1
|
Yao P, Zhou Q, Ren B, Yang L, Bai Y, Feng Z. Transcranial pulsed current stimulation alleviates neuronal pyroptosis and neurological dysfunction following traumatic brain injury via the orexin-A/NLRP3 pathway. Neuropeptides 2025; 110:102501. [PMID: 39764896 DOI: 10.1016/j.npep.2025.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 03/03/2025]
Abstract
Traumatic brain injury (TBI) is a life-threatening condition with high incidence and mortality rates. The current pharmacological interventions for TBI exhibit limited efficacy, underscoring the necessity to explore novel and effective therapeutic approaches to ameliorate its impact. Previous studies have indicated that transcranial pulsed current stimulation (tPCS) can improve neurofunctional deficits in patients by modulating brain neuroplasticity. However, the exact mechanism underlying this neuroprotective effect remains elusive. In this study, mice with TBI induced by controlled cortical impact were subjected to 30 min of daily tPCS for 5 consecutive days and intraperitoneally administered an orexin receptor type 1 (OX1R) antagonist (SB334867). The neuroprotective effects of tPCS and its potential mechanisms were assessed through behavioral tests, histopathological examination, immunohistochemistry and Western blotting. In vitro experiments involved stimulating HT22 cells with LPS + ATP to assess the anti-neuroinflammatory effects of Orexin-A (OX-A) using CCK-8, Western blotting, and Flow cytometry. The results demonstrated that tPCS reduced the mNSS in TBI mice, ameliorated tissue damage, improved motor and cognitive deficits, and upregulated OX-A expression. Notably, SB334867 reversed the protective effects of tPCS. In vitro studies revealed that OX-A inhibited the formation and activation of NLRP3 inflammasomes, resulting in reduced levels of ROS and restoration of MMP. However, this effect could be reversed by the NLRP3 agonist BMS-986299. Our findings suggest that tPCS promotes the release of OX-A and modulates the OX1R/NLRP3 pathway to mitigate the inflammatory response following TBI, thereby exerting neuroprotective effects.
Collapse
Affiliation(s)
- Peng Yao
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China; The First Affiliated Hospital of Nanchang University, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Qianhui Zhou
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China; The First Affiliated Hospital of Nanchang University, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Bingkai Ren
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China; The First Affiliated Hospital of Nanchang University, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Li Yang
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China; The First Affiliated Hospital of Nanchang University, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China.
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China.
| |
Collapse
|
2
|
Shi Q, Hu T, Xu L, Fu J, Fang Y, Lan Y, Fan W, Wu Q, Tong X, Yan H. Fingolimod Suppresses NLRP3 Inflammasome Activation and Alleviates Oxidative Stress in Traumatic Brain Injury-Induced Acute Lung Injury. J Inflamm Res 2025; 18:2229-2245. [PMID: 39974815 PMCID: PMC11835775 DOI: 10.2147/jir.s503428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
Background Acute lung injury (ALI) is a serious yet common complication in patients with traumatic brain injury (TBI), often associated with poor prognosis. The development of TBI-induced ALI is closely associated with excessive oxidative stress and NLRP3 inflammasome activation. Fingolimod, an immunomodulatory agent, has been reported to attenuate inflammatory responses, restore blood-brain barrier integrity, reduce cerebral edema, and mitigate associated neurological deficits. Objective This study aimed to investigate the mechanistic role of NLRP3 inflammasome activation in TBI-induced ALI and to evaluate the therapeutic potential of fingolimod in targeting this inflammatory pathway. Results A rat TBI model was established using the classical free-fall method, and animals were treated with fingolimod (0.5 or 1 mg/kg) daily for three days. The TBI model rats presented with clear signs of histopathological pulmonary damage, an increase in the permeability of capillaries in the lung, and pulmonary edema that coincided with significantly increased NLRP3, caspase-1, and ASC expression in lung tissue samples. This overexpression of NLRP3 inflammasome machinery resulted in the release of IL-1β. Fingolimod treatment, however, reversed all of these effects such that it suppressed NLRP3 activity and normalized levels of IL-1β, leading to the alleviation of inflammation. In line with these results, LPS and nigericin (NLRP3 agonist)-treated NR8383 cells treated using fingolimod exhibited reductions in reactive oxygen species production and NLRP3 inflammasome activation. Conclusion These findings suggest that NLRP3 inflammasome activation and oxidative stress are key mediators of TBI-induced ALI. Fingolimod exerts protective effects against this condition by inhibiting NLRP3 inflammasome activation, highlighting its potential as a therapeutic agent for TBI-associated pulmonary complications.
