1
|
Wang Z, Thakare RP, Chitale S, Mishra AK, Goldstein SI, Fan AC, Li R, Zhu LJ, Brown LE, Cencic R, Huang S, Green MR, Pelletier J, Malonia SK, Porco JA. Identification of Rocaglate Acyl Sulfamides as Selective Inhibitors of Glioblastoma Stem Cells. ACS CENTRAL SCIENCE 2024; 10:1640-1656. [PMID: 39220711 PMCID: PMC11363328 DOI: 10.1021/acscentsci.4c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and frequently occurring type of malignant brain tumor in adults. The initiation, progression, and recurrence of malignant tumors are known to be driven by a small subpopulation of cells known as tumor-initiating cells or cancer stem cells (CSCs). GBM CSCs play a pivotal role in orchestrating drug resistance and tumor relapse. As a prospective avenue for GBM intervention, the targeted suppression of GBM CSCs holds considerable promise. In this study, we found that rocaglates, compounds which are known to inhibit translation via targeting of the DEAD-box helicase eIF4A, exert a robust, dose-dependent cytotoxic impact on GBM CSCs with minimal killing of nonstem GBM cells. Subsequent optimization identified novel rocaglate derivatives (rocaglate acyl sulfamides or Roc ASFs) that selectively inhibit GBM CSCs with nanomolar EC50 values. Furthermore, comparative evaluation of a lead CSC-optimized Roc ASF across diverse mechanistic and target profiling assays revealed suppressed translation inhibition relative to that of other CSC-selective rocaglates, with enhanced targeting of the DEAD-box helicase DDX3X, a recently identified secondary target of rocaglates. Overall, these findings suggest a promising therapeutic strategy for targeting GBM CSCs.
Collapse
Affiliation(s)
- Zihao Wang
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ritesh P. Thakare
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Shalaka Chitale
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Alok K. Mishra
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Stanley I. Goldstein
- Boston
University Target Discovery Laboratory (BU-TDL), Boston, Massachusetts 02215, United States
- Department
of Pharmacology, Physiology, and Biophysics, Boston University, Boston, Massachusetts 02118, United States
| | - Alice C. Fan
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Boston
University Target Discovery Laboratory (BU-TDL), Boston, Massachusetts 02215, United States
| | - Rui Li
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Molecular Medicine and Program in Bioinformatics and Integrative
Biology, University of Massachusetts Chan
Medical School, Worcester, Massachusetts 01605, United States
| | - Lihua Julie Zhu
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Molecular Medicine and Program in Bioinformatics and Integrative
Biology, University of Massachusetts Chan
Medical School, Worcester, Massachusetts 01605, United States
| | - Lauren E. Brown
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Regina Cencic
- Department
of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sidong Huang
- Department
of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael R. Green
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Jerry Pelletier
- Department
of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sunil K. Malonia
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - John A. Porco
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Boston
University Target Discovery Laboratory (BU-TDL), Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Busselez J, Uzbekov RE, Franco B, Pancione M. New insights into the centrosome-associated spliceosome components as regulators of ciliogenesis and tissue identity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1776. [PMID: 36717357 DOI: 10.1002/wrna.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
Biomolecular condensates are membrane-less assemblies of proteins and nucleic acids. Centrosomes are biomolecular condensates that play a crucial role in nuclear division, cytoskeletal remodeling, and cilia formation in animal cells. Spatial omics technology is providing new insights into the dynamic exchange of spliceosome components between the nucleus and the centrosome/cilium. Intriguingly, centrosomes are emerging as cytoplasmic sites for information storage, enriched with RNA molecules and RNA-processing proteins. Furthermore, growing evidence supports the view that nuclear spliceosome components assembled at the centrosome function as potential coordinators of splicing subprograms, pluripotency, and cell differentiation. In this article, we first discuss the current understanding of the centrosome/cilium complex, which controls both stem cell differentiation and pluripotency. We next explore the molecular mechanisms that govern splicing factor assembly and disassembly around the centrosome and examine how RNA processing pathways contribute to ciliogenesis. Finally, we discuss numerous unresolved compelling questions regarding the centrosome-associated spliceosome components and transcript variants within the cytoplasm as sources of RNA-based secondary messages in the regulation of cell identity and cell fate determination. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Processing.
