1
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
2
|
Construction and Validation of a Potent Epigenetic Modification-Related Prognostic Signature for Osteosarcoma Patients. JOURNAL OF ONCOLOGY 2021; 2021:2719172. [PMID: 34853590 PMCID: PMC8629625 DOI: 10.1155/2021/2719172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022]
Abstract
Background Increasing evidence has shown that tumorigenesis correlates with aberrant epigenetic factors, such as DNA methylation, histone modification, RNA m6A modification, RNA binding proteins, and transcription factors. However, it is unclear that how epigenetic genes linked with alteration contribute to osteosarcoma's incidence and clinical prognosis. We developed an epigenetic modification-related prognostic model that may improve the diagnosis and prognosis of osteosarcoma. Methods We investigated the epigenetic modification-associated genes and their clinical significance in osteosarcoma in this research. Our gene transcriptome data were obtained from the TARGET database and the GEO database. Bioinformatics techniques were used to investigate their functionalities. The diagnostic and prognostic models were constructed using univariate and multivariate Cox regression. In addition, we developed a nomogram indicating the practicability of the prognostic model described above. Results A risk score model constructed based on four epigenetic modification-related genes (MYC, TERT, EIF4E3, and RBM34) can effectively predict the prognosis of patients with osteosarcoma. Based on the risk score and clinical features, we constructed a nomogram. Conclusion Epigenetic modification-related genes have been identified as important prognostic markers that may assist in osteosarcoma therapy therapeutic decision-making.
Collapse
|
3
|
Tanshinone IIA Inhibits Osteosarcoma Growth through a Src Kinase-Dependent Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563691. [PMID: 34422073 PMCID: PMC8376467 DOI: 10.1155/2021/5563691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
Introduction Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.
Collapse
|
4
|
Lin HZ, Zhang T, Chen MY, Shen JL. Novel biomarkers for the diagnosis and prognosis of gallbladder cancer. J Dig Dis 2021; 22:62-71. [PMID: 33369216 DOI: 10.1111/1751-2980.12966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
Abstract
Gallbladder cancer (GBC) is the most common form of biliary tract malignancy with a dismal prognosis. A poor outcome in patients with GBC is related to the aggressive nature of the tumor, delayed diagnosis, and a lack of reliable biomarkers and effective treatment. Therefore, early diagnosis and accurate disease assessment are crucial to prolonging the patient survival. Identification of novel prognostic and diagnostic biomarkers may help improve the early diagnostic rate and develop specific targeted treatments for patients with GBC. We herein review the novel biomarkers that may be associated with the diagnosis and prognosis in GBC and their potential clinical significance in the management of GBC.
Collapse
Affiliation(s)
- Hong Ze Lin
- Nanshan School, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tao Zhang
- Nanshan School, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ming Yu Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ji Liang Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Wu ZL, Deng YJ, Zhang GZ, Ren EH, Yuan WH, Xie QQ. Development of a novel immune-related genes prognostic signature for osteosarcoma. Sci Rep 2020; 10:18402. [PMID: 33110201 PMCID: PMC7591524 DOI: 10.1038/s41598-020-75573-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Immune-related genes (IRGs) are responsible for osteosarcoma (OS) initiation and development. We aimed to develop an optimal IRGs-based signature to assess of OS prognosis. Sample gene expression profiles and clinical information were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Genotype-Tissue Expression (GTEx) databases. IRGs were obtained from the ImmPort database. R software was used to screen differentially expressed IRGs (DEIRGs) and functional correlation analysis. DEIRGs were analyzed by univariate Cox regression and iterative LASSO Cox regression analysis to develop an optimal prognostic signature, and the signature was further verified by independent cohort (GSE39055) and clinical correlation analysis. The analyses yielded 604 DEIRGs and 10 hub IRGs. A prognostic signature consisting of 13 IRGs was constructed, which strikingly correlated with OS overall survival and distant metastasis (p < 0.05, p < 0.01), and clinical subgroup showed that the signature's prognostic ability was independent of clinicopathological factors. Univariate and multivariate Cox regression analyses also supported its prognostic value. In conclusion, we developed an IRGs signature that is a prognostic indicator in OS patients, and the signature might serve as potential prognostic indicator to identify outcome of OS and facilitate personalized management of the high-risk patients.
Collapse
Affiliation(s)
- Zuo-Long Wu
- Guanghe Traditional Chinese and Western Medicine Hospital, Lanzhou, 730000, Gansu, China
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ya-Jun Deng
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Guang-Zhi Zhang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - En-Hui Ren
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No.29 Tongren Road, Xining, 810000, Qinghai, China
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wen-Hua Yuan
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qi-Qi Xie
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No.29 Tongren Road, Xining, 810000, Qinghai, China.
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
6
|
Liu C, Yi X. miR-541 serves as a prognostic biomarker of osteosarcoma and its regulatory effect on tumor cell proliferation, migration and invasion by targeting TGIF2. Diagn Pathol 2020; 15:96. [PMID: 32709240 PMCID: PMC7379795 DOI: 10.1186/s13000-020-01008-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background Several studies reported the dysregulation of miR-541 in the progression of some human malignancies. Osteosarcoma (OS) is one of the most common primary malignant bone tumors. This study aimed to assess the expression and clinical significance of miR-541 in OS patients and explore the biological function of miR-541 in tumor progression. Methods Expression of miR-541 was detected by quantitative real-time PCR, and its prognostic value was evaluated using Kaplan-Meier survival analysis. The biological function of miR-541 was examined by analyzing its effects on OS cell proliferation, migration and invasion. Additionally, the underlying potential target of miR-541 was predicated and analyzed. Results The expression of miR-541 was significantly decreased in OS tissues and cell lines. The deregulated expression of miR-541 in tumor tissues was associated with the overall survival of OS patients and was a potential independent prognostic indicator. In OS cells, the overexpression of miR-541 could inhibit cell proliferation, migration and invasion. The luciferase activity results indicated that TGIF2 was a potential target of miR-541. Conclusion The results of this study revealed that the decreased miR-541 expression in OS patients may serve as a prognostic biomarker, and that the overexpression of miR-541 in OS cells results in inhibited cell proliferation, migration and invasion, indicating the potential of miR-541 as a therapeutic target in OS treatment.
Collapse
Affiliation(s)
- Chunlei Liu
- Department of Spinal Surgery, Weifang People's Hospital, No. 151 Guangwen Street, Weifang, 261000, Shandong, China
| | - Xiuling Yi
- Department of Spinal Surgery, Weifang People's Hospital, No. 151 Guangwen Street, Weifang, 261000, Shandong, China.
| |
Collapse
|
7
|
Gentilini F, Capitani O, Tinto D, Rigillo A, Sabattini S, Bettini G, Turba Maria E. Assessment of PDGFRβ promoter methylation in canine osteosarcoma using methylation-sensitive high-resolution melting analysis. Vet Comp Oncol 2020; 18:484-493. [PMID: 31950560 DOI: 10.1111/vco.12567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factor signalling pathways play a fundamental role in inducing and sustaining the proliferative and prosurvival stimuli in canine osteosarcomas (cOSAs). The increased expression of platelet-derived growth factor receptors (PDGFRs) α and β, and their cognate ligands, were almost invariably observed in cOSAs and OSA-derived cell lines. In particular, overexpression of PDGFRβ-mediated signalling pathways was found in both the tumour microenvironment, where it drives stromal cell recruitment, and in neoangiogenesis, such as in tumour cells where it triggers aberrant proliferation, migration and local invasion. The majority of the pathological consequences of PDGFRβ signalling are because of aberrant expression. In fact, epigenetic dysregulation of oncogenes throughout demethylation of their promoter has emerged as a pivotal mechanism driving oncogenesis. The aim of this study was to assess the methylation status of the PDGFRβ promoter and to clarify its role in modulating the expression of the tyrosine kinase receptor in canine osteosarcoma. The CpG island of the PDGFRβ promoter was identified using a mixed in silico and experimental approach, and a method based upon the methylation-sensitive high-resolution melting assay for quantitatively and precisely assessing the methylation status of the promoter was then set up. The method herein described was then exploited to assess the methylation status of the promoter in a case series of cOSAa. COSAs consistently but variably expressed PDGFRβ. However, the promoter was almost completely demethylated, and its methylation status did not correlate with the expression levels. This finding supported the hypothesis that post-transcriptional regulatory mechanisms may act in cOSAs.
Collapse
Affiliation(s)
- Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Ombretta Capitani
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Debora Tinto
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Antonella Rigillo
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences, University of Bologna, BO, Italy
| | | |
Collapse
|
8
|
Song Z, Pearce MC, Jiang Y, Yang L, Goodall C, Miranda CL, Milovancev M, Bracha S, Kolluri SK, Maier CS. Delineation of hypoxia-induced proteome shifts in osteosarcoma cells with different metastatic propensities. Sci Rep 2020; 10:727. [PMID: 31959767 PMCID: PMC6971036 DOI: 10.1038/s41598-019-56878-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone cancer in children and young adults. Solid tumors are characterized by intratumoral hypoxia, and hypoxic cells are associated with the transformation to aggressive phenotype and metastasis. The proteome needed to support an aggressive osteosarcoma cell phenotype remains largely undefined. To link metastatic propensity to a hypoxia-induced proteotype, we compared the protein profiles of two isogenic canine OS cell lines, POS (low metastatic) and HMPOS (highly metastatic), under normoxia and hypoxia. Label-free shotgun proteomics was applied to comprehensively characterize the hypoxia-responsive proteome profiles in the OS cell phenotypes. Hypothesis-driven parallel reaction monitoring was used to validate the differential proteins observed in the shotgun data and to monitor proteins of which we expected to exhibit hypoxia responsiveness, but which were absent in the label-free shotgun data. We established a "distance" score (|zHMPOS - zPOS|), and "sensitivity" score (|zHypoxia - zNormoxia) to quantitatively evaluate the proteome shifts exhibited by OS cells in response to hypoxia. Evaluation of the sensitivity scores for the proteome shifts observed and principal component analysis of the hypoxia-responsive proteins indicated that both cell types acquire a proteome that supports a Warburg phenotype with enhanced cell migration and proliferation characteristics. Cell migration and glucose uptake assays combined with protein function inhibitor studies provided further support that hypoxia-driven adaption of pathways associated with glycolytic metabolism, collagen biosynthesis and remodeling, redox regulation and immunomodulatory proteins typify a proteotype associated with an aggressive cancer cell phenotype. Our findings further suggest that proteins involved in collagen remodeling and immune editing may warrant further evaluation as potential targets for anti-metastatic treatment strategies in osteosarcoma.
Collapse
Affiliation(s)
- Zifeng Song
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Martin C Pearce
- Department of Environmental & Molecular Toxicology, Oregon State University, Oregon, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Oregon, USA
| | - