1
|
Findlay S, Nair R, Merrill RA, Kaiser Z, Cajelot A, Aryanpour Z, Heath J, St-Louis C, Papadopoli D, Topisirovic I, St-Pierre J, Sebag M, Kesarwala AH, Hulea L, Taylor EB, Shanmugam M, Orthwein A. The mitochondrial pyruvate carrier complex potentiates the efficacy of proteasome inhibitors in multiple myeloma. Blood Adv 2023; 7:3485-3500. [PMID: 36920785 PMCID: PMC10362273 DOI: 10.1182/bloodadvances.2022008345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy that emerges from antibody-producing plasma B cells. Proteasome inhibitors, including the US Food and Drug Administration-approved bortezomib (BTZ) and carfilzomib (CFZ), are frequently used for the treatment of patients with MM. Nevertheless, a significant proportion of patients with MM are refractory or develop resistance to this class of inhibitors, which represents a significant challenge in the clinic. Thus, identifying factors that determine the potency of proteasome inhibitors in MM is of paramount importance to bolster their efficacy in the clinic. Using genome-wide CRISPR-based screening, we identified a subunit of the mitochondrial pyruvate carrier (MPC) complex, MPC1, as a common modulator of BTZ response in 2 distinct human MM cell lines in vitro. We noticed that CRISPR-mediated deletion or pharmacological inhibition of the MPC complex enhanced BTZ/CFZ-induced MM cell death with minimal impact on cell cycle progression. In fact, targeting the MPC complex compromised the bioenergetic capacity of MM cells, which is accompanied by reduced proteasomal activity, thereby exacerbating BTZ-induced cytotoxicity in vitro. Importantly, we observed that the RNA expression levels of several regulators of pyruvate metabolism were altered in advanced stages of MM for which they correlated with poor patient prognosis. Collectively, this study highlights the importance of the MPC complex for the survival of MM cells and their responses to proteasome inhibitors. These findings establish mitochondrial pyruvate metabolism as a potential target for the treatment of MM and an unappreciated strategy to increase the efficacy of proteasome inhibitors in the clinic.
Collapse
Affiliation(s)
- Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Ronald A. Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Zafir Kaiser
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Alexandre Cajelot
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Polytech Nice-Sophia, Université Côte d’Azur, Sophia Antipolis, Nice, France
| | - Zahra Aryanpour
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
| | - John Heath
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Catherine St-Louis
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - David Papadopoli
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Michael Sebag
- The Research Institute of the McGill University Health Center, Montreal, Canada
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
- Département de Biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
- Département de Médecine, Université de Montréal, Montreal, Canada
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
2
|
Trtkova KS, Luzna P, Drozdkova DW, Cizkova K, Janovska L, Gursky J, Prukova D, Frydrych I, Hajduch M, Minarik J. The epigenetic impact of suberohydroxamic acid and 5‑Aza‑2'‑deoxycytidine on DNMT3B expression in myeloma cell lines differing in IL‑6 expression. Mol Med Rep 2022; 26:321. [PMID: 36043519 PMCID: PMC9471560 DOI: 10.3892/mmr.2022.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/08/2022] [Indexed: 11/06/2022] Open
Abstract
Gene inactivation of the cyclin-dependent kinase inhibitors p16INK4a, p15INK4b and p21WAF is frequently mediated by promoter gene methylation, whereas histone deacetylases (HDACs) control gene expression through their ability to deacetylate proteins. The effect of suberohydroxamic acid (SBHA) and 5-Aza-2′-deoxycytidine (Decitabine) (DAC) treatments on the transcription of CDKN2A, CDKN2B and CDKN1A genes, and their effects on molecular biological behavior were examined in two myeloma cell lines, RPMI8226 and U266, which differ in p53-functionality and IL-6 expression. In both tested myeloma cell lines, a non-methylated state of the CDKN2B gene promoter region was detected with normal gene expression, and the same level of p15INK4b protein was detected by immunocytochemical staining. Furthermore, in myeloma cells treated with SBHA and DAC alone, the expression of both p15INK4b and p21WAF was significantly upregulated in RPMI8226 cells (p53-functional, without IL-6 expression), whereas in the U266 cell line (p53 deleted, expressing IL-6) only p21WAF expression was significantly increased. Moreover, the analysis revealed that treatment with DAC induced DNMT3B enhancement in U266 cells. In conclusion, in myeloma cells with IL-6 expression, significantly increased DNMT3B expression indicated the tumorigenic consequences of 5-Aza-2′deoxycytidine treatment, which requires careful use in diseases involving epigenetic dysregulation, such as multiple myeloma (MM).