Collapse
Affiliation(s)
- Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Rustem E Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medicine, Medical Genetics, University of Naples "Federico II", Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, Madrid, Spain
| |
Collapse
|
3
|
Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S. Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 2022; 22:1-32. [PMID: 35416560 DOI: 10.1007/s10142-022-00849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | | | - Arun Arumugaperumal
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Saranya Lathakumari
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Selvan Christyraj Jackson Durairaj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600 119, India
| | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
4
|
Zheng Y, Xu B, Zhao Y, Yang S, Wang S, Ma L, Dong L. DEAD-Box Helicase 3 X-Linked Promotes Metastasis by Inducing Epithelial-Mesenchymal Transition via p62/Sequestosome-1. Dig Dis Sci 2021; 66:3893-3902. [PMID: 33386519 DOI: 10.1007/s10620-020-06735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND DEAD-Box Helicase 3 X-Linked (DDX3X) is a member of the DEAD-box helicases that play a crucial role in RNA metabolism. Although DDX3X has been shown to contribute to tumorigenesis, the detailed mechanisms by which DDX3X functions in pancreatic ductal adenocarcinoma (PDAC) biogenesis remain poorly understood. AIMS The goal of the present study was to elucidate the molecular mechanisms by which DDX3X contributes to tumorigenesis in PDAC. METHODS Kaplan-Meier curves, the log-rank test, t test and Cox regression were used to analyze the relationship between DDX3X expression and the clinicopathological features of PDAC patients. DDX3X and p62 expression in human PDAC tissues was analyzed by immunohistochemistry. Monolayer scratch healing assays, cell migration assays and nude mouse lung metastasis models were used to evaluate the effect of DDX3X on metastasis in vitro and in vivo. Western blot analysis was used to assess the expression of proteins in the signaling pathway. RESULTS We authenticated high DDX3X expression was associated with a poor prognosis in PDAC. The loss of DDX3X attenuated the migratory capacity of PDAC cells in vitro and in vivo. DDX3X was shown to facilitate epithelial-mesenchymal transition (EMT) and the phosphorylation of p65 and eIF2α. Moreover, DDX3X displayed oncogenic activity by promoting p62 accumulation. CONCLUSIONS Our results demonstrated that DDX3X activates NF-κB and promotes metastasis by inducing EMT via p62.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, MI, China
| | - Yitong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, MI, China
| | - Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Shuhui Wang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Lin Ma
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, MI, China.
| |
Collapse
|
5
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
6
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Identification of RNA-binding proteins that partner with Lin28a to regulate Dnmt3a expression. Sci Rep 2021; 11:2345. [PMID: 33504840 PMCID: PMC7841167 DOI: 10.1038/s41598-021-81429-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
Lin28 is an evolutionary conserved RNA-binding protein that plays important roles during embryonic development and tumorigenesis. It regulates gene expression through two different post-transcriptional mechanisms. The first one is based on the regulation of miRNA biogenesis, in particular that of the let-7 family, whose expression is suppressed by Lin28. Thus, loss of Lin28 leads to the upregulation of mRNAs that are targets of let-7 species. The second mechanism is based on the direct interaction of Lin28 with a large number of mRNAs, which results in the regulation of their translation. This second mechanism remains poorly understood. To address this issue, we purified high molecular weight complexes containing Lin28a in mouse embryonic stem cells (ESCs). Numerous proteins, co-purified with Lin28a, were identified by proteomic procedures and tested for their possible role in Lin28a-dependent regulation of the mRNA encoding DNA methyltransferase 3a (Dnmt3a). The results show that Lin28a activity is dependent on many proteins, including three helicases and four RNA-binding proteins. The suppression of four of these proteins, namely Ddx3x, Hnrnph1, Hnrnpu or Syncrip, interferes with the binding of Lin28a to the Dnmt3a mRNA, thus suggesting that they are part of an oligomeric ribonucleoprotein complex that is necessary for Lin28a activity.
Collapse
|
8
|
Divergent organ-specific isogenic metastatic cell lines identified using multi-omics exhibit differential drug sensitivity. PLoS One 2020; 15:e0242384. [PMID: 33196681 PMCID: PMC7668614 DOI: 10.1371/journal.pone.0242384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Monitoring and treating metastatic progression remains a formidable task due, in part, to an inability to monitor specific differential molecular adaptations that allow the cancer to thrive within different tissue types. Hence, to develop optimal treatment strategies for metastatic disease, an important consideration is the divergence of the metastatic cancer growing in visceral organs from the primary tumor. We had previously reported the establishment of isogenic human metastatic breast cancer cell lines that are representative of the common metastatic sites observed in breast cancer patients. Methods Here we have used proteomic, RNAseq, and metabolomic analyses of these isogenic cell lines to systematically identify differences and commonalities in pathway networks and examine the effect on the sensitivity to breast cancer therapeutic agents. Results Proteomic analyses indicated that dissemination of cells from the primary tumor sites to visceral organs resulted in cell lines that adapted to growth at each new site by, in part, acquiring protein pathways characteristic of the organ of growth. RNAseq and metabolomics analyses further confirmed the divergences, which resulted in differential efficacies to commonly used FDA approved chemotherapeutic drugs. This model system has provided data that indicates that organ-specific growth of malignant lesions is a selective adaptation and growth process. Conclusions The insights provided by these analyses indicate that the rationale of targeted treatment of metastatic disease may benefit from a consideration that the biology of metastases has diverged from the primary tumor biology and using primary tumor traits as the basis for treatment may not be ideal to design treatment strategies.
Collapse
|
9
|
Karmakar S, Rauth S, Nallasamy P, Perumal N, Nimmakalaya RK, Leon F, Gupta R, Barkeer S, Venkata RC, Raman V, Rachagani S, Ponnusamy MP, Batra SK. RNA Polymerase II-Associated Factor 1 Regulates Stem Cell Features of Pancreatic Cancer Cells, Independently of the PAF1 Complex, via Interactions With PHF5A and DDX3. Gastroenterology 2020; 159:1898-1915.e6. [PMID: 32781084 PMCID: PMC7680365 DOI: 10.1053/j.gastro.2020.07.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS It is not clear how pancreatic cancer stem cells (CSCs) are regulated, resulting in ineffective treatments for pancreatic cancer. PAF1, a RNA polymerase II-associated factor 1 complex (PAF1C) component, maintains pluripotency of stem cells, by unclear mechanisms, and is a marker of CSCs. We investigated mechanisms by which PAF1 maintains CSCs and contributes to development of pancreatic tumors. METHODS Pancreatic cancer cell lines were engineered to knockdown PAF1 using inducible small hairpin RNAs. These cells were grown as orthotopic tumors in athymic nude mice and PAF1 knockdown was induced by administration of doxycycline in drinking water. Tumor growth and metastasis were monitored via IVIS imaging. CSCs were isolated from pancreatic cancer cell populations using flow cytometry and characterized by tumor sphere formation, tumor formation in nude mice, and expression of CSC markers. Isolated CSCs were depleted of PAF1 using the CRISPR/Cas9 system. PAF1-regulated genes in CSCs were identified via RNA-seq and PCR array analyses of cells with PAF1 knockdown. Proteins that interact with PAF1 in CSCs were identified by immunoprecipitations and mass spectrometry. We performed chromatin immunoprecipitation sequencing of CSCs to confirm the binding of the PAF1 sub-complex to target genes. RESULTS Pancreatic cancer cells depleted of PAF1 formed smaller and fewer tumor spheres in culture and orthotopic tumors and metastases in mice. Isolated CSCs depleted of PAF1 downregulated markers of self-renewal (NANOG, SOX9, and β-CATENIN), of CSCs (CD44v6, and ALDH1), and the metastasis-associated gene signature, compared to CSCs without knockdown of PAF1. The role of PAF1 in CSC maintenance was independent of its RNA polymerase II-associated factor 1 complex component identity. We identified DDX3 and PHF5A as proteins that interact with PAF1 in CSCs and demonstrated that the PAF1-PHF5A-DDX3 sub-complex bound to the promoter region of Nanog, whose product regulates genes that control stemness. Levels of the PAF1-DDX3 and PAF1-PHF5A were increased and co-localized in human pancreatic tumor specimens, human pancreatic tumor-derived organoids, and organoids derived from tumors of KPC mice, compared with controls. Binding of DDX3 and PAF1 to the Nanog promoter, and the self-renewal capacity of CSCs, were decreased in cells incubated with the DDX3 inhibitor RK-33. CSCs depleted of PAF1 downregulated genes that regulate stem cell features (Flot2, Taz, Epcam, Erbb2, Foxp1, Abcc5, Ddr1, Muc1, Pecam1, Notch3, Aldh1a3, Foxa2, Plat, and Lif). CONCLUSIONS In pancreatic CSCs, PAF1 interacts with DDX3 and PHF5A to regulate expression of NANOG and other genes that regulate stemness. Knockdown of PAF1 reduces the ability of orthotopic pancreatic tumors to develop and progress in mice and their numbers of CSCs. Strategies to target the PAF1-PHF5A-DDX3 complex might be developed to slow or inhibit progression of pancreatic cancer.
Collapse
Affiliation(s)
- Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Rama Krishna Nimmakalaya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | | | - Venu Raman
- Departments of Radiology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Correspondence: Surinder K. Batra, Ph.D., or Moorthy P. Ponnusamy, Ph.D. Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, or
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, U.S.A.,Correspondence: Surinder K. Batra, Ph.D., or Moorthy P. Ponnusamy, Ph.D. Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A. Phone: 402-559-5455, Fax: 402-559-6650, or
| |
Collapse
|
10
|
Li D, Kishta MS, Wang J. Regulation of pluripotency and reprogramming by RNA binding proteins. Curr Top Dev Biol 2020; 138:113-138. [PMID: 32220295 DOI: 10.1016/bs.ctdb.2020.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells have the capacities of self-renewal and pluripotency. Pluripotency establishment (somatic cell reprogramming), maintenance, and execution (differentiation) require orchestrated regulatory mechanisms of a cell's molecular machinery, including signaling pathways, epigenetics, transcription, translation, and protein degradation. RNA binding proteins (RBPs) take part in every process of RNA regulation and recent studies began to address their important functions in the regulation of pluripotency and reprogramming. Here, we discuss the roles of RBPs in key regulatory steps in the control of pluripotency and reprogramming. Among RNA binding proteins are a group of RNA helicases that are responsible for RNA structure remodeling with important functional implications. We highlight the largest family of RNA helicases, DDX (DEAD-box) helicase family and our current understanding of their functions specifically in the regulation of pluripotency and reprogramming.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohamed S Kishta
- Hormones Department, Medical Research Division, National Research Centre, Cairo, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
11
|
Lin TC. DDX3X Multifunctionally Modulates Tumor Progression and Serves as a Prognostic Indicator to Predict Cancer Outcomes. Int J Mol Sci 2019; 21:ijms21010281. [PMID: 31906196 PMCID: PMC6982152 DOI: 10.3390/ijms21010281] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022] Open
Abstract
DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-Linked (DDX3X), also known as DDX3, is one of the most widely studied and evolutionarily conserved members of the DEAD-box RNA helicase subfamily, and has been reported to participate in several cytosolic steps of mRNA metabolism. DDX3X facilitates the translation of specific targets via its helicase activity and regulates factors of the translation initiation complex. Emerging evidence illustrates the biological activities of DDX3X beyond its originally identified functions. The nonconventional regulatory effects include acting as a signaling adaptor molecule independent of enzymatic RNA remodeling, and DDX3X exhibits abnormal expression in cancers. DDX3X interacts with specific components to perform both oncogenic and tumor-suppressive roles in modulating tumor proliferation, migration, invasion, drug resistance, and cancer stemness in many types of cancers, indicating the need to unravel the associated molecular mechanisms. In this review article, we summarized and integrated current findings relevant to DDX3X in cancer research fields, cytokines and compounds modulating DDX3X's functions, and the released transcriptomic information and cancer patient clinical data from public databases. We found evidence for DDX3X having multiple impacts on cancer progression, and evaluated DDX3X expression levels in a pancancer panel and its associations with patient survival in each cancer-type cohort.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|