Collapse
Affiliation(s)
- Qi Shi
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Tingting Hu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Lixia Xu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Jiayuanyuan Fu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Yehong Fang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Yu Lan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, People’s Republic of China
| |
Collapse
|
3
|
Kang J, Zhou Y, Xiong Q, Dong X. Trigeminal nerve electrical stimulation attenuates early traumatic brain injury through the TLR4/NF-κB/NLRP3 signaling pathway mediated by orexin-A/OX1R system. Aging (Albany NY) 2024; 16:7946-7960. [PMID: 38713160 PMCID: PMC11131994 DOI: 10.18632/aging.205795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and emerging evidence indicates that trigeminal nerve electrical stimulation (TNS) is a promising therapeutic intervention for neurological impairment following TBI. However, the precise mechanisms underlying the neuroprotective effects of TNS in TBI are poorly understood. Thus, the objective of this study was to investigate the potential involvement of the orexin-A (OX-A)/orexin receptor 1 (OX1R) mediated TLR4/NF-κB/NLRP3 signaling pathway in the neuroprotective effects of TNS in rats with TBI. METHODS Sprague-Dawley rats were randomly assigned to four groups: sham, TBI, TBI+TNS+SB334867, and TBI+TNS. TBI was induced using a modified Feeney's method, and subsequent behavioral assessments were conducted to evaluate neurological function. The trigeminal nerve trunk was isolated, and TNS was administered following the establishment of the TBI model. The levels of neuroinflammation, brain tissue damage, and proteins associated with the OX1R/TLR4/NF-κB/NLRP3 signaling pathway were assessed using hematoxylin-eosin staining, Nissl staining, western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence techniques. RESULTS The findings of our study indicate that TNS effectively mitigated tissue damage, reduced brain edema, and alleviated neurological deficits in rats with TBI. Furthermore, TNS demonstrated the ability to attenuate neuroinflammation levels and inhibit the expression of proteins associated with the TLR4/NF-κB/NLRP3 signaling pathway. However, it is important to note that the aforementioned effects of TNS were reversible upon intracerebroventricular injection of an OX1R antagonist. CONCLUSION TNS may prevent brain damage and relieve neurological deficits after a TBI by inhibiting inflammation, possibly via the TLR4/NF-κB/NLRP3 signaling pathway mediated by OX-A/OX1R.
Collapse
Affiliation(s)
- Junwei Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Yifan Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Xiong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
4
|
Ren B, Kang J, Wang Y, Meng X, Huang Y, Bai Y, Feng Z. Transcranial direct current stimulation promotes angiogenesis and improves neurological function via the OXA-TF-AKT/ERK signaling pathway in traumatic brain injury. Aging (Albany NY) 2024; 16:6566-6587. [PMID: 38604164 PMCID: PMC11042948 DOI: 10.18632/aging.205724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Traumatic brain injury (TBI) and its resulting complications pose a major challenge to global public health, resulting in increased rates of disability and mortality. Cerebrovascular dysfunction is nearly universal in TBI cases and is closely associated with secondary injury after TBI. Transcranial direct current stimulation (tDCS) shows great potential in the treatment of TBI; however, the exact mechanism remains elusive. In this study, we performed in vivo and in vitro experiments to explore the effects and mechanisms of tDCS in a controlled cortical impact (CCI) rat model simulating TBI. In vivo experiments show that tDCS can effectively reduce brain tissue damage, cerebral edema and neurological deficits. The potential mechanism may be that tDCS improves the neurological function of rats by increasing orexin A (OXA) secretion, upregulating the TF-AKT/ERK signaling pathway, and promoting angiogenesis at the injury site. Cellular experiments showed that OXA promoted HUVEC migration and angiogenesis, and these effects were counteracted by the ERK1/2 inhibitor LY3214996. The results of Matrigel experiment in vivo showed that TNF-a significantly reduced the ability of HUVEC to form blood vessels, but OXA could rescue the effect of TNF-a on the ability of HUVEC to form blood vessels. However, LY3214996 could inhibit the therapeutic effect of OXA. In summary, our preliminary study demonstrates that tDCS can induce angiogenesis through the OXA-TF-AKT/ERK signaling pathway, thereby improving neurological function in rats with TBI.
