1
|
Dolcini J, Chiavarini M, Firmani G, Brennan KJM, Cardenas A, Baccarelli AA, Barbadoro P. Methylation Biomarkers of Lung Cancer Risk: A Systematic Review and Meta-Analysis. Cancers (Basel) 2025; 17:690. [PMID: 40002283 PMCID: PMC11853407 DOI: 10.3390/cancers17040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Lung cancer (LC) is the leading cause of cancer deaths worldwide among both men and women, and represents a major public health challenge. DNA methylation (DNAm) has shown potential in identifying individuals at higher risk of LC, but the overall evidence has not been systematically evaluated. This review and meta-analysis aims to evaluate and summarize existing research on the association between blood DNAm levels and LC risk. Methods: Searches were conducted in PubMed, Web of Science, and Scopus for studies published until February 2024, following PRISMA and MOOSE guidelines. Eleven studies met the eligibility criteria. Results: Using a random effects model, our pooled analysis showed a significant association between increased DNAm levels and LC risk (OR 1.24, 95% CI 1.10-1.39; I2 = 93.90%, p = 0.0001). Stratifying the results by study design showed a stronger association in two prospective cohort studies (OR 1.61; 95% CI 1.36-1.90; I2 = 14.42%, p = 0.32), while case-control studies showed a weaker association (OR 1.05; 95% CI 0.99-1.11; I2 = 70.57%, p = 0.0001). Sensitivity analyses indicated that omitting individual studies did not significantly alter the LC risk estimates. Conclusions: These findings suggest that higher blood DNAm levels are associated with an increased risk of LC, especially in long-term cohort studies. Further research is recommended to explore the potential of DNAm as a screening biomarker for LC and to clarify the role of other influencing factors.
Collapse
Affiliation(s)
- Jacopo Dolcini
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy
| | - Manuela Chiavarini
- Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Giorgio Firmani
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy
| | - Kasey J. M. Brennan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Pamela Barbadoro
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy
| |
Collapse
|
2
|
Hernandez Cordero AI, Leung JM. ERJ advances: epigenetic ageing and leveraging DNA methylation in chronic respiratory diseases. Eur Respir J 2024; 64:2401257. [PMID: 39362670 PMCID: PMC11561405 DOI: 10.1183/13993003.01257-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Chronic respiratory diseases are the third leading cause of death and affect more than 450 million people worldwide [1]. Major risk factors such as cigarette smoking have long been studied in their pathogenesis, but as the global population ages, increasing attention must now be paid to the contributory role of ageing [2]. Epidemiological evidence indicates a decline in lung health over time with lung function classically reaching its peak between 20–30 years of age and starting an inevitable descent thereafter [3]. Modern paradigms suggest that this rise and descent may occur at different rates along the lifespan, which may indicate that the links between age and lung function may be variable between individuals [4]. Deciphering how lung ageing influences the development of chronic respiratory diseases may hold powerful clues into novel therapeutics and management strategies. Epigenetic age is a novel biomarker utilising DNA methylation profiles that can detect accelerated biological ageing. Potential uses in respiratory disease include risk stratification for vulnerable patients and prognostication for poor clinical outcomes. https://bit.ly/3ZMTAK1
Collapse
Affiliation(s)
- Ana I Hernandez Cordero
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, BC, Canada
- Edwin S.H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital and University of British Columbia, Vancouver, BC, Canada
- Edwin S.H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Rahman ML, Breeze CE, Shu XO, Wong JYY, Blechter B, Cardenas A, Wang X, Ji BT, Hu W, Cai Q, Hosgood HD, Yang G, Shi J, Long J, Gao YT, Bell DA, Zheng W, Rothman N, Lan Q. Epigenome-wide association study of lung cancer among never smokers in two prospective cohorts in Shanghai, China. Thorax 2024; 79:735-744. [PMID: 38702190 PMCID: PMC11251856 DOI: 10.1136/thorax-2023-220352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/17/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The aetiology of lung cancer among individuals who never smoked remains elusive, despite 15% of lung cancer cases in men and 53% in women worldwide being unrelated to smoking. Epigenetic alterations, particularly DNA methylation (DNAm) changes, have emerged as potential drivers. Yet, few prospective epigenome-wide association studies (EWAS), primarily focusing on peripheral blood DNAm with limited representation of never smokers, have been conducted. METHODS We conducted a nested case-control study of 80 never-smoking incident lung cancer cases and 83 never-smoking controls within the Shanghai Women's Health Study and Shanghai Men's Health Study. DNAm was measured in prediagnostic oral rinse samples using Illumina MethylationEPIC array. Initially, we conducted an EWAS to identify differentially methylated positions (DMPs) associated with lung cancer in the discovery sample of 101 subjects. The top 50 DMPs were further evaluated in a replication sample of 62 subjects, and results were pooled using fixed-effect meta-analysis. RESULTS Our study identified three DMPs significantly associated with lung cancer at the epigenome-wide significance level of p<8.22×10-8. These DMPs were identified as cg09198866 (MYH9; TXN2), cg01411366 (SLC9A10) and cg12787323. Furthermore, examination of the top 1000 DMPs indicated significant enrichment in epithelial regulatory regions and their involvement in small GTPase-mediated signal transduction pathways. Additionally, GrimAge acceleration was identified as a risk factor for lung cancer (OR=1.19 per year; 95% CI 1.06 to 1.34). CONCLUSIONS While replication in a larger sample size is necessary, our findings suggest that DNAm patterns in prediagnostic oral rinse samples could provide novel insights into the underlying mechanisms of lung cancer in never smokers.
Collapse
Affiliation(s)
- Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Xiao-Ou Shu
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - Xuting Wang
- Immunity, Inflammation and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Qiuyin Cai
- Vanderbilt University, Nashville, Tennessee, USA
| | - H Dean Hosgood
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gong Yang
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Jirong Long
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | | | - Douglas A Bell
- Immunity, Inflammation and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Wei Zheng
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
4
|
Martínez-Magaña JJ, Hurtado-Soriano J, Rivero-Segura NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. Arch Med Res 2024; 55:103033. [PMID: 38955096 DOI: 10.1016/j.arcmed.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | | | | | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Paola Garcia-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | |
Collapse
|
5
|
Brock BA, Mir H, Flenaugh EL, Oprea-Ilies G, Singh R, Singh S. Social and Biological Determinants in Lung Cancer Disparity. Cancers (Basel) 2024; 16:612. [PMID: 38339362 PMCID: PMC10854636 DOI: 10.3390/cancers16030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Lung cancer remains a leading cause of death in the United States and globally, despite progress in treatment and screening efforts. While mortality rates have decreased in recent years, long-term survival of patients with lung cancer continues to be a challenge. Notably, African American (AA) men experience significant disparities in lung cancer compared to European Americans (EA) in terms of incidence, treatment, and survival. Previous studies have explored factors such as smoking patterns and complex social determinants, including socioeconomic status, personal beliefs, and systemic racism, indicating their role in these disparities. In addition to social factors, emerging evidence points to variations in tumor biology, immunity, and comorbid conditions contributing to racial disparities in this disease. This review emphasizes differences in smoking patterns, screening, and early detection and the intricate interplay of social, biological, and environmental conditions that make African Americans more susceptible to developing lung cancer and experiencing poorer outcomes.
Collapse
Affiliation(s)
- Briana A. Brock
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Eric L. Flenaugh
- Division of Pulmonary Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (B.A.B.); (H.M.); (R.S.)
- Cell and Molecular Biology Program, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|