Collapse
Affiliation(s)
- Katerina Smesny Trtkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Petra Luzna
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Denisa Weiser Drozdkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Lucie Janovska
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Jan Gursky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Dana Prukova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Jiri Minarik
- Department of Hemato‑Oncology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
3
|
Suzuki R, Kitamura Y, Ogiya D, Ogawa Y, Kawada H, Ando K. Anti-tumor activity of the pan-RAF inhibitor TAK-580 in combination with KPT-330 (selinexor) in multiple myeloma. Int J Hematol 2021; 115:233-243. [PMID: 34741230 DOI: 10.1007/s12185-021-03244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
RAS/RAF/MEK/ERK pathway inhibitors exhibit significant anti-tumor effects against various tumor types, including multiple myeloma (MM), and they are predicted to play a pivotal role in precision medicine. The XPO1 inhibitor KPT-330 has also exhibited promising efficacy in combination with other novel drugs in treating relapsed/refractory MM (RRMM). In this study, we explored the anti-tumor effects of a combination of the pan-RAF inhibitor TAK-580 and KPT-330. Importantly, TAK-580 enhanced KPT-330-induced cytotoxicity and apoptosis in human myeloma cell lines and primary myeloma cells from RRMM patients. Moreover, TAK-580 and KPT-330 synergistically inhibited nuclear phospho-FOXO3a and enhanced cytoplasmic phospho-FOXO3a in MM cells, leading to cytoplasmic enhanced Bim expression and finally apoptosis. This indicates that TAK-580 enhances KPT-330-induced cytotoxicity and apoptosis primarily via the FOXO3a-Bim axis. In addition, TAK-580 enhanced the cytotoxicity of KPT-330 against MM cells even in the presence of IGF-1. Taken together, our results demonstrate that a combination of pan-RAF inhibitor and XPO1 inhibitor is a potential therapeutic option in treating MM.
Collapse
Affiliation(s)
- Rikio Suzuki
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Yuka Kitamura
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Daisuke Ogiya
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yoshiaki Ogawa
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroshi Kawada
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.,Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
4
|
Three-Dimensional Reconstructed Bone Marrow Matrix Culture Improves the Viability of Primary Myeloma Cells In-Vitro via a STAT3-Dependent Mechanism. Curr Issues Mol Biol 2021; 43:313-323. [PMID: 34201211 PMCID: PMC8928965 DOI: 10.3390/cimb43010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Primary myeloma (PM) cells are short-lived in conventional culture, which limited their usefulness as a study model. Here, we evaluated if three-dimensional (3D) culture can significantly prolong the longevity of PM cells in-vitro. We employed a previously established 3D model for culture of bone marrow mononuclear cells isolated from 15 patients. We assessed the proportion of PM cells, viability and proliferation using CD38 staining, trypan blue exclusion assays and carboxy fluorescein succinimidyl ester (CFSE) staining, respectively. We observed significantly more CD38+ viable cells in 3D than in conventional culture (65% vs. 25%, p = 0.006) on day 3. CFSE staining showed no significant difference in cell proliferation between the two culture systems. Moreover, we found that PM cells in 3D culture are more STAT3 active by measure of pSTAT3 staining (66% vs. 10%, p = 0.008). Treatment of IL6, a STAT3 activator significantly increased CD38+ cell viability (41% to 68%, p = 0.021). In comparison, inhibition of STAT3 with Stattic significantly decreased PM cell viability in 3D culture (38% to 17% p = 0.010). Neither IL6 nor Stattic affected the PM cell viability in conventional culture. This study suggests that 3D culture can significantly improve the longevity of PM cells in-vitro, and STAT3 activation can further improve their viability.
