1
|
Davis JC, Waltz SE. The MET Family of Receptor Tyrosine Kinases Promotes a Shift to Pro-Tumor Metabolism. Genes (Basel) 2024; 15:953. [PMID: 39062731 PMCID: PMC11275592 DOI: 10.3390/genes15070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The development and growth of cancer is fundamentally dependent on pro-tumor changes in metabolism. Cancer cells generally shift away from oxidative phosphorylation as the primary source of energy and rely more heavily on glycolysis. Receptor tyrosine kinases (RTKs) are a type of receptor that is implicated in this shift to pro-tumor metabolism. RTKs are important drivers of cancer growth and metastasis. One such family of RTKs is the MET family, which consists of MET and RON (MST1R). The overexpression of either MET or RON has been associated with worse cancer patient prognosis in a variety of tumor types. Both MET and RON signaling promote increased glycolysis by upregulating the expression of key glycolytic enzymes via increased MYC transcription factor activity. Additionally, both MET and RON signaling promote increased cholesterol biosynthesis downstream of glycolysis by upregulating the expression of SREBP2-induced cholesterol biosynthesis enzymes via CTTNB1. These changes in metabolism, driven by RTK activity, provide potential targets in limiting tumor growth and metastasis via pharmacological inhibition or modifications in diet. This review summarizes pro-tumor changes in metabolism driven by the MET family of RTKs. In doing so, we will offer our unique perspective on metabolic pathways that drive worse patient prognosis and provide suggestions for future study.
Collapse
Affiliation(s)
- James C. Davis
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Susan E. Waltz
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
2
|
Broggi G, Angelico G, Farina J, Tinnirello G, Barresi V, Zanelli M, Palicelli A, Certo F, Barbagallo G, Magro G, Caltabiano R. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists. Pathol Res Pract 2024; 254:155144. [PMID: 38277747 DOI: 10.1016/j.prp.2024.155144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Although novel knowledge has been acquired on the molecular landscape of glioblastoma (GBM), a relatively few steps forward have been made regarding its therapy. With the increasing use of novel immunotherapeutic drugs capable of stimulating the antitumor inflammatory response, in the last decades numerous studies aimed to characterize the tumor-associated microenvironment (TME) and its relationship with the immunogenicity of GBM. In this regard, although the tumor-associated microglia and macrophages (TAMs) and PD-L1/PD-1 axis have been emerged as one of the most relevant components of the GBM TME and one of the potential molecular pathways targetable with immunotherapy, respectively. It has been supposed that TAMs may acquire different phenotypes, switching from M1 to M2 phenotypes, with tumor-suppressive and tumor-stimulating role depending on the different surrounding conditions. PD-L1 is a type 1 transmembrane protein ligand expressed by T-cells, B-cells and antigen-presenting cells, with a main inhibitory checkpoint role on tumor immune regulation. While PD-L1 immunohistochemical expression has been extensively investigated in many cancers, its usefulness in the evaluation of GBM response rates to immunotherapy and its standardized evaluation by immunohistochemistry are still debated. The present review paper focuses on the current "state of the art" about the relationship between TME, PD-L1/PD-1 pathway and immunotherapy in GBM, also providing neuropathologists with an updated guide about the clinical trials conducted with PD-L1 and PD-1 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona 37134, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| |
Collapse
|
3
|
Sanjeev D, Dagamajalu S, Shaji V, George M, Subbannayya Y, Prasad TSK, Raju R, Devasahayam Arokia Balaya R. A network map of macrophage-stimulating protein (MSP) signaling. J Cell Commun Signal 2023; 17:1113-1120. [PMID: 37142846 PMCID: PMC10409925 DOI: 10.1007/s12079-023-00755-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Macrophage-stimulating protein (MSP), a serum-derived growth factor belonging to the plasminogen-related kringle domain family, is mainly produced by the liver and released into the blood. MSP is the only known ligand for RON ("Recepteur d'Origine Nantais", also known as MST1R), which is a member of the receptor tyrosine kinase (RTK) family. MSP is associated with many pathological conditions, including cancer, inflammation, and fibrosis. Activation of the MSP/RON system regulates main downstream signaling pathways, including phosphatidylinositol 3-kinase/ AKT serine/threonine kinase/ (PI3-K/AKT), mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK) & Focal adhesion kinase (FAK). These pathways are mainly involved in cell proliferation, survival, migration, invasion, angiogenesis & chemoresistance. In this work, we created a pathway resource of signaling events mediated by MSP/RON considering its contribution to diseases. We provide an integrated pathway reaction map of MSP/RON that is composed of 113 proteins and 26 reactions based on the curation of data from the published literature. The consolidated pathway map of MSP/RON mediated signaling events contains seven molecular associations, 44 enzyme catalysis, 24 activation/inhibition, six translocation events, 38 gene regulation events, and forty-two protein expression events. The MSP/RON signaling pathway map can be freely accessible through the WikiPathways Database URL: https://classic.wikipathways.org/index.php/Pathway:WP5353 .