Collapse
Affiliation(s)
- Bingkai Ren
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Junwei Kang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Yan Wang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Xiangqiang Meng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Ying Huang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Yang Bai
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Zhen Feng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China
| |
Collapse
|
5
|
Mascotte-Cruz JU, Vera A, Leija L, Lopez-Salas FE, Gradzielski M, Koetz J, Gatica-García B, Rodríguez-Oviedo CP, Valenzuela-Arzeta IE, Escobedo L, Reyes-Corona D, Gutierrez-Castillo ME, Maldonado-Berny M, Espadas-Alvarez AJ, Orozco-Barrios CE, Martinez-Fong D. Focused ultrasound on the substantia nigra enables safe neurotensin-polyplex nanoparticle-mediated gene delivery to dopaminergic neurons intranasally and by blood circulation. DISCOVER NANO 2024; 19:60. [PMID: 38564106 PMCID: PMC10987469 DOI: 10.1186/s11671-024-04005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Neurotensin-polyplex nanoparticles provide efficient gene transfection of nigral dopaminergic neurons when intracerebrally injected in preclinical trials of Parkinson's disease because they do not cross the blood-brain barrier (BBB). Therefore, this study aimed to open BBB with focused ultrasound (FUS) on the substantia nigra to attain systemic and intranasal transfections and evaluate its detrimental effect in rats. Systemically injected Evans Blue showed that a two-pulse FUS opened the nigral BBB. Accordingly, 35 μL of neurotensin-polyplex nanoparticles encompassing the green fluorescent protein plasmid (79.6 nm mean size and + 1.3 mV Zeta-potential) caused its expression in tyrosine hydroxylase(+) cells (dopaminergic neurons) of both substantiae nigrae upon delivery via internal carotid artery, retro-orbital venous sinus, or nasal mucosa 30 min after FUS. The intracarotid delivery yielded the highest transgene expression, followed by intranasal and venous administration. However, FUS caused neuroinflammation displayed by infiltrated lymphocytes (positive to cluster of differentiation 45), activated microglia (positive to ionized calcium-binding adaptor molecule 1), neurotoxic A1 astrocytes (positive to glial fibrillary acidic protein and complement component 3), and neurotrophic A2 astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10), that ended 15 days after FUS. Dopaminergic neurons and axonal projections decreased but recuperated basal values on day 15 after transfection, correlating with a decrease and recovery of locomotor behavior. In conclusion, FUS caused transient neuroinflammation and reversible neuronal affection but allowed systemic and intranasal transfection of dopaminergic neurons in both substantiae nigrae. Therefore, FUS could advance neurotensin-polyplex nanotechnology to clinical trials for Parkinson's disease.
Collapse
Affiliation(s)
- Juan U Mascotte-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Arturo Vera
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Lorenzo Leija
- Departamento de Ingeniería Eléctrica-Bioelectrónica, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico, México
| | - Francisco E Lopez-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Instituto de Investigaciones Biomédicas, Ciudad de Mexico, México
| | - Michael Gradzielski
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Berlin, Germany
| | - Joachim Koetz
- Institut für Chemie , Universität Potsdam, Potsdam, Germany
| | - Bismark Gatica-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
- Nanoparticle Therapy Institute, Aguascalientes, México
| | | | - Irais E Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | | | - M E Gutierrez-Castillo
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Departamento de Biociencias e Ingeniería, Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Carlos E Orozco-Barrios
- CONAHCYT - Unidad de Investigaciones Médicas en Enfermedades Neurológicas, Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360, Ciudad de México, México.