Collapse
|
5
|
Sallustio F, Curci C, Solimando AG, Leone P, Pontrelli P, Gesualdo L, Vacca A, Racanelli V, Gallone A. Identification and monitoring of Copy Number Variants (CNV) in monoclonal gammopathy. Cancer Biol Ther 2021; 22:404-412. [PMID: 34288806 PMCID: PMC8386727 DOI: 10.1080/15384047.2021.1946458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) represents the pre-clinical stage of Multiple Myeloma (MM) with the 5% of MGUS progresses to MM. Although the progression from MGUS to MM has not been completely characterized, it is possible to monitor the DNA modifications of patients diagnosed with MGUS to detect early specific genomic abnormalities, including copy number variations (CNV). The CNVs of chromosome 1q and chromosome 13q are associated with a worse prognosis in MM.In the present study, we showed that it is possible to monitor the 1q21 gain and 13q deletion frequencies in gDNA using digital PCR. The CNV analysis of three cell lines with a well-characterized cytogenetic profile were compared with measures performed by a real-time PCR approach and with a digital PCR approach. Then, we analyzed CNVs in CD138+ plasma cells isolated from bone marrow of MGUS and MM patients.Our results show that digital PCR and targeted DNA monitoring represent a specific and accurate technique for the early detection of specific genomic abnormalities both in MM and in MGUS patients.Our results could represent a remarkable advancement in MM and MGUS diagnosis and in CNV analysis for the evaluation of the risk of progression from MGUS to MM.
Collapse
Affiliation(s)
- Fabio Sallustio
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Curci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Internal Medicine Unit “G. Baccelli”, University of Bari Aldo Moro, Bari, Italy
- IRCCS Istituto Tumori Giovanni Paolo II of Bari, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, Internal Medicine Unit “G. Baccelli”, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Internal Medicine Unit “G. Baccelli”, University of Bari Aldo Moro, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Internal Medicine Unit “G. Baccelli”, University of Bari Aldo Moro, Bari, Italy
| | - Anna Gallone
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Fernando RC, de Carvalho F, Leme AFP, Colleoni GWB. Tumor Microenvironment Proteomics: Lessons From Multiple Myeloma. Front Oncol 2021; 11:563384. [PMID: 33833982 PMCID: PMC8021918 DOI: 10.3389/fonc.2021.563384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Although the "seed and soil" hypothesis was proposed by Stephen Paget at the end of the 19th century, where he postulated that tumor cells (seeds) need a propitious medium (soil) to be able to establish metastases, only recently the tumor microenvironment started to be more studied in the field of Oncology. Multiple myeloma (MM), a malignancy of plasma cells, can be considered one of the types of cancers where there is more evidence in the literature of the central role that the bone marrow (BM) microenvironment plays, contributing to proliferation, survival, migration, and drug resistance of tumor cells. Despite all advances in the therapeutic arsenal for MM treatment in the last years, the disease remains incurable. Thus, studies aiming a better understanding of the pathophysiology of the disease, as well as searching for new therapeutic targets are necessary and welcome. Therefore, the present study aimed to evaluate the protein expression profiling of mononuclear cells derived from BM of MM patients in comparison with these same cell types derived from healthy individuals, in order to fill this gap in MM treatment. Proteomic analysis was performed using the mass spectrometry technique and further analyses were done using bioinformatics tools, to identify dysregulated biological pathways and/or processes in the BM microenvironment of patients with MM as a result of the disease. Among the pathways identified in this study, we can highlight an upregulation of proteins related to protein biosynthesis, especially chaperone proteins, in patients with MM. Additionally, we also found an upregulation of several proteins involved in energy metabolism, which is one of the cancer hallmarks. Finally, with regard to the downregulated proteins, we can highlight mainly those involved in different pathways of the immune response, corroborating the data that has demonstrated that the immune system of MM is impaired and, therefore, the immunotherapies that have been studied recently for the treatment of the disease are extremely necessary in the search for a control and a cure for these patients who live with the disease.
