1
|
Zhao J, Lee K, Toh HC, Lam KP, Neo SY. Unravelling the role of obesity and lipids during tumor progression. Front Pharmacol 2023; 14:1163160. [PMID: 37063269 PMCID: PMC10097918 DOI: 10.3389/fphar.2023.1163160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
The dysregulation of the biochemical pathways in cancer promotes oncogenic transformations and metastatic potential. Recent studies have shed light on how obesity and altered lipid metabolism could be the driving force for tumor progression. Here, in this review, we focus on liver cancer and discuss how obesity and lipid-driven metabolic reprogramming affect tumor, immune, and stroma cells in the tumor microenvironment and, in turn, how alterations in these cells synergize to influence and contribute to tumor growth and dissemination. With increasing evidence on how obesity exacerbates inflammation and immune tolerance, we also touch upon the impact of obesity and altered lipid metabolism on tumor immune escape.
Collapse
Affiliation(s)
- Junzhe Zhao
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Keene Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Kong Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Yong Neo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Oncology and Pathology, Karolinska Institute, Solna, Sweden
- *Correspondence: Shi Yong Neo,
| |
Collapse
|
2
|
Xie S, Pan J, Xu J, Zhu W, Qin L. The critical function of metabolic reprogramming in cancer metastasis. AGING AND CANCER 2022; 3:20-43. [DOI: 10.1002/aac2.12044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2025]
Abstract
AbstractCancer metastasis is the leading cause of cancer‐related death. It is a complex, inefficient, and multistep process related to poor prognosis and high mortality of patients. Increasing evidence has shown that metabolic programming is a recognized hallmarker of cancer, plays a critical role in cancer metastasis. Metabolism alterations of glucose, lipid, and amino acid provide cancer cells with energy and substances for biosynthesis, maintain biofunctions and significantly affect proliferation, invasion, and metastasis of cancer cells. Tumor microenvironment (TME) is a complex system formed by varieties of cellular and noncellular elements. Nontumor cells in TME also undergo metabolic reprogramming or respond to metabolites to promote migration and invasion of cancer cells. A comprehensive understanding of the regulatory mechanism in metastasis from the metabolic reprogramming aspect is required to develop new therapeutic strategies combatting cancer metastasis. This review illustrates the metabolic reprogramming and interaction of cancer cells and nontumor cells in the TME, and the development of treatment strategies targeting metabolism alterations.
Collapse
Affiliation(s)
- Sun‐Zhe Xie
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Jun‐Jie Pan
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Jian‐Feng Xu
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Wen‐wei Zhu
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| | - Lun‐Xiu Qin
- Department of General Surgery Huashan Hospital, Fudan University Shanghai China
- Cancer Metastasis Institute Fudan University Shanghai China
| |
Collapse
|
3
|
Pharmacological fatty acid synthase inhibitors differently affect the malignant phenotype of oral cancer cells. Arch Oral Biol 2022; 135:105343. [DOI: 10.1016/j.archoralbio.2021.105343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
|
4
|
Espinoza I, Kurapaty C, Park CH, Vander Steen T, Kleer CG, Wiley E, Rademaker A, Cuyàs E, Verdura S, Buxó M, Reynolds C, Menendez JA, Lupu R. Depletion of CCN1/CYR61 reduces triple-negative/basal-like breast cancer aggressiveness. Am J Cancer Res 2022; 12:839-851. [PMID: 35261806 PMCID: PMC8899977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023] Open
Abstract
Triple-negative/basal-like breast cancer (BC) is characterized by aggressive biological features, which allow relapse and metastatic spread to occur more frequently than in hormone receptor-positive (luminal) subtypes. The molecular complexity of triple-negative/basal-like BC poses major challenges for the implementation of targeted therapies, and chemotherapy remains the standard approach at all stages. The matricellular protein cysteine-rich angiogenic inducer 61 (CCN1/CYR61) is associated with aggressive metastatic phenotypes and poor prognosis in BC, but it is unclear whether anti-CCN1 approaches can be successfully applied in triple-negative/basal-like BC. Herein, we first characterized the prevalence of CNN1 expression in matched samples of primary tumors and metastatic relapse in a series of patients with BC. We then investigated the biological effect of CCN1 depletion on tumorigenic traits in vitro and in vivo using archetypal TNBC cell lines. Immunohistochemical analyses of tissue microarrays revealed a significant increase of the highest CCN1 score in recurrent tissues of triple-negative/basal-like BC tumors. Stable silencing of CCN1 in triple-negative/basal-like BC cells promoted a marked reduction in the expression of the CCN1 integrin receptor αvβ3, inhibited anchorage-dependent cell growth, reduced clonogenicity, and impaired migration capacity. In an orthotopic model of triple-negative/basal-like BC, silencing of CCN1 notably reduced tumor burden, which was accompanied by decreased microvessel density and concurrent induction of the luminal epithelial marker E-cadherin. Thus, CNN1/CYR61-targeting strategies might have therapeutic value in suppressing the biological aggressiveness of triple-negative/basal-like BC.
Collapse
Affiliation(s)
- Ingrid Espinoza
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo ClinicRochester, MN 55905, USA
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical CenterJackson, MS 39216, USA
- Cancer Institute, School of Medicine, University of Mississippi Medical CenterJackson, MS 39216, USA
| | - Chandra Kurapaty
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo ClinicRochester, MN 55905, USA
| | - Cheol-Hong Park
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo ClinicRochester, MN 55905, USA
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo ClinicRochester, MN 55905, USA
| | - Celina G Kleer
- Department of Pathology, University of MichiganAnn Arbor, MI 48109, USA
| | - Elizabeth Wiley
- Department of Pathology, University of Illinois at ChicagoChicago, IL 60607, USA
| | - Alfred Rademaker
- Department of Preventive Medicine, Northwestern University Feinberg School of MedicineChicago, IL 60611, USA
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute17190 Salt, Girona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology17007 Girona, Spain
| | - Sara Verdura
- Girona Biomedical Research Institute17190 Salt, Girona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology17007 Girona, Spain
| | - Maria Buxó
- Statistical and Methodological Advice Unit, Girona Biomedical Research Institute17190 Salt, Girona, Spain
| | - Carol Reynolds
- Department of Pathology, Division of Anatomic Pathology, Mayo ClinicRochester, MN 55905, USA
| | - Javier A Menendez
- Girona Biomedical Research Institute17190 Salt, Girona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology17007 Girona, Spain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo ClinicRochester, MN 55905, USA
- Mayo Clinic Cancer CenterRochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic MinnesotaRochester, MN 55905, USA
| |
Collapse
|
5
|
Espinoza I, Yang L, Steen TV, Vellon L, Cuyàs E, Verdura S, Lau L, Menendez JA, Lupu R. Binding of the angiogenic/senescence inducer CCN1/CYR61 to integrin α 6β 1 drives endocrine resistance in breast cancer cells. Aging (Albany NY) 2022; 14:1200-1213. [PMID: 35148282 PMCID: PMC8876916 DOI: 10.18632/aging.203882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
CCN1/CYR61 promotes angiogenesis, tumor growth and chemoresistance by binding to its integrin receptor αvβ3 in endothelial and breast cancer (BC) cells. CCN1 controls also tissue regeneration by engaging its integrin receptor α6β1 to induce fibroblast senescence. Here, we explored if the ability of CCN1 to drive an endocrine resistance phenotype in estrogen receptor-positive BC cells relies on interactions with either αvβ3 or α6β1. First, we took advantage of site-specific mutagenesis abolishing the CCN1 receptor-binding sites to αvβ3 and α6β1 to determine the integrin partner responsible for CCN1-driven endocrine resistance. Second, we explored a putative nuclear role of CCN1 in regulating ERα-driven transcriptional responses. Retroviral forced expression of a CCN1 derivative with a single amino acid change (D125A) that abrogates binding to αvβ3 partially phenocopied the endocrine resistance phenotype induced upon overexpression of wild-type (WT) CCN1. Forced expression of the CCN1 mutant TM, which abrogates all the T1, H1, and H2 binding sites to α6β1, failed to bypass the estrogen requirement for anchorage-independent growth or to promote resistance to tamoxifen. Wild-type CCN1 promoted estradiol-independent transcriptional activity of ERα and enhanced ERα agonist response to tamoxifen. The α6β1-binding-defective TM-CCN1 mutant lost the ERα co-activator-like behavior of WT-CCN1. Co-immunoprecipitation assays revealed a direct interaction between endogenous CCN1 and ERα, and in vitro approaches confirmed the ability of recombinant CCN1 to bind ERα. CCN1 signaling via α6β1, but not via αvβ3, drives an endocrine resistance phenotype that involves a direct binding of CCN1 to ERα to regulate its transcriptional activity in ER+ BC cells.
Collapse
Affiliation(s)
- Ingrid Espinoza
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, 55905 MN, USA.,Current address: Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS 39216, USA.,Current address: Cancer Institute, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lin Yang
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, 55905 MN, USA
| | - Travis Vander Steen
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, 55905 MN, USA
| | - Luciano Vellon
- Stem Cells Laboratory, Institute of Biology and Experimental Medicine (IBYME-CONICET), Buenos Aires C1428ADN, Argentina
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona 17005, Spain.,Girona Biomedical Research Institute, Salt, Girona 17190, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona 17005, Spain.,Girona Biomedical Research Institute, Salt, Girona 17190, Spain
| | - Lester Lau
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona 17005, Spain.,Girona Biomedical Research Institute, Salt, Girona 17190, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, 55905 MN, USA.,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Minnesota, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Fatty Acid Synthase Confers Tamoxifen Resistance to ER+/HER2+ Breast Cancer. Cancers (Basel) 2021; 13:cancers13051132. [PMID: 33800852 PMCID: PMC7961649 DOI: 10.3390/cancers13051132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Overactivation of the human epidermal growth factor receptor 2 (HER2) is one of the main drivers of tamoxifen resistance in estrogen receptor (ER)-positive breast cancer patients. Combined targeting of HER2 and ER, however, has yielded disappointing results in the clinical setting. Therefore, other potential mechanisms for tamoxifen resistance would not be overcome by solely blocking the cross-talk between ER and HER2 at the receptor(s) level. Using cell lines, animal models, and clinical data, we provide evidence to support a critical role of fatty acid synthase (FASN)—the major site for endogenous fat synthesis—in HER2-driven tamoxifen resistance. Importantly, treatment with a FASN inhibitor impeded the estrogen-like tumor-promoting effects of tamoxifen and fully restored the anti-estrogenic activity of tamoxifen in ER+/HER2-overexpressing breast cancer xenografts. We postulate FASN as a biological determinant of HER2-driven tamoxifen resistance and FASN inhibition as a novel therapeutic approach to restore tamoxifen sensitivity in endocrine-resistant breast cancer. Abstract The identification of clinically important molecular mechanisms driving endocrine resistance is a priority in estrogen receptor-positive (ER+) breast cancer. Although both genomic and non-genomic cross-talk between the ER and growth factor receptors such as human epidermal growth factor receptor 2 (HER2) has frequently been associated with both experimental and clinical endocrine therapy resistance, combined targeting of ER and HER2 has failed to improve overall survival in endocrine non-responsive disease. Herein, we questioned the role of fatty acid synthase (FASN), a lipogenic enzyme linked to HER2-driven breast cancer aggressiveness, in the development and maintenance of hormone-independent growth and resistance to anti-estrogens in ER/HER2-positive (ER+/HER2+) breast cancer. The stimulatory effects of estradiol on FASN gene promoter activity and protein expression were blunted by anti-estrogens in endocrine-responsive breast cancer cells. Conversely, an AKT/MAPK-related constitutive hyperactivation of FASN gene promoter activity was unaltered in response to estradiol in non-endocrine responsive ER+/HER2+ breast cancer cells, and could be further enhanced by tamoxifen. Pharmacological blockade with structurally and mechanistically unrelated FASN inhibitors fully impeded the strong stimulatory activity of tamoxifen on the soft-agar colony forming capacity—an in vitro metric of tumorigenicity—of ER+/HER2+ breast cancer cells. In vivo treatment with a FASN inhibitor completely prevented the agonistic tumor-promoting activity of tamoxifen and fully restored its estrogen antagonist properties against ER/HER2-positive xenograft tumors in mice. Functional cancer proteomic data from The Cancer Proteome Atlas (TCPA) revealed that the ER+/HER2+ subtype was the highest FASN protein expressor compared to basal-like, HER2-enriched, and ER+/HER2-negative breast cancer groups. FASN is a biological determinant of HER2-driven endocrine resistance in ER+ breast cancer. Next-generation, clinical-grade FASN inhibitors may be therapeutically relevant to countering resistance to tamoxifen in FASN-overexpressing ER+/HER2+ breast carcinomas.
Collapse
|
7
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
8
|
Fatty Acid Synthase Is a Key Enabler for Endocrine Resistance in Heregulin-Overexpressing Luminal B-Like Breast Cancer. Int J Mol Sci 2020; 21:ijms21207661. [PMID: 33081219 PMCID: PMC7588883 DOI: 10.3390/ijms21207661] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
HER2 transactivation by the HER3 ligand heregulin (HRG) promotes an endocrine-resistant phenotype in the estrogen receptor-positive (ER+) luminal-B subtype of breast cancer. The underlying biological mechanisms that link them are, however, incompletely understood. Here, we evaluated the putative role of the lipogenic enzyme fatty acid synthase (FASN) as a major cause of HRG-driven endocrine resistance in ER+/HER2-negative breast cancer cells. MCF-7 cells engineered to stably overexpress HRG (MCF-7/HRG), an in vitro model of tamoxifen/fulvestrant-resistant luminal B-like breast cancer, showed a pronounced up-regulation of FASN gene/FASN protein expression. Autocrine HRG up-regulated FASN expression via HER2 transactivation and downstream activation of PI-3K/AKT and MAPK-ERK1/2 signaling pathways. The HRG-driven FASN-overexpressing phenotype was fully prevented in MCF-7 cells expressing a structural deletion mutant of HRG that is sequestered in a cellular compartment and lacks the ability to promote endocrine-resistance in an autocrine manner. Pharmacological inhibition of FASN activity blocked the estradiol-independent and tamoxifen/fulvestrant-refractory ability of MCF-7/HRG cells to anchorage-independently grow in soft-agar. In vivo treatment with a FASN inhibitor restored the anti-tumor activity of tamoxifen and fulvestrant against fast-growing, hormone-resistant MCF-7/HRG xenograft tumors in mice. Overall, these findings implicate FASN as a key enabler for endocrine resistance in HRG+/HER2- breast cancer and highlight the therapeutic potential of FASN inhibitors for the treatment of endocrine therapy-resistant luminal-B breast cancer.
Collapse
|
9
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
10
|
Halczy-Kowalik L, Drozd A, Stachowska E, Drozd R, Żabski T, Domagała W. Fatty acids distribution and content in oral squamous cell carcinoma tissue and its adjacent microenvironment. PLoS One 2019; 14:e0218246. [PMID: 31242216 PMCID: PMC6594603 DOI: 10.1371/journal.pone.0218246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/29/2019] [Indexed: 12/25/2022] Open
Abstract
Squamous cell carcinoma of the oral cavity mucosa grows under conditions of poor oxygenation and nutrient scarcity. Reprogramming of lipid biosynthesis accompanies tumor growth, but the conditions under which it occurs are not fully understood. The fatty acid content of the serum, tumor tissue and adjacent tumor microenvironment was measured by gas chromatography in 30 patients with squamous cell carcinoma grade 1-3. Twenty-five fatty acids were identified; their frequencies and percentages in each of the environments were assessed. Nineteen of the twenty-five fatty acids were found in tumor tissue, tumor adjacent tissue and blood serum. Of them, 8 were found in all thirty patients. Percentages of C16:0 and C18:1n9 were highest in the tumor, C18:1n9 and C16:0 were highest in tumor adjacent tissue, and C16:0 and C18:0 were highest in blood serum. The frequencies and amounts of C22:1n13, C22:4n6, C22:5n3 and C24:1 in tumor adjacent tissues were higher than those in blood serum, independent of the tumor grade. The correlations between the amount of fatty acid and tumor grade were the strongest in tumor adjacent tissues. The correlations between particular fatty acids were most prevalent for grade 1+2 tumors and were strongest for grade 3 tumors. In the adjacent tumor microenvironment, lipogenesis was controlled by C22:6w3. In blood serum, C18:1trans11 limited the synthesis of long-chain fatty acids. Our research reveals intensive lipid changes in oral cavity SCC adjacent to the tumor microenvironment and blood serum of the patients. Increase in percentage of some of the FAs in the path: blood serum-tumor adjacent microenvironment-tumor, and it is dependent on tumor grade. This dependency is the most visible in the tumor adjacent environment.