- Nanoparticle Therapy Institute, Aguascalientes, México.
| |
Collapse
|
6
|
Theus MH. Neuroinflammation and acquired traumatic CNS injury: a mini review. Front Neurol 2024; 15:1334847. [PMID: 38450073 PMCID: PMC10915049 DOI: 10.3389/fneur.2024.1334847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Acquired traumatic central nervous system (CNS) injuries, including traumatic brain injury (TBI) and spinal cord injury (SCI), are devastating conditions with limited treatment options. Neuroinflammation plays a pivotal role in secondary damage, making it a prime target for therapeutic intervention. Emerging therapeutic strategies are designed to modulate the inflammatory response, ultimately promoting neuroprotection and neuroregeneration. The use of anti-inflammatory agents has yielded limited support in improving outcomes in patients, creating a critical need to re-envision novel approaches to both quell deleterious inflammatory processes and upend the progressive cycle of neurotoxic inflammation. This demands a comprehensive exploration of individual, age, and sex differences, including the use of advanced imaging techniques, multi-omic profiling, and the expansion of translational studies from rodents to humans. Moreover, a holistic approach that combines pharmacological intervention with multidisciplinary neurorehabilitation is crucial and must include both acute and long-term care for the physical, cognitive, and emotional aspects of recovery. Ongoing research into neuroinflammatory biomarkers could revolutionize our ability to predict, diagnose, and monitor the inflammatory response in real time, allowing for timely adjustments in treatment regimens and facilitating a more precise evaluation of therapeutic efficacy. The management of neuroinflammation in acquired traumatic CNS injuries necessitates a paradigm shift in our approach that includes combining multiple therapeutic modalities and fostering a more comprehensive understanding of the intricate neuroinflammatory processes at play.
Collapse
Affiliation(s)
- Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Landvater J, Kim S, Caswell K, Kwon C, Odafe E, Roe G, Tripathi A, Vukovics C, Wang J, Ryan K, Cocozza V, Brock M, Tchopev Z, Tonkin B, Capaldi V, Collen J, Creamer J, Irfan M, Wickwire EM, Williams S, Werner JK. Traumatic brain injury and sleep in military and veteran populations: A literature review. NeuroRehabilitation 2024; 55:245-270. [PMID: 39121144 PMCID: PMC11613026 DOI: 10.3233/nre-230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a hallmark of wartime injury and is related to numerous sleep wake disorders (SWD), which persist long term in veterans. Current knowledge gaps in pathophysiology have hindered advances in diagnosis and treatment. OBJECTIVE We reviewed TBI SWD pathophysiology, comorbidities, diagnosis and treatment that have emerged over the past two decades. METHODS We conducted a literature review of English language publications evaluating sleep disorders (obstructive sleep apnea, insomnia, hypersomnia, parasomnias, restless legs syndrome and periodic limb movement disorder) and TBI published since 2000. We excluded studies that were not specifically evaluating TBI populations. RESULTS Highlighted areas of interest and knowledge gaps were identified in TBI pathophysiology and mechanisms of sleep disruption, a comparison of TBI SWD and post-traumatic stress disorder SWD. The role of TBI and glymphatic biomarkers and management strategies for TBI SWD will also be discussed. CONCLUSION Our understanding of the pathophysiologic underpinnings of TBI and sleep health, particularly at the basic science level, is limited. Developing an understanding of biomarkers, neuroimaging, and mixed-methods research in comorbid TBI SWD holds the greatest promise to advance our ability to diagnose and monitor response to therapy in this vulnerable population.