Collapse
Affiliation(s)
- Rodrigo Carlini Fernando
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Fabrício de Carvalho
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Adriana Franco Paes Leme
- Laboratory of Mass Spectrometry, Laboratory of National Biosciences, LNBio, National Council for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gisele Wally Braga Colleoni
- Department of Experimental and Clinical Oncology, Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
7
|
Protein Translation Inhibition is Involved in the Activity of the Pan-PIM Kinase Inhibitor PIM447 in Combination with Pomalidomide-Dexamethasone in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12102743. [PMID: 32987735 PMCID: PMC7598606 DOI: 10.3390/cancers12102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Proviral Insertion site for Moloney murine leukemia virus (PIM) kinases are overexpressed in hematologic malignancies, including multiple myeloma. Previous preclinical data from our group demonstrated the anti-myeloma effect of the pan-PIM kinase inhibitor PIM447. METHODS Based on those data, we evaluate here, by in vitro and in vivo studies, the activity of the triple combination of PIM447 + pomalidomide + dexamethasone (PIM-Pd) in multiple myeloma. RESULTS Our results show that the PIM-Pd combination exerts a potent anti-myeloma effect in vitro and in vivo, where it markedly delays tumor growth and prolongs survival of treated mice. Mechanism of action studies performed in vitro and on mice tumor samples suggest that the combination PIM-Pd inhibits protein translation processes through the convergent inhibition of c-Myc and mTORC1, which subsequently disrupts the function of eIF4E. Interestingly the MM pro-survival factor IRF4 is also downregulated after PIM-Pd treatment. As a whole, all these molecular changes would promote cell cycle arrest and deregulation of metabolic pathways, including glycolysis and lipid biosynthesis, leading to inhibition of myeloma cell proliferation. CONCLUSIONS Altogether, our data support the clinical evaluation of the triple combination PIM-Pd for the treatment of patients with multiple myeloma.
Collapse
|
8
|
Oldham RAA, Faber ML, Keppel TR, Buchberger AR, Waas M, Hari P, Gundry RL, Medin JA. Discovery and validation of surface N-glycoproteins in MM cell lines and patient samples uncovers immunotherapy targets. J Immunother Cancer 2020; 8:e000915. [PMID: 32771993 PMCID: PMC7418848 DOI: 10.1136/jitc-2020-000915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow. While recent advances in treatment for MM have improved patient outcomes, the 5-year survival rate remains ~50%. A better understanding of the MM cell surface proteome could facilitate development of new directed therapies and assist in stratification and monitoring of patient outcomes. METHODS In this study, we first used a mass spectrometry (MS)-based discovery-driven cell surface capture (CSC) approach to map the cell surface N-glycoproteome of MM cell lines. Next, we developed targeted MS assays, and applied these to cell lines and primary patient samples to refine the list of candidate tumor markers. Candidates of interest detected by MS on MM patient samples were further validated using flow cytometry (FCM). RESULTS We identified 696 MM cell surface N-glycoproteins by CSC, and developed 73 targeted MS detection assays. MS-based validation using primary specimens detected 30 proteins with significantly higher abundance in patient MM cells than controls. Nine of these proteins were identified as potential immunotherapeutic targets, including five that were validated by FCM, confirming their expression on the cell surface of primary MM patient cells. CONCLUSIONS This MM surface N-glycoproteome will be a valuable resource in the development of biomarkers and therapeutics. Further, we anticipate that our targeted MS assays will have clinical benefit for the diagnosis, stratification, and treatment of MM patients.