Collapse
Affiliation(s)
- Ludmiła Halczy-Kowalik
- Clinic of Maxillofacial Surgery, Pomeranian Medical University, Szczecin, Poland
- * E-mail:
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Radosław Drozd
- Department of Immunology, Microbiology and Physiological Chemistry, West Pomeranian University of Technology, Szczecin, Poland
| | - Tomasz Żabski
- Clinic of Maxillofacial Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Wenancjusz Domagała
- Department of Pathomorphology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
11
|
Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. Eur J Med Chem 2019; 171:343-363. [PMID: 30928707 DOI: 10.1016/j.ejmech.2019.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed the peculiarities of metabolic reprogramming in tumour onset and progression, and their relevance in cancer therapy. Also, it has been indicated that the metastatic process may depend on the metabolic rewiring and adaptation of cancer cells to the pressure of tumour microenvironment and limiting nutrient availability. The present review gatherers the existent knowledge on the influence of tumour microenvironment and metabolic routes driving metastasis. A focus will be given to glycolysis, fatty acid metabolism, glutaminolysis, and amino acid handling. In addition, the role of metabolic waste driving metastasization will be explored. Finally, we discuss the status of cancer treatment approaches targeting metabolism. This knowledge revision will highlight the critical metabolic targets in metastasis and the chemicals already used in preclinical studies and clinical trials, providing clues that would be further exploited in medicinal chemistry research.
Collapse
Affiliation(s)
- Tiago Ma Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
12
|
Cellular Gene Expression during Hepatitis C Virus Replication as Revealed by Ribosome Profiling. Int J Mol Sci 2019; 20:ijms20061321. [PMID: 30875926 PMCID: PMC6470931 DOI: 10.3390/ijms20061321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Hepatitis C virus (HCV) infects human liver hepatocytes, often leading to liver cirrhosis and hepatocellular carcinoma (HCC). It is believed that chronic infection alters host gene expression and favors HCC development. In particular, HCV replication in Endoplasmic Reticulum (ER) derived membranes induces chronic ER stress. How HCV replication affects host mRNA translation and transcription at a genome wide level is not yet known. Methods: We used Riboseq (Ribosome Profiling) to analyze transcriptome and translatome changes in the Huh-7.5 hepatocarcinoma cell line replicating HCV for 6 days. Results: Established viral replication does not cause global changes in host gene expression—only around 30 genes are significantly differentially expressed. Upregulated genes are related to ER stress and HCV replication, and several regulated genes are known to be involved in HCC development. Some mRNAs (PPP1R15A/GADD34, DDIT3/CHOP, and TRIB3) may be subject to upstream open reading frame (uORF) mediated translation control. Transcriptional downregulation mainly affects mitochondrial respiratory chain complex core subunit genes. Conclusion: After establishing HCV replication, the lack of global changes in cellular gene expression indicates an adaptation to chronic infection, while the downregulation of mitochondrial respiratory chain genes indicates how a virus may further contribute to cancer cell-like metabolic reprogramming (“Warburg effect”) even in the hepatocellular carcinoma cells used here.