Collapse
Affiliation(s)
- Diya Sanjeev
- Centre for Integrative OmicsData Science (CIODS), Yenepoya (Deemed to be University), Derlakatte, Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Vineetha Shaji
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Mejo George
- Centre for Integrative OmicsData Science (CIODS), Yenepoya (Deemed to be University), Derlakatte, Mangalore, Karnataka 575018 India
| | - Yashwanth Subbannayya
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Rajesh Raju
- Centre for Integrative OmicsData Science (CIODS), Yenepoya (Deemed to be University), Derlakatte, Mangalore, Karnataka 575018 India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Rex Devasahayam Arokia Balaya
- Centre for Integrative OmicsData Science (CIODS), Yenepoya (Deemed to be University), Derlakatte, Mangalore, Karnataka 575018 India
| |
Collapse
|
4
|
Cybula M, Wang L, Wang L, Drumond-Bock AL, Moxley KM, Benbrook DM, Gunderson-Jackson C, Ruiz-Echevarria MJ, Bhattacharya R, Mukherjee P, Bieniasz M. Patient-Derived Xenografts of High-Grade Serous Ovarian Cancer Subtype as a Powerful Tool in Pre-Clinical Research. Cancers (Basel) 2021; 13:6288. [PMID: 34944908 PMCID: PMC8699796 DOI: 10.3390/cancers13246288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023] Open
Abstract
(1) Background. PDX models have become the preferred tool in research laboratories seeking to improve development and pre-clinical testing of new drugs. PDXs have been shown to capture the cellular and molecular characteristics of human tumors better than simpler cell line-based models. More recently, however, hints that PDXs may change their characteristics over time have begun to emerge, emphasizing the need for comprehensive analysis of PDX evolution. (2) Methods. We established a panel of high-grade serous ovarian carcinoma (HGSOC) PDXs and developed and validated a 300-SNP signature that can be successfully utilized to assess genetic drift across PDX passages and detect PDX contamination with lymphoproliferative tissues. In addition, we performed a detailed histological characterization and functional assessment of multiple PDX passages. (3) Results. Our data show that the PDXs remain largely stable throughout propagation, with marginal genetic drift at the time of PDX initiation and adaptation to mouse host. Importantly, our PDX lines retained the major histological characteristics of the original patients' tumors even after multiple passages in mice, demonstrating a strong concordance with the clinical responses of their corresponding patients. (4) Conclusions. Our data underline the value of defined HGSOC PDXs as a pre-clinical tumor model.
Collapse
Affiliation(s)
- Magdalena Cybula
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| | - Lin Wang
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| | - Luyao Wang
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| | - Ana Luiza Drumond-Bock
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| | - Katherine M. Moxley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Doris M. Benbrook
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Camille Gunderson-Jackson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Maria J. Ruiz-Echevarria
- Department of Pathology, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| | - Resham Bhattacharya
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Priyabrata Mukherjee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; (K.M.M.); (D.M.B.); (C.G.-J.); (R.B.); (P.M.)
| | - Magdalena Bieniasz
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (M.C.); (L.W.); (L.W.); (A.L.D.-B.)
| |
Collapse
|
5
|
Lai SCA, Gundlapalli H, Ekiz HA, Jiang A, Fernandez E, Welm AL. Blocking Short-Form Ron Eliminates Breast Cancer Metastases through Accumulation of Stem-Like CD4+ T Cells That Subvert Immunosuppression. Cancer Discov 2021; 11:3178-3197. [PMID: 34330779 PMCID: PMC8800951 DOI: 10.1158/2159-8290.cd-20-1172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapy has potential to prevent and treat metastatic breast cancer, but strategies to enhance immune-mediated killing of metastatic tumors are urgently needed. We report that a ligand-independent isoform of Ron kinase (SF-Ron) is a key target to enhance immune infiltration and eradicate metastatic tumors. Host-specific deletion of SF-Ron caused recruitment of lymphocytes to micrometastases, augmented tumor-specific T-cell responses, and nearly eliminated breast cancer metastasis in mice. Lack of host SF-Ron caused stem-like TCF1+ CD4+ T cells with type I differentiation potential to accumulate in metastases and prevent metastatic outgrowth. There was a corresponding increase in tumor-specific CD8+ T cells, which were also required to eliminate lung metastases. Treatment of mice with a Ron kinase inhibitor increased tumor-specific CD8+ T cells and protected from metastatic outgrowth. These data provide a strong preclinical rationale to pursue small-molecule Ron kinase inhibitors for the prevention and treatment of metastatic breast cancer. SIGNIFICANCE The discovery that SF-Ron promotes antitumor immune responses has significant clinical implications. Therapeutic antibodies targeting full-length Ron may not be effective for immunotherapy; poor efficacy of such antibodies in trials may be due to their inability to block SF-Ron. Our data warrant trials with inhibitors targeting SF-Ron in combination with immunotherapy. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Shu-Chin Alicia Lai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Harika Gundlapalli
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - H. Atakan Ekiz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Amanda Jiang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Elvelyn Fernandez
- Genomics Summer Research for Minorities (GSRM) Program, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Wang Z, Yang Y, Hu S, He J, Wu Z, Qi Z, Huang M, Liu R, Lin Y, Tan C, Xu M, Zhang Z. Short-form RON (sf-RON) enhances glucose metabolism to promote cell proliferation via activating β-catenin/SIX1 signaling pathway in gastric cancer. Cell Biol Toxicol 2021; 37:35-49. [PMID: 32399910 PMCID: PMC7851020 DOI: 10.1007/s10565-020-09525-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Recepteur d'origine nantais (RON) has been implicated in cell proliferation, metastasis, and chemoresistance of various human malignancies. The short-form RON (sf-RON) encoded by RON transcripts was overexpressed in gastric cancer tissues, but its regulatory functions remain illustrated. Here, we found that sf-RON promoted gastric cancer cell proliferation by enhancing glucose metabolism. Furthermore, sf-RON was proved to induce the β-catenin expression level through the AKT1/GSK3β signaling pathway. Meanwhile, the binding sites of β-catenin were identified in the promoter region of SIX1 and it was also demonstrated that β-catenin positively regulated SIX1 expression. SIX1 enhanced the promoter activity of key proteins in glucose metabolism, such as GLUT1 and LDHA. Results indicated that sf-RON regulated the cell proliferation and glucose metabolism of gastric cancer by participating in a sf-RON/β-catenin/SIX1 signaling axis and had significant implications for choosing the therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Ziliang Wang
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Medicine, Shanghai, 200092 China
| | - Yufei Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Shuang Hu
- Department of Pharmacy, Eye & Ent Hospital of Fudan University, Shanghai, 200031 China
| | - Jian He
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Zheng Wu
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Zihao Qi
- Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Mingzhu Huang
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Rujiao Liu
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Ying Lin
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| | - Cong Tan
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 China
| | - Midie Xu
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 China
| | - Zhe Zhang
- Department of Medical Oncology and Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong’an Road, Shanghai, 200032 China
| |
Collapse
|
7
|
Wang L, Wang L, Cybula M, Drumond-Bock AL, Moxley KM, Bieniasz M. Multi-kinase targeted therapy as a promising treatment strategy for ovarian tumors expressing sfRon receptor. Genes Cancer 2020; 11:106-121. [PMID: 33488949 PMCID: PMC7805538 DOI: 10.18632/genesandcancer.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022] Open
Abstract
The sfRon kinase is an important therapeutic target in ovarian cancer that contributes to prominent tumor growth and disease progression. We reasoned that a multi-kinase inhibition of sfRon pathway might be an effective strategy to achieve a sustained anti-tumor response, while simultaneously preventing treatment resistance. We performed a detailed dissection of sfRon signaling in vitro and demonstrated that S6K1 is a key component of a multi-kinase targeting strategy in sfRon expressing ovarian tumors. We selected AD80 compound that targets several kinases within sfRon pathway including AKT and S6K1, and compared its efficacy with inhibitors that selectively target either sfRon or PI3 kinase. Using human ovarian xenografts and clinically relevant patient-derived xenografts (PDXs), we demonstrated that in vivo treatment with single agent AD80 shows superior efficacy to a standard-care chemotherapy (cisplatin/paclitaxel), or to the direct inhibition of sfRon kinase by BMS777607. Our findings indicate that ovarian tumors expressing sfRon are most effectively treated with multi-kinase inhibitors simultaneously targeting AKT and S6K1, such as AD80, which results in long-term anti-tumor response and prevents metastasis development.
Collapse
Affiliation(s)
- Luyao Wang
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lin Wang
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | | - Katherine M. Moxley
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | | |
Collapse
|
8
|
Hao C, Chen G, Zhao H, Li Y, Chen J, Zhang H, Li S, Zhao Y, Chen F, Li W, Jiang WG. PD-L1 Expression in Glioblastoma, the Clinical and Prognostic Significance: A Systematic Literature Review and Meta-Analysis. Front Oncol 2020; 10:1015. [PMID: 32670884 PMCID: PMC7326811 DOI: 10.3389/fonc.2020.01015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 01/11/2023] Open
Abstract
Background: The clinical and prognostic value of programmed death-ligand 1, PD-L1, in glioblastoma remains controversial. The present study aimed to identify the expression of PD-L1 for its prognostic value in glioblastoma. Methods: A comprehensive literature search was performed using the PubMed and CNKI databases. The overall survival (OS) and disease-free survival (DFS) of GBM was analyzed based on Hazard ratios (HRs) and 95% confidence intervals (CIs). Furthermore, Odds ratios (ORs) and 95% CIs were summarized for clinicopathological parameters. The statistical analysis was using RevMan 5.3 software. Results: The meta-analysis was performed by using total nine studies including 806 patients who had glioblastoma. The pooled results indicated that PD-L1 expression in tumor tissues was significantly related to a poor OS (HR = 1.63, 95%CI: 1.19–2.24, P = 0.003, random effects model) with heterogeneity (I2 = 51%). In subgroup analyses, PD-L1 positivity was significantly associated with a worse OS for patients of American and Asian regions, but not for those of European regions. Moreover, PD-L1 expression implied a trend toward the mutation status of the IDH1 gene [coding the Isocitrate Dehydrogenase (NADP(+))-1 protein] (HR = 9.92, 95%CI: 1.85–53.08, P = 0.007, fixed effects model). However, the prediction overall survival (OS) of the patients showed that PD-L1 expression was independent from other clinicopathological features, such as gender and age. Conclusions: Our analyses indicated that high expression of PD-L1 in glioblastoma tumor tissues is associated with poor survival of patients, and PD-L1 may act as a prognostic predictor and an effective therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Chengcheng Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Gang Chen
- Beijing Qinglian Biotech, Co., Ltd., Beijing, China
| | - Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yan Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianxin Chen
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongmei Zhang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shan Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuze Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
9
|
Hao C, Cui Y, Chang S, Huang J, Birkin E, Hu M, Zhi X, Li W, Zhang L, Cheng S, Jiang WG. OPN promotes the aggressiveness of non-small-cell lung cancer cells through the activation of the RON tyrosine kinase. Sci Rep 2019; 9:18101. [PMID: 31792339 PMCID: PMC6889187 DOI: 10.1038/s41598-019-54843-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Osteopontin (OPN) is identified as a diagnostic and prognostic biomarker of tumor progression and metastasis. In non-small-cell lung cancer (NSCLC), the functions of OPN have not been well characterized. The current study sought to investigate the clinical implications of OPN expression in NSCLC and the role of OPN in the aggressiveness of the lung cancer cells. Using a proteomics approach, we identified that phospho-RON (p-RON) was one of the most remarkably up-regulated proteins in OPN-overexpressing cells. The levels of OPN and RON transcripts were unveiled as independent prognostic indicators of survival in NSCLC (p = 0.001). Higher levels of OPN, RON and p-RON proteins were observed in tumor tissues. Knock down of the OPN gene suppressed the migration and invasion abilities of the A549 lung cancer cells which endogenously expresses OPN. While ectopic expression of OPN in the SK-MES-1 lung cancer cells increased levels of cellular invasion and migration. In addition, these changes were accompanied by a phosphorylated activation of RON. Small-molecule inhibition of RON or siRNA silencing of RON significantly reduced OPN-induced migration and invasion of lung cancer cells and had an inhibitory effect on the OPN-mediated cell epithelial-mesenchymal transition. Our study suggests that in NSCLC, the aberrant expression of OPN can be considered as an independent survival indicator and is associated with disease progression. OPN plays a crucial role in promoting migration and invasion properties of lung cancer cells through its phosphorylation activation of the RON signaling pathway, implying its potential as a therapeutic target in the treatment of NSCLC.