Collapse
Affiliation(s)
- Jeremy Landvater
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sharon Kim
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keenan Caswell
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Caroline Kwon
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Emamoke Odafe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Grace Roe
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ananya Tripathi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Jonathan Wang
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Keith Ryan
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Matthew Brock
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Zahari Tchopev
- Wilford Hall Ambulatory Surgical Center, San Antonio, TX, USA
| | - Brionn Tonkin
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Vincent Capaldi
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacob Collen
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Muna Irfan
- University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Administration Medical Center, Minneapolis, MN, USA
| | - Emerson M. Wickwire
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Scott Williams
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Defense Health Headquarters, Falls Church, VA, USA
| | - J. Kent Werner
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
8
|
Ye J, Hu X, Wang Z, Li R, Gan L, Zhang M, Wang T. The role of mtDAMPs in the trauma-induced systemic inflammatory response syndrome. Front Immunol 2023; 14:1164187. [PMID: 37533869 PMCID: PMC10391641 DOI: 10.3389/fimmu.2023.1164187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a non-specific exaggerated defense response caused by infectious or non-infectious stressors such as trauma, burn, surgery, ischemia and reperfusion, and malignancy, which can eventually lead to an uncontrolled inflammatory response. In addition to the early mortality due to the "first hits" after trauma, the trauma-induced SIRS and multiple organ dysfunction syndrome (MODS) are the main reasons for the poor prognosis of trauma patients as "second hits". Unlike infection-induced SIRS caused by pathogen-associated molecular patterns (PAMPs), trauma-induced SIRS is mainly mediated by damage-associated molecular patterns (DAMPs) including mitochondrial DAMPs (mtDAMPs). MtDAMPs released after trauma-induced mitochondrial injury, including mitochondrial DNA (mtDNA) and mitochondrial formyl peptides (mtFPs), can activate inflammatory response through multiple inflammatory signaling pathways. This review summarizes the role and mechanism of mtDAMPs in the occurrence and development of trauma-induced SIRS.
Collapse
Affiliation(s)
- Jingjing Ye
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Xiaodan Hu
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
- School of Basic Medicine, Peking University, Beijing, China
| | - Zhiwei Wang
- Orthopedics Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Lebin Gan
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Mengwei Zhang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Tianbing Wang
- Trauma Center, Peking University People’s Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
9
|
Ren C, Tan P, Gao L, Zeng Y, Hu S, Chen C, Tang N, Chen Y, Zhang W, Qin Y, Zhang X, Du S. Melatonin reduces radiation-induced ferroptosis in hippocampal neurons by activating the PKM2/NRF2/GPX4 signaling pathway. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110777. [PMID: 37100272 DOI: 10.1016/j.pnpbp.2023.110777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Ferroptosis is a type of regulated cell death that is dependent on iron and reactive oxygen species (ROS). Melatonin (N-acetyl-5-methoxytryptamine) reduces hypoxic-ischemic brain damage via mechanisms that involve free radical scavenging. How melatonin regulates radiation-induced ferroptosis of hippocampal neurons is yet to be elucidated. In this study, the mouse hippocampal neuronal cell line HT-22 was treated with 20μM melatonin before being stimulated with a combination of irradiation and 100 μM FeCl3. Furthermore, in vivo experiments were performed in mice treated with melatonin via intraperitoneal injection, which was followed by radiation exposure. A series of functional assays, including CCK-8, DCFH-DA kit, flow cytometry, TUNEL staining, iron estimations, and transmission electron microscopy, were performed on cells as well as hippocampal tissues. The interactions between PKM2 and NRF2 proteins were detected using a coimmunoprecipitation (Co-IP) assay. Moreover, chromatin immunoprecipitation (ChIP), a luciferase reporter assay, and an electrophoretic mobility shift assay (EMSA) were performed to explore the mechanism by which PKM2 regulates the NRF2/GPX4 signaling pathway. The spatial memory of mice was evaluated using the Morris Water Maze test. Hematoxylin-eosin and Nissl staining were performed for histological examination. The results revealed that melatonin protected HT-22 neuronal cells from radiation-induced ferroptosis, as inferred from increased cell viability, decreased ROS production, reduced number of apoptotic cells, and less cristae, higher electron density in mitochondria. In addition, melatonin induced PKM2 nuclear transference, while PKM2 inhibition reversed the effects of melatonin. Further experiments demonstrated that PKM2 bound to and induced the nuclear translocation of NRF2, which regulated GPX4 transcription. Ferroptosis enhanced by PKM2 inhibition was also converted by NRF2 overexpression. In vivo experiments indicated that melatonin alleviated radiation-induced neurological dysfunction and injury in mice. In conclusion, melatonin suppressed ferroptosis to decrease radiation-induced hippocampal neuronal injury by activating the PKM2/NRF2/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Chen Ren
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Lianxuan Gao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingying Zeng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shushu Hu
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Chen Chen
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Nan Tang
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Yulei Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yue Qin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaonan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shasha Du
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|