1
|
Rodrigues EM, Giovanini AF, Ribas CAPM, Malafaia O, Roesler R, Isolan GR. The Nervous System Development Regulator Neuropilin-1 as a Potential Prognostic Marker and Therapeutic Target in Brain Cancer. Cancers (Basel) 2023; 15:4922. [PMID: 37894289 PMCID: PMC10605093 DOI: 10.3390/cancers15204922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropilins are transmembrane glycoproteins that regulate developmental processes in the nervous system and other tissues. Overexpression of neuropilin-1 (NRP1) occurs in many solid tumor types and, in several instances, may predict patient outcome in terms of overall survival. Experimental inhibition of NRP1 activity can display antitumor effects in different cancer models. Here, we review NRP1 expression and function in adult and pediatric brain cancers, particularly glioblastomas (GBMs) and medulloblastomas, and present analyses of NRP1 transcript levels and their association with patient survival in GBMs. The case of NRP1 highlights the potential of regulators of neurodevelopment as biomarkers and therapeutic targets in brain cancer.
Collapse
Affiliation(s)
- Eduardo Mello Rodrigues
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Allan Fernando Giovanini
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | | | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Gustavo R. Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Spalt Therapeutics, Porto Alegre 90560-010, RS, Brazil
| |
Collapse
|
2
|
Slika H, Alimonti P, Raj D, Caraway C, Alomari S, Jackson EM, Tyler B. The Neurodevelopmental and Molecular Landscape of Medulloblastoma Subgroups: Current Targets and the Potential for Combined Therapies. Cancers (Basel) 2023; 15:3889. [PMID: 37568705 PMCID: PMC10417410 DOI: 10.3390/cancers15153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor and is associated with significant morbidity and mortality in the pediatric population. Despite the use of multiple therapeutic approaches consisting of surgical resection, craniospinal irradiation, and multiagent chemotherapy, the prognosis of many patients with medulloblastoma remains dismal. Additionally, the high doses of radiation and the chemotherapeutic agents used are associated with significant short- and long-term complications and adverse effects, most notably neurocognitive delay. Hence, there is an urgent need for the development and clinical integration of targeted treatment regimens with greater efficacy and superior safety profiles. Since the adoption of the molecular-based classification of medulloblastoma into wingless (WNT) activated, sonic hedgehog (SHH) activated, group 3, and group 4, research efforts have been directed towards unraveling the genetic, epigenetic, transcriptomic, and proteomic profiles of each subtype. This review aims to delineate the progress that has been made in characterizing the neurodevelopmental and molecular features of each medulloblastoma subtype. It further delves into the implications that these characteristics have on the development of subgroup-specific targeted therapeutic agents. Furthermore, it highlights potential future avenues for combining multiple agents or strategies in order to obtain augmented effects and evade the development of treatment resistance in tumors.
Collapse
Affiliation(s)
- Hasan Slika
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Chad Caraway
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Eric M. Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| |
Collapse
|
3
|
de Araújo MA, Malafaia O, Ribas Filho JM, Fratini L, Roesler R, Isolan GR. Low Expression of the NRP1 Gene Is Associated with Shorter Overall Survival in Patients with Sonic Hedgehog and Group 3 Medulloblastoma. Int J Mol Sci 2023; 24:11601. [PMID: 37511358 PMCID: PMC10380701 DOI: 10.3390/ijms241411601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma (MB) is the most common type of malignant pediatric brain tumor. Neuropilin-1 (NRP1), encoded by the NRP1 gene, is a transmembrane glycoprotein overexpressed in several types of cancer. Previous studies indicate that NRP1 inhibition displays antitumor effects in MB models and higher NRP1 levels are associated with poorer prognosis in MB patients. Here, we used a large MB tumor dataset to examine NRP1 gene expression in different molecular subgroups and subtypes of MB. We found overall widespread NRP1 expression across MB samples. Tumors in the sonic hedgehog (SHH) subgroup showed significantly higher NRP1 transcript levels in comparison with Group 3 and Group 4 tumors, with SHH samples belonging to the α, β, Δ, and γ subtypes. When all MB subgroups were combined, lower NRP1 expression was associated with significantly shorter patient overall survival (OS). Further analysis showed that low NRP1 was related to poorer OS, specifically in MB subgroups SHH and Group 3 MB. Our findings indicate that patients with SHH and Group 3 tumors that show lower expression of NRP1 in MB have a worse prognosis, which highlights the need for subgroup-specific investigation of the NRP1 role in MB.
Collapse
Affiliation(s)
- Moisés Augusto de Araújo
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
| | - Jurandir M. Ribas Filho
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
| | - Livia Fratini
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology–INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Research Center, Moinhos de Vento Hospital, Porto Alegre 90035-001, RS, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology–INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Gustavo R. Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology–INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Spalt Therapeutics, Porto Alegre 90560-010, RS, Brazil
| |
Collapse
|
4
|
Tavallaii A, Meybodi KT, Nejat F, Habibi Z. Current Status of Research on Targeted Therapy Against Central Nervous System Tumors in Low- and Lower-Middle-Income Countries. World Neurosurg 2023; 174:74-80. [PMID: 36918096 DOI: 10.1016/j.wneu.2023.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
OBJECTIVE In recent decades, a significant body of research has focused on targeted therapies for the treatment of central nervous system (CNS) tumors to enhance the effectiveness of management strategies. However, most of these efforts have been centered in high-income countries, which renders the generalizability of their results to low- and middle-income countries questionable. Therefore, in this review, we systematically investigated the status of research conducted on targeted therapy for CNS tumors in low- and lower-middle-income countries to elucidate the contribution of these countries in advancing neuro-oncology. METHODS A systematic search of 3 databases was performed using a predefined search strategy. After screening the articles based on our inclusion/exclusion criteria, the data were extracted to a predesigned Excel worksheet. RESULTS A review of 44 included studies showed that India, Iran, and Lebanon were the only countries with a contribution to this field. All included studies were laboratory or animal experiments, and there were no clinical studies in this field. The most investigated CNS tumor was malignant glioma, and gene-targeted therapy was the most investigated category of targeted therapies in these countries. CONCLUSIONS Low- and lower-middle-income countries comprise more than half of the world population, but they are deprived of targeted therapies against CNS tumors. Although there are basic experiments performed on this subject, they originate in a limited number of these countries. Therefore, targeted therapy is in its preliminary stage in these countries.
Collapse
Affiliation(s)
- Amin Tavallaii
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Tayyebi Meybodi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Nejat
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Habibi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
6
|
Yogi K, Thorat R, Shirsat N. In Vivo Tumorigenicity Assays Using Subcutaneous and Orthotopic Xenografts in Immunodeficient Mice. Methods Mol Biol 2022; 2423:153-164. [PMID: 34978697 DOI: 10.1007/978-1-0716-1952-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Evaluation of tumorigenic potential of medulloblastoma cell lines in vivo has been the obvious and major next step following cell line driven research for last many years. Effect of changes in expression of gene/s or efficacy of anticancer drugs on tumor initiation and/or growth can be easily assessed by injecting genetically modified cell lines in vivo or by treating in vivo xenografts of established cell lines with newer inhibitors or anticancer drugs. These studies are easy to perform and to reproduce in comparison to patient derived xenografts owing to ease in propagating, maintaining, and modifying genetic makeup of cell lines. Here we describe standardized protocols of obtaining either subcutaneous or orthotopic xenografts of medulloblastoma cell lines in immunodeficient mice. Once established, tumor growth of xenografts can be assessed during the course of experiment by either employing a simple method using Vernier caliper or technically demanding but sensitive method like in vivo bioluminescence imaging. In addition, xenograft tumors of euthanized animals can be preserved as formalin-fixed tissue specimens for further histopathological, immunohistochemical, or molecular analysis.
Collapse
Affiliation(s)
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Center for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Neelam Shirsat
- Shirsat Laboratory, Advanced Center for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
7
|
Role of MicroRNAs in the Development and Progression of the Four Medulloblastoma Subgroups. Cancers (Basel) 2021; 13:cancers13246323. [PMID: 34944941 PMCID: PMC8699467 DOI: 10.3390/cancers13246323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most frequent malignant brain tumour in children. Medulloblastoma originate during the embryonic stage. They are located in the cerebellum, which is the area of the central nervous system (CNS) responsible for controlling equilibrium and coordination of movements. In 2012, medulloblastoma were divided into four subgroups based on a genome-wide analysis of RNA expression. These subgroups are named Wingless, Sonic Hedgehog, Group 3 and Group 4. Each subgroup has a different cell of origin, prognosis, and response to therapies. Wingless and Sonic Hedgehog medulloblastoma are so named based on the main mutation originating these tumours. Group 3 and Group 4 have generic names because we do not know the key mutation driving these tumours. Gene expression at the post-transcriptional level is regulated by a group of small single-stranded non-coding RNAs. These microRNA (miRNAs or miRs) play a central role in several cellular functions such as cell differentiation and, therefore, any malfunction in this regulatory system leads to a variety of disorders such as cancer. The role of miRNAs in medulloblastoma is still a topic of intense clinical research; previous studies have mostly concentrated on the clinical entity of the single disease rather than in the four molecular subgroups. In this review, we summarize the latest discoveries on miRNAs in the four medulloblastoma subgroups.
Collapse
|
8
|
Chen S, Deng X, Sheng H, Rong Y, Zheng Y, Zhang Y, Lin J. Noncoding RNAs in pediatric brain tumors: Molecular functions and pathological implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:417-431. [PMID: 34552822 PMCID: PMC8426460 DOI: 10.1016/j.omtn.2021.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain tumors are common solid pediatric malignancies and the main reason for cancer-related death in the pediatric setting. Recently, evidence has revealed that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play a critical role in brain tumor development and progression. Therefore, in this review article, we describe the functions and molecular mechanisms of ncRNAs in multiple types of cancer, including medulloblastoma, pilocytic astrocytoma, ependymoma, atypical teratoid/rhabdoid tumor, glioblastoma, diffuse intrinsic pontine glioma, and craniopharyngioma. We also mention the limitations of using ncRNAs as therapeutic targets because of the nonspecificity of ncRNA targets and the delivery methods of ncRNAs. Due to the critical role of ncRNAs in brain oncogenesis, targeting aberrantly expressed ncRNAs might be an effective strategy to improve the outcomes of pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanhao Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Zhao YN, Li K, Han XS, Pan YW. The mechanism of non-coding RNAs in medulloblastoma. Oncol Lett 2021; 22:758. [PMID: 34539862 PMCID: PMC8436364 DOI: 10.3892/ol.2021.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022] Open
Abstract
Medulloblastoma (MB) is one of the most common malignant tumors of the central nervous system in children. Although surgery, radiotherapy and chemotherapy have resulted in considerable progress in the treatment of this disease, the prognosis of patients with MB remains very poor. Therefore, highly specific molecular targeted treatment, which can improve the therapeutic efficacy and reduce the side effects of MB, has become a research hotspot. In recent years, non-coding RNAs (ncRNAs), which were initially considered to be transcriptional noise, have been shown to possess regulatory functions. A series of ncRNAs have been identified, including microRNAs and circular RNAs, which affect the expression of specific genes in a variety of tumors. These genes lead to the formation of a specific complex of proteins or they directly participate in protein synthesis in order to regulate the occurrence and development of tumors. The aim of the present review article was to summarize the recent research studies that have explored the ability of ncRNAs to regulate the occurrence and development of MB.
Collapse
Affiliation(s)
- Ying-Nan Zhao
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Kun Li
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xing-Sheng Han
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Ya-Wen Pan
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
10
|
Douyère M, Chastagner P, Boura C. Neuropilin-1: A Key Protein to Consider in the Progression of Pediatric Brain Tumors. Front Oncol 2021; 11:665634. [PMID: 34277411 PMCID: PMC8281001 DOI: 10.3389/fonc.2021.665634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropilins are transmembrane glycoproteins that play important roles in cardiovascular and neuronal development, as well as in immunological system regulations. NRP1 functions as a co-receptor, binding numerous ligands, such as SEMA 3 or VEGF and, by doing so, reinforcing their signaling pathways and can also interface with the cytoplasmic protein synectin. NRP1 is expressed in many cancers, such as brain cancers, and is associated with poor prognosis. The challenge today for patients with pediatric brain tumors is to improve their survival rate while minimizing the toxicity of current treatments. The aim of this review is to highlight the involvement of NRP1 in pediatric brain cancers, focusing essentially on the roles of NRP1 in cancer stem cells and in the regulation of the immune system. For this purpose, recent literature and tumor databases were analyzed to show correlations between NRP1 and CD15 (a stem cancer cells marker), and between NRP1 and PDL1, for various pediatric brain tumors, such as high- and low-grade gliomas, medulloblastomas, and ependymomas. Finally, this review suggests a relevant role for NRP1 in pediatric brain tumors progression and identifies it as a potential diagnostic or therapeutic target to improve survival and life quality of these young patients.
Collapse
Affiliation(s)
| | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, Nancy, France
| |
Collapse
|
11
|
Li M, Deng Y, Zhang W. Molecular Determinants of Medulloblastoma Metastasis and Leptomeningeal Dissemination. Mol Cancer Res 2021; 19:743-752. [PMID: 33608450 DOI: 10.1158/1541-7786.mcr-20-1026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common malignant brain cancer in pediatrics consisting of four molecular subgroups, namely wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4. One of the biggest challenges in the clinical management of this disease is the leptomeningeal dissemination (LMD) of tumor cells with high morbidity and mortality. Many molecular regulators to date have been identified to participate in medulloblastoma metastasis. In the SHH subgroup, the co-upregulation of CXCR4 and PDGFR, as well as the activation of c-MET, show significant promigratory effects on medulloblastoma cells. Amplification or overexpression of genes on the long arm of chromosome 17, such as LASP1 and WIP1, facilitates tumor invasion in both Group 3 and Group 4 medulloblastomas. PRUNE1, NOTCH1, and MYC interactor JPO2 are more specific genetic drivers of metastatic Group 3 tumors. The RAS/MAPK and PI3K/AKT pathways are two crucial signal transduction pathways that may work as the convergent downstream mechanism of various metastatic drivers. Extracellular signals and cellular components in the tumor microenvironment also play a vital role in promoting the spread and colonization of medulloblastoma cells. For instance, the stromal granule cells and astrocytes support tumor growth and dissemination by secreting PlGF and CCL2, respectively. Importantly, the genetic divergence has been determined between the matched primary and metastatic medulloblastoma samples. However, the difficulty of obtaining metastatic medulloblastoma tissue hinders more profound studies of LMD. Therefore, identifying and analyzing the subclone with the metastatic propensity in the primary tumor is essential for future investigation.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Deng
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangming Zhang
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Abstract
ABSTRACT Neuropilins (NRP1 and NRP2) are multifunctional receptor proteins that are involved in nerve, blood vessel, and tumor development. NRP1 was first found to be expressed in neurons, but subsequent studies have demonstrated its surface expression in cells from the endothelium and lymph nodes. NRP1 has been demonstrated to be involved in the occurrence and development of a variety of cancers. NRP1 interacts with various cytokines, such as vascular endothelial growth factor family and its receptor and transforming growth factor β1 and its receptor, to affect tumor angiogenesis, tumor proliferation, and migration. In addition, NRP1+ regulatory T cells (Tregs) play an inhibitory role in tumor immunity. High numbers of NRP1+ Tregs were associated with cancer prognosis. Targeting NRP1 has shown promise, and antagonists against NRP1 have had therapeutic efficacy in preliminary clinical studies. NRP1 treatment modalities using nanomaterials, targeted drugs, oncolytic viruses, and radio-chemotherapy have gradually been developed. Hence, we reviewed the use of NRP1 in the context of tumorigenesis, progression, and treatment.
Collapse
|
13
|
Bao L, Zhang X, Xu Y, Wang M, Song Y, Gu Y, Zheng Y, Xiao J, Wang Y, Zhou Q, Qian J, Liang Y, Ji L, Feng X. Dysfunction of MiR-148a-NRP1 Functional Axis Suppresses Osteogenic Differentiation of Periodontal Ligament Stem Cells Under Inflammatory Microenvironment. Cell Reprogram 2020; 21:314-322. [PMID: 31809209 DOI: 10.1089/cell.2019.0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that can lead to the loss of periodontal bone tissue. The osteogenic potential of periodontal ligament stem cells (PDLSCs) is significantly decreased in periodontitis microenvironment. However, the mechanism is still unclear. We used Porphyromonas gingivalis lipopolysaccharide (LPS) as a stimulator of PDLSCs to mimic the periodontal inflammatory environment. The mineralization capability was restrained in LPS-stimulated PDLSCs, and the level of miR-148a increased, while the level of Neuropilin 1 (NRP1) decreased. Downregulation of miR-148a could reverse the osteogenesis deficiency of PDLSCs under LPS treatment. In addition, the expression of miR-148a in PDLSCs was negatively correlated with the expression of NRP1. Furthermore, overexpression of NRP1 upregulated the osteogenesis ability of LPS-stimulated PDLSCs, while inhibition of NRP1 eliminated the stimulative effect of miR-148a inhibitor on osteogenic differentiation. These data illustrated that the inflammatory environment mimicked by LPS inhibits osteogenesis by upregulation of miR-148a and subsequent downregulation of NRP1. We also found, compared to healthy periodontal tissues, miR-148a level increased, while NRP1 level decreased in periodontitis tissues. These two phenomena also exist in PDLSCs that come from the upper two types of tissues. To summarize, the decline of osteogenic potential of PDLSCs under inflammatory condition of periodontitis is related to miR-148a/NRP1 functional axis. This study may provide a novel strategy in the molecular aspect for the therapy of periodontitis.
Collapse
Affiliation(s)
- Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiang Zhang
- Department of Stomatology, Haian People's Hospital of Jiangsu Province, Nantong, China
| | - Yang Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Miao Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yihua Song
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongchun Gu
- Department of Stomatology, The First People's Hospital of Wujiang, Affliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Ya Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingwen Xiao
- Department of Stomatology, Hai Men People's Hospital, Nantong, China
| | - Yuzhe Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Qian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Liang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lujun Ji
- Department of Stomatology, Nantong Tongzhou People's Hospital, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
14
|
Haltom AR, Toll SA, Cheng D, Maegawa S, Gopalakrishnan V, Khatua S. Medulloblastoma epigenetics and the path to clinical innovation. J Neurooncol 2020; 150:35-46. [PMID: 32816225 DOI: 10.1007/s11060-020-03591-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In the last decade, a number of genomic and pharmacological studies have demonstrated the importance of epigenetic dysregulation in medulloblastoma initiation and progression. High throughput approaches including gene expression array, next-generation sequencing (NGS), and methylation profiling have now clearly identified at least four molecular subgroups within medulloblastoma, each with distinct clinical and prognostic characteristics. These studies have clearly shown that despite the overall paucity of mutations, clinically relevant events do occur within the cellular epigenetic machinery. Thus, this review aims to provide an overview of our current understanding of the spectrum of epi-oncogenetic perturbations in medulloblastoma. METHODS Comprehensive review of epigenetic profiles of different subgroups of medulloblastoma in the context of molecular features. Epigenetic regulation is mediated mainly by DNA methylation, histone modifications and microRNAs (miRNA). Importantly, epigenetic mis-events are reversible and have immense therapeutic potential. CONCLUSION The widespread epigenetic alterations present in these tumors has generated intense interest in their use as therapeutic targets. We provide an assessment of the progress that has been made towards the development of molecular subtypes-targeted therapies and the current status of clinical trials that have leveraged these recent advances.
Collapse
Affiliation(s)
- Amanda R Haltom
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie A Toll
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, USA
| | - Donghang Cheng
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shinji Maegawa
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Laneve P, Caffarelli E. The Non-coding Side of Medulloblastoma. Front Cell Dev Biol 2020; 8:275. [PMID: 32528946 PMCID: PMC7266940 DOI: 10.3389/fcell.2020.00275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor and a primary cause of cancer-related death in children. Until a few years ago, only clinical and histological features were exploited for MB pathological classification and outcome prognosis. In the past decade, the advancement of high-throughput molecular analyses that integrate genetic, epigenetic, and expression data, together with the availability of increasing wealth of patient samples, revealed the existence of four molecularly distinct MB subgroups. Their further classification into 12 subtypes not only reduced the well-characterized intertumoral heterogeneity, but also provided new opportunities for the design of targets for precision oncology. Moreover, the identification of tumorigenic and self-renewing subpopulations of cancer stem cells in MB has increased our knowledge of its biology. Despite these advancements, the origin of MB is still debated, and its molecular bases are poorly characterized. A major goal in the field is to identify the key genes that drive tumor growth and the mechanisms through which they are able to promote tumorigenesis. So far, only protein-coding genes acting as oncogenic drivers have been characterized in each MB subgroup. The contribution of the non-coding side of the genome, which produces a plethora of transcripts that control fundamental biological processes, as the cell choice between proliferation and differentiation, is still unappreciated. This review wants to fill this major gap by summarizing the recent findings on the impact of non-coding RNAs in MB initiation and progression. Furthermore, their potential role as specific MB biomarkers and novel therapeutic targets is also highlighted.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
16
|
Bharambe HS, Joshi A, Yogi K, Kazi S, Shirsat NV. Restoration of miR-193a expression is tumor-suppressive in MYC amplified Group 3 medulloblastoma. Acta Neuropathol Commun 2020; 8:70. [PMID: 32410663 PMCID: PMC7227220 DOI: 10.1186/s40478-020-00942-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma, a highly malignant pediatric brain tumor, consists of four molecular subgroups, namely WNT, SHH, Group 3, and Group 4. The expression of miR-193a, a WNT subgroup-specific microRNA, was found to be induced by MYC, an oncogenic target of the canonical WNT signaling. MiR-193a is not expressed in Group 3 medulloblastomas, despite MYC expression, as a result of promoter hypermethylation. Restoration of miR-193a expression in the MYC amplified Group 3 medulloblastoma cells resulted in inhibition of growth, tumorigenicity, and an increase in radiation sensitivity. MAX, STMN1, and DCAF7 were identified as novel targets of miR-193a. MiR-193a mediated downregulation of MAX could suppress MYC activity since it is an obligate hetero-dimerization partner of MYC. MYC induced expression of miR-193a, therefore, seems to act as a feedback inhibitor of MYC signaling. The expression of miR-193a resulted in widespread repression of gene expression that included not only several cell cycle regulators, WNT, NOTCH signaling genes, and those encoding DNA replication machinery, but also several chromatin modifiers like SWI/SNF family genes and histone-encoding genes. MiR-193a expression brought about a reduction in the global levels of H3K4me3, H3K27ac, the histone marks of active chromatin, and an increase in the levels of H3K27me3, a repressive chromatin mark. In cancer cells having high MYC expression, MYC brings about transcriptional amplification of all active genes apart from the induction of its target genes. MiR-193a, on the other hand, brought about global repression of gene expression. Therefore, miR-193a has therapeutic potential in the treatment of not only Group 3 medulloblastomas but possibly other MYC overexpressing aggressive cancers as well.