Collapse
Affiliation(s)
- Chengcheng Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Siyuan Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Jing Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Emily Birkin
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Mu Hu
- Department of Thoracic Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiuyi Zhi
- Department of Thoracic Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lijian Zhang
- Department of Thoracic Surgery, Peking University School of Oncology and Beijing Cancer Hospital & Institute, Beijing, 100142, P.R. China
| | - Shan Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China.
| | - Wen G Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069, China.
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
10
|
Emmanouilidi A, Fyffe CA, Ferro R, Edling CE, Capone E, Sestito S, Rapposelli S, Lattanzio R, Iacobelli S, Sala G, Maffucci T, Falasca M. Preclinical validation of 3-phosphoinositide-dependent protein kinase 1 inhibition in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:191. [PMID: 31088502 PMCID: PMC6518649 DOI: 10.1186/s13046-019-1191-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 11/02/2022]
Abstract
BACKGROUND The very aggressive nature and low survival rate of pancreatic ductal adenocarcinoma (PDAC) dictates the necessity to find novel efficacious therapies. Recent evidence suggests that phosphoinositide 3-kinase (PI3K) and 3-phosphoinositide-dependent protein kinase 1 (PDK1) are key effectors of oncogenic KRAS in PDAC. Herein, we report the role and mechanism of action of PDK1, a protein kinase of the AGC family, in PDAC. METHODS PDAC cell lines were treated with selective PDK1 inhibitors or transfected with specific PDK1-targeting siRNAs. In vitro and in vivo assays were performed to investigate the functional role of PDK1 in PDAC. Specifically, anchorage-dependent and anchorage-independent growth was assessed in PDAC cells upon inhibition or downregulation of PDK1. Detailed investigation of the effect of PDK1 inhibition/downregulation on specific signalling pathways was also performed by Western blotting analysis. A xenograft tumour mouse model was used to determine the effect of pharmacological inhibition of PDK1 on PDAC cells growth in vivo. RESULTS Treatment with specific inhibitors of PDK1 impaired anchorage-dependent and anchorage-independent growth of pancreatic cancer cell lines, as well as pancreatic tumour growth in a xenograft model. Mechanistically, inhibition or downregulation of PDK1 resulted in reduced activation of the serum/glucocorticoid regulated kinase family member 3 and subsequent reduced phosphorylation of its target N-Myc downstream regulated 1. Additionally, we found that combination of sub-optimal concentrations of inhibitors selective for PDK1 and the class IB PI3K isoform p110γ inhibits pancreatic cancer cell growth and colonies formation more potently than each single treatment. CONCLUSIONS Our data indicate that PDK1 is a suitable target for therapeutic intervention in PDAC and support the clinical development of PDK1 inhibitors for PDAC.
Collapse
Affiliation(s)
- Aikaterini Emmanouilidi
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Chanse A Fyffe
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Riccardo Ferro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Charlotte E Edling
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Simona Sestito
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy
| | - Rossano Lattanzio
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Stefano Iacobelli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy.,MediaPharma Srl, Via della Colonnetta, 50/A, 66100, Chieti, Italy
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Tania Maffucci
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia. .,Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK.
