1
|
Zheng M, Mullikin H, Hester A, Czogalla B, Heidegger H, Vilsmaier T, Vattai A, Chelariu-Raicu A, Jeschke U, Trillsch F, Mahner S, Kaltofen T. Development and Validation of a Novel 11-Gene Prognostic Model for Serous Ovarian Carcinomas Based on Lipid Metabolism Expression Profile. Int J Mol Sci 2020; 21:E9169. [PMID: 33271935 PMCID: PMC7731240 DOI: 10.3390/ijms21239169] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Biomarkers might play a significant role in predicting the clinical outcomes of patients with ovarian cancer. By analyzing lipid metabolism genes, future perspectives may be uncovered; (2) Methods: RNA-seq data for serous ovarian cancer were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. The non-negative matrix factorization package in programming language R was used to classify molecular subtypes of lipid metabolism genes and the limma package in R was performed for functional enrichment analysis. Through lasso regression, we constructed a multi-gene prognosis model; (3) Results: Two molecular subtypes were obtained and an 11-gene signature was constructed (PI3, RGS, ADORA3, CH25H, CCDC80, PTGER3, MATK, KLRB1, CCL19, CXCL9 and CXCL10). Our prognostic model shows a good independent prognostic ability in ovarian cancer. In a nomogram, the predictive efficiency was notably superior to that of traditional clinical features. Related to known models in ovarian cancer with a comparable amount of genes, ours has the highest concordance index; (4) Conclusions: We propose an 11-gene signature prognosis prediction model based on lipid metabolism genes in serous ovarian cancer.
Collapse
Affiliation(s)
- Mingjun Zheng
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Heather Mullikin
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Helene Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| | - Till Kaltofen
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337 Munich, Germany; (M.Z.); (H.M.); (A.H.); (B.C.); (H.H.); (T.V.); (A.V.); (A.C.-R.); (U.J.); (F.T.); (S.M.)
| |
Collapse
|
2
|
Tsuji T, Eng KH, Matsuzaki J, Battaglia S, Szender JB, Miliotto A, Gnjatic S, Bshara W, Morrison CD, Lele S, Emerson RO, Wang J, Liu S, Robins H, Lugade AA, Odunsi K. Clonality and antigen-specific responses shape the prognostic effects of tumor-infiltrating T cells in ovarian cancer. Oncotarget 2020; 11:2669-2683. [PMID: 32676168 PMCID: PMC7343634 DOI: 10.18632/oncotarget.27666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
CD8+ tumor-infiltrating lymphocytes (TILs) are not all specific for tumor antigens, but can include bystander TILs that are specific for cancer-irrelevant epitopes, and it is unknown whether the T-cell repertoire affects prognosis. To delineate the complexity of anti-tumor T-cell responses, we utilized a computational method for de novo assembly of sequences from CDR3 regions of 369 high-grade serous ovarian cancers from TCGA, and then applied deep TCR-sequencing for analyses of paired tumor and peripheral blood specimens from an independent cohort of 99 ovarian cancer patients. Strongly monoclonal T-cell repertoires were associated with favorable prognosis (PFS, HR = 0.65, 0.50-0.84, p = 0.003; OS, HR = 0.61, 0.44-0.83, p = 0.006) in TCGA cohort. In the validation cohort, we discovered that patients with low T-cell infiltration but low diversity or focused repertoires had clinical outcomes almost indistinguishable from highly-infiltrated tumors (median 21.0 months versus 15.9 months, log-rank p = 0.945). We also found that the degree of divergence of the peripheral repertoire from the TIL repertoire, and the presence of detectable spontaneous anti-tumor immune responses are important determinants of clinical outcome. We conclude that the prognostic significance of TILs in ovarian cancer is dictated by T-cell clonality, degree of overlap with peripheral repertoire, and the presence of detectable spontaneous anti-tumor immune response in the patients. These immunological phenotypes defined by the TCR repertoire may provide useful insights for identifying "TIL-low" ovarian cancer patients that may respond to immunotherapy.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally to this work
| | - Kevin H Eng
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally to this work
| | - Junko Matsuzaki
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sebastiano Battaglia
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - J Brian Szender
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anthony Miliotto
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Carl D Morrison
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Jianmin Wang
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Amit A Lugade
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
3
|
CAR T Cells Targeting MISIIR for the Treatment of Ovarian Cancer and Other Gynecologic Malignancies. Mol Ther 2019; 28:548-560. [PMID: 31870622 DOI: 10.1016/j.ymthe.2019.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 01/20/2023] Open
Abstract
The prognosis of patients diagnosed with advanced ovarian or endometrial cancer remains poor, and effective therapeutic strategies are limited. The Müllerian inhibiting substance type 2 receptor (MISIIR) is a transforming growth factor β (TGF-β) receptor family member, overexpressed by most ovarian and endometrial cancers while absent in most normal tissues. Restricted tissue expression, coupled with an understanding that MISIIR ligation transmits apoptotic signals to cancer cells, makes MISIIR an attractive target for tumor-directed therapeutics. However, the development of clinical MISIIR-targeted agents has been challenging. Prompted by the responses achieved in patients with blood malignancies using chimeric antigen receptor (CAR) T cell therapy, we hypothesized that MISIIR targeting may be achieved using a CAR T cell approach. Herein, we describe the development and evaluation of a CAR that targets MISIIR. T cells expressing the MISIIR-specific CAR demonstrated antigen-specific reactivity in vitro and eliminated MISIIR-overexpressing tumors in vivo. MISIIR CAR T cells also recognized a panel of human ovarian and endometrial cancer cell lines, and they lysed a battery of patient-derived tumor specimens in vitro, without mediating cytotoxicity of a panel of normal primary human cells. In conclusion, these results indicate that MISIIR targeting for the treatment of ovarian cancer and other gynecologic malignancies is achievable using CAR technology.
Collapse
|
4
|
Taherian-Esfahani Z, Abedin-Do A, Nikpayam E, Tasharofi B, Ghahghaei Nezamabadi A, Ghafouri-Fard S. Cancer-Testis Antigens: A Novel Group of Tumor Biomarkers in Ovarian Cancers. IRANIAN JOURNAL OF CANCER PREVENTION 2016. [DOI: 10.17795/ijcp-4993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|