Collapse
|
17
|
Visani M, Marucci G, de Biase D, Giangaspero F, Buttarelli FR, Brandes AA, Franceschi E, Acquaviva G, Ciarrocchi A, Rhoden KJ, Tallini G, Pession A. miR-196B-5P and miR-200B-3P Are Differentially Expressed in Medulloblastomas of Adults and Children. Diagnostics (Basel) 2020; 10:265. [PMID: 32365560 PMCID: PMC7277606 DOI: 10.3390/diagnostics10050265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 02/05/2023] Open
Abstract
Medulloblastoma is a highly aggressive brain tumor that typically affects children, while in adults it represents ~1% of all brain tumors. Little is known about microRNA expression profile of the rare adult medulloblastoma. The main aim of this study was to identify peculiar differences in microRNA expression between childhood and adult medulloblastoma. Medulloblastomas were profiled for microRNA expression using the Exiqon Human miRNome panel (I + II) analyzing 752 microRNAs in a training set of six adult and six childhood cases. Then, the most differentially expressed microRNAs were validated in a total of 21 adult and 19 childhood cases. Eight microRNAs (miR-196b-5p, miR-183-5p, miR-200b-3p, miR-196a-5p, miR-193a-3p, miR-29c-3p, miR-33b-5p, and miR-200a-3p) were differentially expressed in medulloblastoma of adults and children. Analysis of the validation set confirmed that miR-196b-5p and miR-200b-3p were significantly overexpressed in medulloblastoma of adults as compared with those of children. We followed an in silico approach to investigate direct targets and the pathways involved for the two microRNAs (miR-196b and miR-200b) differently expressed between adult and childhood medulloblastoma. Adult and childhood medulloblastoma have different miRNA expression profiles. In particular, the differential dysregulation of miR-196b-5p and miR-200b-3p characterizes the miRNA profile of adult medulloblastoma and suggests potential targets for novel diagnostic, prognostic, or therapeutic strategies.
Collapse
Affiliation(s)
- Michela Visani
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Gianluca Marucci
- Anatomic Pathology Unit, Ospedale Bellaria AUSL-IRCCS of Bologna, 40139 Bologna, Italy;
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBiT), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna, 40138 Bologna, Italy;
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University School of Medicine, 00161 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli (Isernia), Italy
| | | | - Alba Ariela Brandes
- Department of Medical Oncology, Bellaria–Maggiore Hospitals AUSL-IRCCS of Bologna, 40139 Bologna, Italy; (A.A.B.); (E.F.)
| | - Enrico Franceschi
- Department of Medical Oncology, Bellaria–Maggiore Hospitals AUSL-IRCCS of Bologna, 40139 Bologna, Italy; (A.A.B.); (E.F.)
| | - Giorgia Acquaviva
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova AUSL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Kerry Jane Rhoden
- Department of Medical and Surgical Sciences, Medical Genetics Unit, University of Bologna School of Medicine, 40138 Bologna, Italy;
| | - Giovanni Tallini
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology (FaBiT), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
18
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
19
|
Joshi P, Katsushima K, Zhou R, Meoded A, Stapleton S, Jallo G, Raabe E, Eberhart CG, Perera RJ. The therapeutic and diagnostic potential of regulatory noncoding RNAs in medulloblastoma. Neurooncol Adv 2019; 1:vdz023. [PMID: 31763623 PMCID: PMC6859950 DOI: 10.1093/noajnl/vdz023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma, a central nervous system tumor that predominantly affects children, always requires aggressive therapy. Nevertheless, it frequently recurs as resistant disease and is associated with high morbidity and mortality. While recent efforts to subclassify medulloblastoma based on molecular features have advanced our basic understanding of medulloblastoma pathogenesis, optimal targets to increase therapeutic efficacy and reduce side effects remain largely undefined. Noncoding RNAs (ncRNAs) with known regulatory roles, particularly long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), are now known to participate in medulloblastoma biology, although their functional significance remains obscure in many cases. Here we review the literature on regulatory ncRNAs in medulloblastoma. In providing a comprehensive overview of ncRNA studies, we highlight how different lncRNAs and miRNAs have oncogenic or tumor suppressive roles in medulloblastoma. These ncRNAs possess subgroup specificity that can be exploited to personalize therapy by acting as theranostic targets. Several of the already identified ncRNAs appear specific to medulloblastoma stem cells, the most difficult-to-treat component of the tumor that drives metastasis and acquired resistance, thereby providing opportunities for therapy in relapsing, disseminating, and therapy-resistant disease. Delivering ncRNAs to tumors remains challenging, but this limitation is gradually being overcome through the use of advanced technologies such as nanotechnology and rational biomaterial design.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Rui Zhou
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Avner Meoded
- Pediatric Neuroradiology, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Stacie Stapleton
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - George Jallo
- Institute Brain Protection Sciences, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Eric Raabe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Eberhart
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida.,Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California
| |
Collapse
|
20
|
Sun M, Ma X, Tu C, Wang X, Qu J, Wang S, Xiao S. MicroRNA-378 regulates epithelial-mesenchymal transition and metastasis of melanoma by inhibiting FOXN3 expression through the Wnt/β-catenin pathway. Cell Biol Int 2019; 43:1113-1124. [PMID: 29972255 DOI: 10.1002/cbin.11027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) participate in the development and progression of melanoma. However, while dysregulation of microRNA-378 (miR-378) has been seen in various cancer types, its clinical importance and function in melanoma are poorly elucidated. In this work, miR-378 expression in melanoma and in adjacent non-cancerous tissue was evaluated with a quantitative real-time polymerase chain reaction. A series of assays (wound healing, Transwell, and nude mouse subcutaneous tumor model) were used to investigate the implications of abnormal miR-378 regulation on melanoma cell migration and invasion in vitro, and on tumorigenicity in vivo. Prediction and conformation of the miR-378 target gene was undertaken using bioinformatic analysis and luciferase reporter system. Expression of miR-378 was often increased in melanoma, and shown to potentiate its migration, invasion, and tumorigenicity. miR-378 acted, at least partially, through inhibition of the potential target FOXN3 and via Wnt/β-catenin pathway activation. The findings indicate that miR-378 triggers melanoma development and progression. This miRNA could be a novel diagnostic and prognostic biological marker and provide utility for targeted treatment of melanoma.