| |
Collapse
|
11
|
Abstract
Cancer metastasis is defined as the dissemination of malignant cells from the primary tumor site, leading to colonization of distant organs and the establishment of a secondary tumor. Metastasis is frequently associated with chemoresistance and is the major cause of cancer-related mortality. Metastatic cells need to acquire the ability to resist to stresses provided by different environments, such as reactive oxygen species, shear stress, hemodynamic forces, stromal composition, and immune responses, to colonize other tissues. Hence, only a small population of cells has a metastasis-initiating potential. Several studies have revealed the misregulation of transcriptional variants during cancer progression, and many splice events can be used to distinguish between normal and tumoral tissue. These variants, which are abnormally expressed in malignant cells, contribute to an adaptive response of tumor cells and the success of the metastatic cascade, promoting an anomalous cell cycle, cellular adhesion, resistance to death, cell survival, migration and invasion. Understanding the different aspects of splicing regulation and the influence of transcriptional variants that control metastatic cells is critical for the development of therapeutic strategies. In this review, we describe how transcriptional variants contribute to metastatic competence and discuss how targeting specific isoforms may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Joice De Faria Poloni
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Diego Bonatto
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
12
|
Ling Y, Kuang Y, Chen LL, Lao WF, Zhu YR, Wang LQ, Wang D. A novel RON splice variant lacking exon 2 activates the PI3K/AKT pathway via PTEN phosphorylation in colorectal carcinoma cells. Oncotarget 2018; 8:39101-39116. [PMID: 28388571 PMCID: PMC5503598 DOI: 10.18632/oncotarget.16603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
Abnormal expression of the Recepteur d'Origine Nantais (RON) receptor tyrosine kinase is accompanied by the generation of multiple splice or truncated variants, which mediate many critical cellular functions that contribute to tumor progression and metastasis. Here, we report a new RON splice variant in the human colorectal cancer (CRC) cell line HT29. This variant is a 165 kda protein generated by alternative pre-mRNA splicing that eliminates exon 2, causing an in-frame deletion of 63 amino acids in the extracellular domain of the RON β chain. The deleted transcript was a single chain expressed in the intracellular compartment. Although it lacked tyrosine phosphorylation activity, the RONΔ165E2 variant could phosphorylate phosphatase and tensin homolog (PTEN), thereby activating the PI3K/AKT pathway. In addition, in vitro and in vivo experiments showed that the RONΔ165E2 promoted cell migration and tumor growth. Finally, in an investigation of 67 clinical CRC samples, the variant was highly expressed in about 58% of the samples, and was positively correlated with the invasive depth of the tumor (P < 0.05). These results demonstrate that the novel RONΔ165E2 variant promoted tumor progression while activating the PI3K/AKT pathway via PTEN phosphorylation.
Collapse
Affiliation(s)
- Yu Ling
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yeye Kuang
- Biomedical Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lin-Lin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Wei-Feng Lao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yao-Ru Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Le-Qi Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| |
Collapse
|
13
|
Targeting PDK1 for Chemosensitization of Cancer Cells. Cancers (Basel) 2017; 9:cancers9100140. [PMID: 29064423 PMCID: PMC5664079 DOI: 10.3390/cancers9100140] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023] Open
Abstract
Despite the rapid development in the field of oncology, cancer remains the second cause of mortality worldwide, with the number of new cases expected to more than double in the coming years. Chemotherapy is widely used to decelerate or stop tumour development in combination with surgery or radiation therapy when appropriate, and in many cases this improves the symptomatology of the disease. Unfortunately though, chemotherapy is not applicable to all patients and even when it is, there are many cases where a successful initial treatment period is followed by chemotherapeutic drug resistance. This is caused by a number of reasons, ranging from the genetic background of the patient (innate resistance) to the formation of tumour-initiating cells (acquired resistance). In this review, we discuss the potential role of PDK1 in the development of chemoresistance in different types of malignancy, and the design and application of potent inhibitors which can promote chemosensitization.