Collapse
Affiliation(s)
- Robyn A A Oldham
- Medical Biophysics, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
- Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary L Faber
- Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Theodore R Keppel
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda R Buchberger
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew Waas
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Parameswaran Hari
- Division of Hematology Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebekah L Gundry
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeffrey A Medin
- Medical Biophysics, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
- Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Chanukuppa V, Paul D, Taunk K, Chatterjee T, Sharma S, Shirolkar A, Islam S, Santra MK, Rapole S. Proteomics and functional study reveal marginal zone B and B1 cell specific protein as a candidate marker of multiple myeloma. Int J Oncol 2020; 57:325-337. [PMID: 32377723 DOI: 10.3892/ijo.2020.5056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell‑associated cancer and accounts for 13% of all hematological malignancies, worldwide. MM still remains an incurable plasma cell malignancy with a poor prognosis due to a lack of suitable markers. Therefore, discovering novel markers and targets for diagnosis and therapeutics of MM is essential. The present study aims to identify markers associated with MM malignancy using patient‑derived MM mononuclear cells (MNCs). Label‑free quantitative proteomics analysis revealed a total of 192 differentially regulated proteins, in which 79 proteins were upregulated and 113 proteins were found to be downregulated in MM MNCs as compared to non‑hematological malignant samples. The identified differentially expressed candidate proteins were analyzed using various bioinformatics tools, including Ingenuity Pathway Analysis (IPA), Protein Analysis THrough Evolutionary Relationships (PANTHER), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Database for Annotation, Visualization and Integrated Discovery (DAVID) to determine their biological context. Among the 192 candidate proteins, marginal zone B and B1 cell specific protein (MZB1) was investigated in detail using the RPMI-8226 cell line model of MM. The functional studies revealed that higher expression of MZB1 is associated with promoting the progression of MM pathogenesis and could be established as a potential target for MM in the future.
Collapse
Affiliation(s)
- Venkatesh Chanukuppa
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Khushman Taunk
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Tathagata Chatterjee
- Army Hospital (Research and Referral), Dhaula Kuan, New Delhi, Delhi 110010, India
| | | | - Amey Shirolkar
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Sehbanul Islam
- Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Manas K Santra
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Srikanth Rapole
- Proteomics Laboratory, National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
10
|
Sławińska-Brych A, Zdzisińska B, Czerwonka A, Mizerska-Kowalska M, Dmoszyńska-Graniczka M, Stepulak A, Gagoś M. Xanthohumol exhibits anti-myeloma activity in vitro through inhibition of cell proliferation, induction of apoptosis via the ERK and JNK-dependent mechanism, and suppression of sIL-6R and VEGF production. Biochim Biophys Acta Gen Subj 2019; 1863:129408. [PMID: 31386885 DOI: 10.1016/j.bbagen.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/13/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Xanthohumol (XN, a hop-derived prenylflavonoid) was found to exert anticancer effects on various cancer types. However, the mechanisms by which XN affects the survival of multiple myeloma cells (MM) are little known. Therefore, our study was undertaken to address this issue. METHODS Anti-proliferative activity of XN towards two phenotypically distinct MM cell lines U266 and RPMI8226 was evaluated with the MTT and BrdU assays. Cytotoxicity was determined with the LDH method, whereas apoptosis was assessed by flow cytometry and fluorescence staining. The expression of cell cycle- and apoptosis-related proteins and the activation status of signaling pathways were estimated by immunoblotting and ELISA assays. RESULTS XN reduced the viability of RPMI8226 cells more potently than in U266 cells. It blocked cell cycle progression through downregulation of cyclin D1 and increased p21 expression. The marked apoptosis induction in the XN-treated RPMI8226 cells was related to initiation of mitochondrial and extrinsic pathways, as indicated by the altered p53, Bax, and Bcl-2 protein expression, cleavage of procaspase 8 and 9, and elevated caspase-3 activity. The apoptotic process was probably mediated via ROS overproduction and MAPK (ERK and JNK) activation as N-acetylcysteine, or specific inhibitors of these kinases prevented the XN-induced caspase-3 activity and, hence, apoptosis. Moreover, XN decreased sIL-6R and VEGF production in the studied cells. CONCLUSIONS ERK and JNK signaling pathways are involved in XN-induced cytotoxicity against MM cells. GENERAL SIGNIFICANCE The advanced understanding of the molecular mechanisms of XN action can be useful in developing therapeutic strategies to treat multiple myeloma.