Collapse
Affiliation(s)
- Mengyao Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Xiaona Ma
- Department of Dermatology, Affiliated Hospital of Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Chen Tu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Xiaopeng Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Jianqiang Qu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Shuang Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| |
Collapse
|
21
|
Up-regulation of miRNA-148a inhibits proliferation, invasion, and migration while promoting apoptosis of cervical cancer cells by down-regulating RRS1. Biosci Rep 2019; 39:BSR20181815. [PMID: 30910849 PMCID: PMC6505193 DOI: 10.1042/bsr20181815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of the present study is to figure out the role of miRNA-148a (miR-148a) in growth, apoptosis, invasion, and migration of cervical cancer cells by binding to regulator of ribosome synthesis 1 (RRS1). Cervical cancer and adjacent normal tissues, as well as cervical cancer cell line Caski, HeLa, C-33A, and normal cervical epithelial cell line H8 were obtained to detect the expression of miR-148a and RRS1. Relationship between miR-148a and RRS1 expression with clinicopathological characteristics was assessed. The selected Caski and HeLa cells were then transfected with miR-148a mimics, miR-148a inhibitors or RRS1 siRNA to investigate the role of miR-148a and RRS1 on proliferation, apoptosis, colony formation, invasion, and migration abilities of cervical cancer cells. Bioinformatics information and dual luciferase reporter gene assay was for used to detect the targetting relationship between miR-148a and RRS1. Down-regulated miR-148a and up-regulated RRS1 were found in cervical cancer tissues and cells. Down-regulated miR-148a and up-regulated RRS1 are closely related with prognostic factors of cervical cancer. RRS1 was determined as a target gene of miR-148a and miR-148a inhibited RRS1 expression in cervical cancer cells. Up-regulation of miR-148a inhibited cell proliferation, migration, and invasion while promoting apoptosis in Caski and HeLa cells. Our study suggests that miR-148a down-regulates RRS1 expression, thereby inhibiting the proliferation, migration, and invasion while promoting cell apoptosis of cervical cancer cells.
Collapse
|
22
|
Bharambe HS, Paul R, Panwalkar P, Jalali R, Sridhar E, Gupta T, Moiyadi A, Shetty P, Kazi S, Deogharkar A, Masurkar S, Yogi K, Kunder R, Gadewal N, Goel A, Goel N, Chinnaswamy G, Ramaswamy V, Shirsat NV. Downregulation of miR-204 expression defines a highly aggressive subset of Group 3/Group 4 medulloblastomas. Acta Neuropathol Commun 2019; 7:52. [PMID: 30944042 PMCID: PMC6448261 DOI: 10.1186/s40478-019-0697-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/10/2019] [Indexed: 11/18/2022] Open
Abstract
Genome-wide expression profiling studies have identified four core molecular subgroups of medulloblastoma: WNT, SHH, Group 3 and Group 4. Molecular markers are necessary for accurate risk stratification in the non-WNT subgroups due to the underlying heterogeneity in genetic alterations and overall survival. MiR-204 expression was evaluated in molecularly classified 260 medulloblastomas from an Indian cohort and in 763 medulloblastomas from the MAGIC cohort, SickKids, Canada. Low expression of miR-204 in the Group 3 / Group 4 tumors identify a highly aggressive subset of tumors having poor overall survival, in the two independent cohorts of medulloblastomas. Downregulation of miR-204 expression correlates with poor survival within the Group 4 as well indicating it as a valuable risk-stratification marker in the subgroup. Restoration of miR-204 expression in multiple medulloblastoma cell lines was found to inhibit their anchorage-independent growth, invasion potential and tumorigenicity. IGF2R was identified as a novel target of miR-204. MiR-204 expression resulted in downregulation of both M6PR and IGF2R that transport lysosomal proteases from the Golgi apparatus to the lysosomes. Consistent with this finding, miR-204 expression resulted in reduction in the levels of the lysosomal proteases in medulloblastoma cells. MiR-204 expression also resulted in inhibition of autophagy that is known to be dependent on the lysosomal degradation pathway and LC3B, a known miR-204 target. Treatment with HDAC inhibitors resulted in upregulation of miR-204 expression in medulloblastoma cells, suggesting therapeutic role for these inhibitors in the treatment of medulloblastomas. In summary, miR-204 is not only a valuable risk stratification marker in the combined cohort of Group 3 / Group 4 medulloblastomas as well as in the Group 4 itself, that has paucity of good prognostication markers, but also has therapeutic potential as indicated by its tumor suppressive effect on medulloblastoma cells.
Collapse
|
23
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
24
|
Wang X, Holgado BL, Ramaswamy V, Mack S, Zayne K, Remke M, Wu X, Garzia L, Daniels C, Kenney AM, Taylor MD. miR miR on the wall, who's the most malignant medulloblastoma miR of them all? Neuro Oncol 2019; 20:313-323. [PMID: 28575493 DOI: 10.1093/neuonc/nox106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
microRNAs (miRNAs) have wide-ranging effects on large-scale gene regulation. As such, they play a vital role in dictating normal development, and their aberrant expression has been implicated in cancer. There has been a large body of research on the role of miRNAs in medulloblastoma, the most common malignant brain tumor of childhood. The identification of the 4 molecular subgroups with distinct biological, genetic, and transcriptional features has revolutionized the field of medulloblastoma research over the past 5 years. Despite this, the growing body of research on miRNAs in medulloblastoma has largely focused on the clinical entity of a single disease rather than the molecular subgroups. This review begins by highlighting the role of miRNAs in development and progresses to explore their myriad of implications in cancer. Medulloblastoma is characterized by increased proliferation, inhibition of apoptosis, and maintenance of stemness programs-features that are inadvertently regulated by altered expression patterns in miRNAs. This review aims to contextualize the large body of work on miRNAs within the framework of medulloblastoma subgroups. The goal of this review is to stimulate new areas of research, including potential therapeutics, within a rapidly growing field.