Collapse
|
13
|
Du T, Sikora MJ, Levine KM, Tasdemir N, Riggins RB, Wendell SG, Van Houten B, Oesterreich S. Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer. Breast Cancer Res 2018; 20:106. [PMID: 30180878 PMCID: PMC6124012 DOI: 10.1186/s13058-018-1041-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Invasive lobular breast carcinoma (ILC) is a histological subtype of breast cancer that is characterized by loss of E-cadherin and high expression of estrogen receptor alpha (ERα). In many cases, ILC is effectively treated with adjuvant aromatase inhibitors (AIs); however, acquired AI resistance remains a significant problem. Methods To identify underlying mechanisms of acquired anti-estrogen resistance in ILC, we recently developed six long-term estrogen-deprived (LTED) variant cell lines from the human ILC cell lines SUM44PE (SUM44; two lines) and MDA-MB-134VI (MM134; four lines). To better understand mechanisms of AI resistance in these models, we performed transcriptional profiling analysis by RNA-sequencing followed by candidate gene expression and functional studies. Results MM134 LTED cells expressed ER at a decreased level and lost growth response to estradiol, while SUM44 LTED cells retained partial ER activity. Our transcriptional profiling analysis identified shared activation of lipid metabolism across all six independent models. However, the underlying basis of this signature was distinct between models. Oxysterols were able to promote the proliferation of SUM44 LTED cells but not MM134 LTED cells. In contrast, MM134 LTED cells displayed a high expression of the sterol regulatory element-binding protein 1 (SREBP1), a regulator of fatty acid and cholesterol synthesis, and were hypersensitive to genetic or pharmacological inhibition of SREBPs. Several SREBP1 downstream targets involved in fatty acid synthesis, including FASN, were induced, and MM134 LTED cells were more sensitive to etomoxir, an inhibitor of the rate-limiting enzyme in beta-oxidation, than their respective parental control cells. Finally, in silico expression analysis in clinical specimens from a neo-adjuvant endocrine trial showed a significant association between the increase of SREBP1 expression and lack of clinical response, providing further support for a role of SREBP1 in the acquisition of endocrine resistance in breast cancer. Conclusions Our characterization of a unique series of AI-resistant ILC models identifies the activation of key regulators of fatty acid and cholesterol metabolism, implicating lipid-metabolic processes driving estrogen-independent growth of ILC cells. Targeting these changes may prove a strategy for prevention and treatment of endocrine resistance for patients with ILC. Electronic supplementary material The online version of this article (10.1186/s13058-018-1041-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tian Du
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Matthew J Sikora
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kevin M Levine
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nilgun Tasdemir
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rebecca B Riggins
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bennett Van Houten
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets 2017; 21:1001-1016. [PMID: 28922023 DOI: 10.1080/14728222.2017.1381087] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ten years ago, we put forward the metabolo-oncogenic nature of fatty acid synthase (FASN) in breast cancer. Since the conception of this hypothesis, which provided a model to explain how FASN is intertwined with various signaling networks to cell-autonomously regulate breast cancer initiation and progression, FASN has received considerable attention as a therapeutic target. However, despite the ever-growing evidence demonstrating the involvement of FASN as part of the cancer-associated metabolic reprogramming, translation of the basic science-discovery aspects of FASN blockade to the clinical arena remains a challenge. Areas covered: Ten years later, we herein review the preclinical lessons learned from the pharmaceutical liabilities of the first generation of FASN inhibitors. We provide an updated view of the current development and clinical testing of next generation FASN-targeted drugs. We also discuss new clinico-molecular approaches that should help us to convert roadblocks into roadways that will propel forward our therapeutic understanding of FASN. Expert opinion: With the recent demonstration of target engagement and early signs of clinical activity with the first orally available, selective, potent and reversible FASN inhibitor, we can expect Big pharma to revitalize their interest in lipogenic enzymes as well-credentialed targets for oncology drug development in breast cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- a ProCURE (Program Against Cancer Therapeutic Resistance) , Metabolism & Cancer Group, Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Parc Hospitalari Martí i Julià , Girona , Spain
| | - Ruth Lupu
- c Department of Medicine and Experimental Pathology , Mayo Clinic , Rochester , MN , USA.,d Mayo Clinic Cancer Center , Rochester , MN , USA
| |
Collapse
|