Collapse
|
14
|
HRAS, EGFR, MET, and RON Genes Are Recurrently Activated by Provirus Insertion in Liver Tumors Induced by the Retrovirus Myeloblastosis-Associated Virus 2. J Virol 2017; 91:JVI.00467-17. [PMID: 28768863 DOI: 10.1128/jvi.00467-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Myeloblastosis-associated virus 2 (MAV-2) is a highly tumorigenic simple avian retrovirus. Chickens infected in ovo with MAV-2 develop tumors in the kidneys, lungs, and liver with a short latency, less than 8 weeks. Here we report the results of molecular analyses of MAV-2-induced liver tumors that fall into three classes: hepatic hemangiosarcomas (HHSs), intrahepatic cholangiocarcinomas (ICCs), and hepatocellular carcinomas (HCCs). Comprehensive inverse PCR-based screening of 92 chicken liver tumors revealed that in ca. 86% of these tumors, MAV-2 provirus had integrated into one of four gene loci: HRAS, EGFR, MET, and RON Insertionally mutated genes correlated with tumor type: HRAS was hit in HHSs, MET in ICCs, RON mostly in ICCs, and EGFR mostly in HCCs. The provirus insertions led to the overexpression of the affected genes and, in the case of EGFR and RON, also to the truncation of exons encoding the extracellular ligand-binding domains of these transmembrane receptors. The structures of truncated EGFR and RON closely mimic the structures of oncogenic variants of these genes frequently found in human tumors (EGFRvIII and sfRON).IMPORTANCE These data describe the mechanisms of oncogenesis induced in chickens by the MAV-2 retrovirus. They also show that molecular processes converting cellular regulatory genes to cancer genes may be remarkably similar in chickens and humans. We suggest that the MAV-2 retrovirus-based model can complement experiments performed using mouse models and provide data that could translate to human medicine.
Collapse
|
15
|
Alsina-Sanchís E, Figueras A, Lahiguera A, Gil-Martín M, Pardo B, Piulats JM, Martí L, Ponce J, Matias-Guiu X, Vidal A, Villanueva A, Viñals F. TGFβ Controls Ovarian Cancer Cell Proliferation. Int J Mol Sci 2017; 18:ijms18081658. [PMID: 28758950 PMCID: PMC5578048 DOI: 10.3390/ijms18081658] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022] Open
Abstract
There have been no major improvements in the overall survival of ovarian cancer patients in recent decades. Even though more accurate surgery and more effective treatments are available, the mortality rate remains high. Given the differences in origin and the heterogeneity of these tumors, research to elucidate the signaling pathways involved is required. The Transforming Growth Factor (TGFβ) family controls different cellular responses in development and cell homeostasis. Disruption of TGFβ signaling has been implicated in many cancers, including ovarian cancer. This article considers the involvement of TGFβ in ovarian cancer progression, and reviews the various mechanisms that enable the TGFβ signaling pathway to control ovarian cancer cell proliferation. These mechanistic explanations support the therapeutic use of TGFβ inhibitors in ovarian cancer, which are currently in the early phases of development.
Collapse
Affiliation(s)
- Elisenda Alsina-Sanchís
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Agnès Figueras
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Alvaro Lahiguera
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Marta Gil-Martín
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Medical Oncology Department, Institut Català d'Oncologia, Hospital Duran i Reynals, IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Beatriz Pardo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Medical Oncology Department, Institut Català d'Oncologia, Hospital Duran i Reynals, IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Josep M Piulats
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Medical Oncology Department, Institut Català d'Oncologia, Hospital Duran i Reynals, IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Lola Martí
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Gynaecologic Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Jordi Ponce
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Gynaecologic Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Xavier Matias-Guiu
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, CIBERONC, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - August Vidal
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, CIBERONC, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Xenopat, Carrer de la Feixa Llarga S/N, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Alberto Villanueva
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Xenopat, Carrer de la Feixa Llarga S/N, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Departament de Ciències Fisiològiques, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
16
|
Faham N, Welm AL. RON Signaling Is a Key Mediator of Tumor Progression in Many Human Cancers. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:177-188. [PMID: 28057847 DOI: 10.1101/sqb.2016.81.031377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With an increasing body of literature covering RON receptor tyrosine kinase function in different types of human cancers, it is becoming clear that RON has prominent roles in both cancer cells and in the tumor-associated microenvironment. RON not only activates several oncogenic signaling pathways in cancer cells, leading to more aggressive behavior, but also promotes an immunosuppressive, alternatively activated phenotype in macrophages and limits the antitumor immune response. These two unique functions of this oncogene, the strong correlation between RON expression and poor outcomes in cancer, and the high tolerability of a new RON inhibitor make it an exciting therapeutic target, the blocking of which offers an advantage toward improving the survival of cancer patients. Here, we discuss recent findings on the role of RON signaling in cancer progression and its potential in cancer therapy.
Collapse
Affiliation(s)
- Najme Faham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|