Collapse
Affiliation(s)
- Xin Wang
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Borja L Holgado
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Haematology & Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen Mack
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kory Zayne
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Marc Remke
- German Cancer Consortium, University of Düsseldorf, Düsseldorf, Germany
| | - Xiaochong Wu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Livia Garzia
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Craig Daniels
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Anna M Kenney
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatric Oncology, Emory University, Atlanta, Georgia, USA.,Winship Cancer Institute, Atlanta, Georgia, USA
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Gong C, Valduga J, Chateau A, Richard M, Pellegrini-Moïse N, Barberi-Heyob M, Chastagner P, Boura C. Stimulation of medulloblastoma stem cells differentiation by a peptidomimetic targeting neuropilin-1. Oncotarget 2018; 9:15312-15325. [PMID: 29632646 PMCID: PMC5880606 DOI: 10.18632/oncotarget.24521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/10/2018] [Indexed: 12/19/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite the progress of new treatments, the risk of recurrence, morbidity, and death remains important. The neuropilin-1 (NRP-1) receptor has recently been implicated in tumor progression of MB, which seems to play an important role in the phenotype of cancer stem cells. Targeting this receptor appears as an interesting strategy to promote MB stem cells differentiation. Cancer stem-like cells of 3 MB cell lines (DAOY, D283-Med and D341-Med), classified in the more pejorative molecular subgroups, were obtained by in vitro enrichment. These models were characterized by an increase of NRP-1 and cancer stem cell markers (CD15, CD133 and Sox2), meanwhile a decrease of the differentiated cell marker Neurofilament-M (NF-M) was observed. Our previous work investigated potential innovative peptidomimetics that specifically target NRP-1 and showed that MR438 had a good affinity for NRP-1. This small molecule decreased the self-renewal capacity of MB stem cells for the 3 cell lines and reduced the invasive ability of DAOY and D283 stem cells while NRP-1 expression and cancer stem cell markers decreased at the same time. Possible molecular mechanisms were explored and showed that the activation of PI3K/AKT and MAPK pathways significantly decreased for DAOY cells after treatment. Finally, our results highlighted that targeting NRP-1 with MR438 could be a potential new strategy to differentiate MB stem cells and could limit medulloblastoma progression.
Collapse
Affiliation(s)
- Caifeng Gong
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Julie Valduga
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, F-54000 Nancy, France
| | - Alicia Chateau
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Mylène Richard
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | | | | | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, F-54000 Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| |
Collapse
|
26
|
Xu X, Zhang Y, Jasper J, Lykken E, Alexander PB, Markowitz GJ, McDonnell DP, Li QJ, Wang XF. MiR-148a functions to suppress metastasis and serves as a prognostic indicator in triple-negative breast cancer. Oncotarget 2018; 7:20381-94. [PMID: 26967387 PMCID: PMC4991462 DOI: 10.18632/oncotarget.7953] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) presents a major challenge in the clinic due to its lack of reliable prognostic markers and targeted therapies. Accumulating evidence strongly supports the notion that microRNAs (miRNAs) are involved in tumorigenesis and could serve as biomarkers for diagnostic purposes. To identify miRNAs that functionally suppress metastasis of TNBC, we employed a concerted approach with selecting miRNAs that display differential expression profiles from bioinformatic analyses of breast cancer patient databases and validating top candidates with functional assays using breast cancer cell lines and mouse models. We have found that miR-148a exhibits properties as a tumor suppressor as its expression is inversely correlated with the ability of both human and mouse breast cancer cells to colonize the lung in mouse xenograft tumor models. Mechanistically, miR-148a appears to suppress the extravasation process of cancer cells, likely by targeting two genes WNT1 and NRP1 in a cell non-autonomous manner. Importantly, lower expression of miR-148a is detected in higher-grade tumor samples and correlated with increased likelihood to develop metastases and poor prognosis in subsets of breast cancer patients, particularly those with TNBC. Thus, miR-148a is functionally defined as a suppressor of breast cancer metastasis and may serve as a prognostic biomarker for this disease.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yun Zhang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jeff Jasper
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Erik Lykken
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Geoffrey J Markowitz
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
27
|
Pan X, Wang Z, Wan B, Zheng Z. MicroRNA-206 inhibits the viability and migration of medulloblastoma cells by targeting LIM and SH3 protein 1. Exp Ther Med 2017; 14:3894-3900. [PMID: 29042998 DOI: 10.3892/etm.2017.5016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/07/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNA (miR)-206 has been found to be deregulated in various types of human cancer, including medulloblastoma. However, the regulatory mechanism of miR-206 in medulloblastoma growth and metastasis remains largely unclear. In the present study, reverse transcription-quantitative polymerase chain reaction data indicated that miR-206 was significantly downregulated in medulloblastoma tissues compared with adjacent non-tumor tissues (P<0.01). Furthermore, low expression of miR-206 was significantly associated with seeding at presentation and anaplastic histology (P<0.01), but not with sex, age, or residual tumors. Overexpression of miR-206 significantly reduced the viability and migration of medulloblastoma D341 cells (P<0.01). LIM and SH3 protein 1 (LASP1) was further identified as a novel target of miR-206 in D341 cells. mRNA levels of LASP1 were significantly higher in medulloblastoma tissues compared to adjacent non-tumor tissues (P<0.01), with an inverse correlation to the miR-206 levels in medulloblastoma tissues. In addition, protein expression levels of LASP1 ere negatively regulated by miR-206 in D341 cells. Further investigation showed that overexpression of LASP1 significantly eliminated the inhibitory effects of miR-206 on the migration and invasion of D341 cells (P<0.01). In conclusion, our study demonstrates that miR-206 has a suppressive role in medulloblastoma cell viability and invasion, partly at least, via the targeting of LASP1. Our study highlights the importance of the miR-206/LASP1 in medulloblastoma.
