuan Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Aoyang Nai
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jingyuan Zhao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jianhong Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shuang Ding
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong Han
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Qing Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Tengfei Chen
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| |
Collapse
|
5
|
Bao H, Wang X, Zhou H, Zhou W, Liao F, Wei F, Yang S, Luo Z, Li W. PCSK9 regulates myofibroblast transformation through the JAK2/STAT3 pathway to regulate fibrosis after myocardial infarction. Biochem Pharmacol 2024; 220:115996. [PMID: 38154546 DOI: 10.1016/j.bcp.2023.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Cardiac fibrosis is pivotal in the progression of numerous cardiovascular diseases. This phenomenon is hallmarked by an excessive deposition of ECM protein secreted by myofibroblasts, leading to increased myocardial stiffness. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that belongs to the proprotein-converting enzyme family. It has emerged as a viable therapeutic target for reducing plasma low-density lipoprotein cholesterol. However, the exact mechanism via which PCSK9 impacts cardiac fibrosis remains unclear. In the present research, an increase in circulating PCSK9 protein levels was observed in individuals with myocardial infarction and rat models of myocardial infarction. Moreover, the inhibition of circulating PCSK9 in rats was found to reduce post-infarction fibrosis. In vitro experiments further demonstrated that overexpression of PCSK9 or stimulation by extracellular PCSK9 recombinant protein enhanced the transformation of cardiac fibroblasts to myofibroblasts. This process also elevated collagen Ⅰ, and Ⅲ, as well as α-SMA protein levels. However, these effects were countered when co-incubated with the STAT3 inhibitor S3I-201. This study suggests that PCSK9 may function as a novel regulator of myocardial fibrosis, primarily via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Hailong Bao
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Cardiovascular Medicine, Gui Qian International General Hospital, Guiyang 550018, Guizhou, China
| | - Xu Wang
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Haiyan Zhou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wei Zhou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Fujun Liao
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Fang Wei
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shiyu Yang
- Department of Cardiovascular Medicine, Gui Qian International General Hospital, Guiyang 550018, Guizhou, China
| | - Zhenhua Luo
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China.
| | - Wei Li
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
6
|
Ding T, Zeng L, Xia Y, Zhang B, Cui D. miR-135a Mediates Mitochondrial Oxidative Respiratory Function through SIRT1 to Regulate Atrial Fibrosis. Cardiology 2024; 149:286-296. [PMID: 38228115 DOI: 10.1159/000536059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION This study aimed to explore the function of miR-135a in the progress of atrial fibrosis and the mechanism of miR-135a/SIRT1 (sirtuin 1) in human cardiac fibroblasts and mouse cardiac fibroblasts (MCFs) mediating the regulation of atrial fibrosis by mitochondrial oxidative respiration function. METHODS Using Ang II (angiotensin II) to induce fibrosis in HCFs (human corneal fibroblasts) and MCF (Michigan Cancer Foundation, MCF) cells in vitro, the miRNA-seq results of previous studies were validated. Proliferative and invasive ability of HCFs and MCFs was detected by Cell Counting Kit-8 assay (CCK-8) and scratch experiment after overexpressing miR-135a in HCFs and MCF cells. Protein and mRNA expression was tested using Western blot and qPCR. The target of miR-135a was verified as SIRT1 by a luciferase reporter assay and the activities of the mitochondrial respiratory enzyme complexes I, II, III, and IV were determined colorimetrically. The activities of malondialdehyde, reactive oxygen species, and superoxide dismutase in cells were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS miR-135a expression was elevated in HCFs and MCFs cells in the Ang II group than control group. Overexpression of miR-135a could promote the proliferation, migration, oxidative stress, as well as fibrosis of cardiac fibroblasts and suppresses mitochondrial activity. In addition, we found SIRT1 was a target gene of miR-135a. What is more, the findings showed miR-135a promoted fibrosis in HCFs and MCFs cells acting through regulation of SIRT1. CONCLUSIONS miR-135a mediates mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis.
Collapse
Affiliation(s)
- Tianhang Ding
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liyan Zeng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ying Xia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Baojun Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Dongji Cui
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
7
|
Ye X, Wang Z, Lei W, Shen M, Tang J, Xu X, Yang Y, Zhang H. Pentraxin 3: A promising therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 93:102163. [PMID: 38092307 DOI: 10.1016/j.arr.2023.102163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Cardiovascular disease (CVD) is the primary global cause of death, and inflammation is a crucial factor in the development of CVDs. The acute phase inflammatory protein pentraxin 3 (PTX3) is a biomarker reflecting the immune response. Recent research indicates that PTX3 plays a vital role in CVDs and has been investigated as a possible biomarker for CVD in clinical trials. PTX3 is implicated in the progression of CVDs through mechanisms such as exacerbating vascular endothelial dysfunction, affecting angiogenesis, and regulating inflammation and oxidative stress. This review summarized the structure and function of PTX3, focusing on its multifaceted effects on CVDs, such as atherosclerosis, myocardial infarction, and hypertension. This may help in explaining the varying PTX3 functions and usage, as well as in utilizing target organs to manage diseases. Moreover, elucidating the opposite role of PTX3 in the cardiovascular system will demonstrate the therapeutic and predictive potential in human diseases.
Collapse
Affiliation(s)
- Xingyan Ye
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, China
| | - Wangrui Lei
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, 80 Jianglin Road, Hainan, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| |
Collapse
|
8
|
Liu Y, Wang D, Jin Y, Sun G, Lou Q, Wang H, Li W. Costunolide ameliorates angiotensin II-induced atrial inflammation and fibrosis by regulating mitochondrial function and oxidative stress in mice: A possible therapeutic approach for atrial fibrillation. Microvasc Res 2024; 151:104600. [PMID: 37666318 DOI: 10.1016/j.mvr.2023.104600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Atrial fibrillation (AF) is a cardiac disease characterized by disordered atrial electrical activity. Atrial inflammation and fibrosis are involved in AF progression. Costunolide (COS) is a sesquiterpene lactone containing anti-inflammatory and anti-fibrotic activities. This study aims to explore the underlying mechanisms by which COS protects against AF. Male C57BL/6 mice (8- to 10-week-old) were infused with angiotensin (Ang) II for 3 weeks. Meanwhile, different doses of COS (COS-L: 10 mg/kg, COS-H: 20 mg/kg) were administered to mice by intragastric treatment. The results showed irregular and rapid heart rates in Ang II-treated mice. Moreover, the levels of inflammatory cytokines and fibrotic factors were elevated in mice. COS triggered a reduction of Ang II-induced inflammation and fibrosis, which conferred a protective effect. Mechanistically, mitochondrial dysfunction with mitochondrial respiration inhibition and aberrant ATP levels were observed after Ang II treatment. Moreover, Ang-II-induced excessive reactive oxygen species caused oxidative stress, which was further aggravated by inhibiting Nrf2 nuclear translocation. Importantly, COS diminished these Ang-II-mediated effects in mice. In conclusion, COS attenuated inflammation and fibrosis in Ang-II-treated mice by alleviating mitochondrial dysfunction and oxidative stress. Our findings represent a potential therapeutic option for AF treatment.
Collapse
Affiliation(s)
- Yushu Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Dong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, PR China
| | - Yimin Jin
- Department of General Practice, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Guifang Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Qi Lou
- Graduate Student, Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Hong Wang
- Graduate Student, Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Weimin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
9
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|