Collapse
Affiliation(s)
- Adrianna Sławińska-Brych
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
11
|
de Oliveira MB, Sanson LF, Eugenio AI, Barbosa-Dantas RS, Colleoni GW. Stew in its Own Juice: Protein Homeostasis Machinery Inhibition Reduces Cell Viability in Multiple Myeloma Cell Lines. Curr Mol Med 2019; 19:112-119. [DOI: 10.2174/1566524019666190305134441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/05/2023]
Abstract
Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.
Collapse
Affiliation(s)
- Mariana B. de Oliveira
- Clinical and Experimental Oncology Department, Universidade Federal de Sao Paulo, Sao Paulo, UNIFESP, Brazil
| | - Luiz F.G. Sanson
- Clinical and Experimental Oncology Department, Universidade Federal de Sao Paulo, Sao Paulo, UNIFESP, Brazil
| | - Angela I.P. Eugenio
- Clinical and Experimental Oncology Department, Universidade Federal de Sao Paulo, Sao Paulo, UNIFESP, Brazil
| | - Rebecca S.S. Barbosa-Dantas
- Clinical and Experimental Oncology Department, Universidade Federal de Sao Paulo, Sao Paulo, UNIFESP, Brazil
| | - Gisele W.B. Colleoni
- Clinical and Experimental Oncology Department, Universidade Federal de Sao Paulo, Sao Paulo, UNIFESP, Brazil
| |
Collapse
|
12
|
Janker L, Mayer RL, Bileck A, Kreutz D, Mader JC, Utpatel K, Heudobler D, Agis H, Gerner C, Slany A. Metabolic, Anti-apoptotic and Immune Evasion Strategies of Primary Human Myeloma Cells Indicate Adaptations to Hypoxia. Mol Cell Proteomics 2019; 18:936-953. [PMID: 30792264 PMCID: PMC6495257 DOI: 10.1074/mcp.ra119.001390] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Multiple Myeloma (MM) is an incurable plasma cell malignancy primarily localized within the bone marrow (BM). It develops from a premalignant stage, monoclonal gammopathy of undetermined significance (MGUS), often via an intermediate stage, smoldering MM (SMM). The mechanisms of MM progression have not yet been fully understood, all the more because patients with MGUS and SMM already carry similar initial mutations as found in MM cells. Over the last years, increased importance has been attributed to the tumor microenvironment and its role in the pathophysiology of the disease. Adaptations of MM cells to hypoxic conditions in the BM have been shown to contribute significantly to MM progression, independently from the genetic predispositions of the tumor cells. Searching for consequences of hypoxia-induced adaptations in primary human MM cells, CD138-positive plasma cells freshly isolated from BM of patients with different disease stages, comprising MGUS, SMM, and MM, were analyzed by proteome profiling, which resulted in the identification of 6218 proteins. Results have been made fully accessible via ProteomeXchange with identifier PXD010600. Data previously obtained from normal primary B cells were included for comparative purposes. A principle component analysis revealed three clusters, differentiating B cells as well as MM cells corresponding to less and more advanced disease stages. Comparing these three clusters pointed to the alteration of pathways indicating adaptations to hypoxic stress in MM cells on disease progression. Protein regulations indicating immune evasion strategies of MM cells were determined, supported by immunohistochemical staining, as well as transcription factors involved in MM development and progression. Protein regulatory networks related to metabolic adaptations of the cells became apparent. Results were strengthened by targeted analyses of a selected panel of metabolites in MM cells and MM-associated fibroblasts. Based on our data, new opportunities may arise for developing therapeutic strategies targeting myeloma disease progression.
Collapse
Affiliation(s)
- Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Rupert L Mayer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dominique Kreutz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Johanna C Mader
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kirsten Utpatel
- Department of Pathology, University Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Hermine Agis
- Department of Oncology, University Clinic for Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria;.
| |
Collapse
|
13
|
Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood 2018; 133:660-675. [PMID: 30587529 DOI: 10.1182/blood-2018-09-825331] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
To date, the choice of therapy for an individual multiple myeloma patient has been based on clinical factors such as age and comorbidities. The widespread evolution, validation, and clinical utilization of molecular technologies, such as fluorescence in situ hybridization and next-generation sequencing has enabled the identification of a number of prognostic and predictive biomarkers for progression-free survival, overall survival, and treatment response. In this review, we argue that in order to continue to improve myeloma patient outcomes incorporating such biomarkers into the routine diagnostic workup of patients will allow for the use of personalized, biologically based treatments.
Collapse
|
14
|
Mei H, Xiang Y, Mei H, Fang B, Wang Q, Cao D, Hu Y, Guo T. Pterostilbene inhibits nutrient metabolism and induces apoptosis through AMPK activation in multiple myeloma cells. Int J Mol Med 2018; 42:2676-2688. [PMID: 30226553 PMCID: PMC6192759 DOI: 10.3892/ijmm.2018.3857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) cells are characterized by an abnormal nutrient metabolism that is distinct from normal plasma cells. Pterostilbene (PTE), a bioactive component of blueberries, has been demonstrated to induce apoptosis in multiple types of cancer cell. The present study evaluated whether PTE treatment affected the survival of MM cells from a metabolic perspective, and the potential mechanisms of this. It was observed that the administration of PTE induced apoptosis, which was mediated by the increased activation of AMP‑activated protein kinase (AMPK). Once activated, AMPK decreased the expression and/or activity of key lipogenic enzymes, including fatty acid synthase and acetyl‑CoA carboxylase. In addition, the activation of AMPK suppressed the downstream substrate, mechanistic target of rapamycin, which dephosphorylated eukaryotic initiation factor 4E‑binding protein 1, leading to a general decrease in mRNA translation. Pre‑treatment with the AMPK inhibitor compound C prior to PTE treatment compromised the anti‑myeloma apoptosis effect, suggesting the critical role of AMPK in mediating PTE‑induced cell toxicity. Consistent results were obtained in vivo. Finally, autophagy was adaptively upregulated subsequent to PTE treatment; the pro‑apoptotic efficacy of PTE was potentiated once autophagic flux was inhibited by 3‑methyladenine. Taken together, these data demonstrated that PTE exerts anti‑tumor effects on MM cells via AMPK‑induced nutrient suppression.
Collapse
Affiliation(s)
- Huiling Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Yu Xiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022
| | - Bin Fang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Qiuguo Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Dedong Cao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022
- Correspondence to: Dr Yu Hu or Dr Tao Guo, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1,277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China, E-mail: , E-mail:
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022
- Correspondence to: Dr Yu Hu or Dr Tao Guo, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1,277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China, E-mail: , E-mail:
| |
Collapse
|
15
|
Eugênio AIP, Fook-Alves VL, de Oliveira MB, Fernando RC, Zanatta DB, Strauss BE, Silva MRR, Porcionatto MA, Colleoni GWB. Proteasome and heat shock protein 70 (HSP70) inhibitors as therapeutic alternative in multiple myeloma. Oncotarget 2017; 8:114698-114709. [PMID: 29383113 PMCID: PMC5777725 DOI: 10.18632/oncotarget.22815] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/05/2017] [Indexed: 11/25/2022] Open
Abstract
HSP70 connects multiple signaling pathways that work synergistically to protect tumor cells from death by proteotoxic stress and represents a possible target to establish a new approach for multiple myeloma treatment. Therefore, bioluminescent cell lines RPMI8226-LUC-PURO and U266-LUC-PURO were treated with HSP70 (VER155008) and/or proteasome (bortezomib) inhibitors and immunodeficient mice were used for subcutaneous xenograft models to evaluate tumor growth reduction and tumor growth inhibition after treatment. Bioluminescence imaging was used to follow tumor response. Treatment with bortezomib showed ∼60% of late apoptosis in RPMI8226-LUC-PURO (without additional benefit of VER155008 in this cell line). However, U266-LUC-PURO showed ∼60% of cell death after treatment with VER155008 (alone or with bortezomib). RPMI8226-LUC-PURO xenograft presented tumor reduction by bioluminescence imaging after treatment with bortezomib, VER155008 or drug combination compared to controls. Treatment with bortezomib, alone or combined with VER155008, showed inhibition of tumor growth assessed by bioluminescence imaging after one week in both RPMI8226-LUC-PURO and U266-LUC-PURO cell lines when compared to controls. In conclusion, our study shows that the combination of proteasome and HSP70 inhibitors induced cell death in tumor cells in vitro (late apoptosis induction) and in vivo (inhibition of tumor growth) with special benefit in U266-LUC-PURO, bearing 17p deletion.
Collapse
Affiliation(s)
- Angela Isabel Pereira Eugênio
- Discipline of Hematology e Hemotherapy, Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Veruska Lia Fook-Alves
- Discipline of Hematology e Hemotherapy, Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Mariana Bleker de Oliveira
- Discipline of Hematology e Hemotherapy, Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Rodrigo Carlini Fernando
- Discipline of Hematology e Hemotherapy, Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Daniela B Zanatta
- Center of Translational Investigation in Oncology, Cancer Institute of the State of São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bryan Eric Strauss
- Center of Translational Investigation in Oncology, Cancer Institute of the State of São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Gisele Wally Braga Colleoni
- Discipline of Hematology e Hemotherapy, Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| |
Collapse
|
16
|
de Oliveira MB, Fook-Alves VL, Eugenio AIP, Fernando RC, Sanson LFG, de Carvalho MF, Braga WMT, Davies FE, Colleoni GWB. Anti-myeloma effects of ruxolitinib combined with bortezomib and lenalidomide: A rationale for JAK/STAT pathway inhibition in myeloma patients. Cancer Lett 2017. [PMID: 28645562 DOI: 10.1016/j.canlet.2017.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
JAK proteins have been linked with survival and proliferation of multiple myeloma (MM) cells; therefore, JAK inhibition could be a therapeutic strategy for MM. We evaluated JAK1 and JAK2 expression in MM patients and the effects of JAK/STAT pathway inhibition on apoptosis, cell cycle, gene and protein expression in RPMI-8226 and U266 MM cell lines. 57% of patients presented overexpression of JAK2 and 27%, of JAK1. After treatment with ruxolitinib and bortezomib, RPMI-8226 and U266 presented 50% of cells in late apoptosis, reduction of anti-apoptotic genes expression and higher number of cells in SubG0 phase. Co-culture with stromal cells protected RPMI-8226 cells from apoptosis, which was reversed by lenalidomide addition. Combination of ruxolitinib, bortezomib and lenalidomide induced 72% of cell death, equivalent to bortezomib, lenalidomide and dexamethasone, combination used in clinical practice. Many JAK/STAT pathway genes, after treatment, had their expression reduced, mainly in RPMI-8226, with insignificant changes in U266. In this scenario, JAK/STAT pathway could pose as a new therapeutic target to be exploited, since it is constitutively active and contributes to survival of MM tumor cells.
Collapse
Affiliation(s)
- Mariana B de Oliveira
- Clinical and Experimental Oncology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Veruska L Fook-Alves
- Clinical and Experimental Oncology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Angela I P Eugenio
- Clinical and Experimental Oncology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Rodrigo C Fernando
- Clinical and Experimental Oncology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Luiz Felipe G Sanson
- Clinical and Experimental Oncology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Mariana F de Carvalho
- Clinical and Experimental Oncology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Walter M T Braga
- Clinical and Experimental Oncology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Faith E Davies
- Winthrop P. Rockefeller Cancer Institute at UAMS, Little Rock, AR, USA
| | - Gisele W B Colleoni
- Clinical and Experimental Oncology Department, Federal University of São Paulo, UNIFESP, Brazil.
| |
Collapse
|