Collapse
Affiliation(s)
- Xuexia Pan
- Third Department of Pediatrics, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Zhimin Wang
- Department of Hematology, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Bin Wan
- Department of Neonatology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| | - Zhenwen Zheng
- Third Department of Pediatrics, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| |
Collapse
|
28
|
BKM120 induces apoptosis and inhibits tumor growth in medulloblastoma. PLoS One 2017; 12:e0179948. [PMID: 28662162 PMCID: PMC5491106 DOI: 10.1371/journal.pone.0179948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, accounting for nearly 20 percent of all childhood brain tumors. New treatment strategies are needed to improve patient survival outcomes and to reduce adverse effects of current therapy. The phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) intracellular signaling pathway plays a key role in cellular metabolism, proliferation, survival and angiogenesis, and is often constitutively activated in human cancers, providing unique opportunities for anticancer therapeutic intervention. The aim of this study was to evaluate the pre-clinical activity of BKM120, a selective pan-class I PI3K inhibitor, on MB cell lines and primary samples. IC50 values of BKM120 in the twelve MB cell lines tested ranged from 0.279 to 4.38 μM as determined by cell viability assay. IncuCyte ZOOM Live-Cell Imaging system was used for kinetic monitoring of cytotoxicity of BKM120 and apoptosis in MB cells. BKM120 exhibited cytotoxicity in MB cells in a dose and time-dependent manner by inhibiting activation of downstream signaling molecules AKT and mTOR, and activating caspase-mediated apoptotic pathways. Furthermore, BKM120 decreased cellular glycolytic metabolic activity in MB cell lines in a dose-dependent manner demonstrated by ATP level per cell. In MB xenograft mouse study, DAOY cells were implanted in the flank of nude mice and treated with vehicle, BKM120 at 30 mg/kg and 60 mg/kg via oral gavage daily. BKM120 significantly suppressed tumor growth and prolonged mouse survival. These findings help to establish a basis for clinical trials of BKM120, which could be a novel therapy for the treatment of medulloblastoma patients.
Collapse
|
29
|
Cao H, Liu Z, Wang R, Zhang X, Yi W, Nie G, Yu Y, Wang G, Zhu M. miR-148a suppresses human renal cell carcinoma malignancy by targeting AKT2. Oncol Rep 2016; 37:147-154. [PMID: 27878305 DOI: 10.3892/or.2016.5257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/08/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-148a (miR-148a) has been reported to be deregulated in different tumor types, whereas the biological function of miR-148a in renal cell carcinoma (RCC) largely remains unexplored. In the present study we investigated the clinical significance, biological effects, and the underlying molecular mechanisms of miR-148 in RCC. Here, we showed that miR-148a was significantly downregulated in RCC tissues and cell lines. Low expression of miR-148a in RCC tissues was associated with large tumor size, advanced TNM stage, and lymph node metastasis. Functional assays revealed that overexpression of miR-148a significantly inhibited RCC cell proliferation, colony formation, migration and invasion in vitro and suppressed RCC xenograft tumor growth in vivo. In addition, using quantitative RT-PCR (qRT-PCR), western blot analysis and luciferase reporter assays, AKT2 was confirmed to be a direct target of miR-148a. AKT2 expression was upregulated, and was negatively correlated with miR-148a expression in RCC tissues (r=-0.641, P<0.001). Silencing of AKT2 phenotypically copied miR-148a-induced phenotypes, whereas re-expression of AKT2 reversed the suppressive effects of miR-148a in RCC cells. Further mechanistic investigations showed that miR-148a exerted its antitumor activity via inhibition of the AKT pathway in vitro and in vivo. Taken together, these findings suggest that miR-148a functions as tumor suppressor in RCC by targeting AKT2.
Collapse
Affiliation(s)
- Huiyan Cao
- Department of Urological Surgery, People's Hospital of Qinghai, Xining, Qinghai 810007, P.R. China
| | - Zhiming Liu
- Department of Urological Surgery, People's Hospital of Qinghai, Xining, Qinghai 810007, P.R. China
| | - Rong Wang
- Department of Medical Oncology, The Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, P.R. China
| | - Xiaodong Zhang
- Department of Urological Surgery, People's Hospital of Qinghai, Xining, Qinghai 810007, P.R. China
| | - Wenfa Yi
- Department of Urological Surgery, People's Hospital of Qinghai, Xining, Qinghai 810007, P.R. China
| | - Guanyuan Nie
- Department of Urological Surgery, People's Hospital of Qinghai, Xining, Qinghai 810007, P.R. China
| | - Yong Yu
- Department of Urological Surgery, People's Hospital of Qinghai, Xining, Qinghai 810007, P.R. China
| | - Guolu Wang
- Department of Urological Surgery, People's Hospital of Qinghai, Xining, Qinghai 810007, P.R. China
| | - Mingting Zhu
- Department of Urological Surgery, People's Hospital of Qinghai, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
30
|
Dasgupta A, Gupta T, Jalali R. Indian data on central nervous tumors: A summary of published work. South Asian J Cancer 2016; 5:147-53. [PMID: 27606302 PMCID: PMC4991137 DOI: 10.4103/2278-330x.187589] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tumors of the central nervous system (CNS) constitute approximately 2% of all malignancies. Although relatively rare, the associated morbidity and mortality and the significant proportion of affected young and middle-aged individuals has a major bearing on the death-adjusted life years compared to other malignancies. CNS tumors encompass a very broad spectrum with regards to age, location, histology, and clinical outcomes. Advances in diagnostic imaging, surgical techniques, radiotherapy equipment, and generation of newer chemotherapeutic and targeted agents over the past few years have helped improving treatment outcome. Further insights into the molecular pathways leading to the development of tumors made in the past decade are being incorporated into routine clinical practice. Several focused groups within India have been working on a range of topics related to CNS tumors, and a significant body of work from India, in the recent years, is being increasingly recognized throughout the world. The present article summarizes key published work with particular emphasis on gliomas and medulloblastoma, the two commonly encountered tumors.
Collapse
Affiliation(s)
- Archya Dasgupta
- Department of Radiation Oncology, Neuro-Oncology Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Neuro-Oncology Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Neuro-Oncology Group, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|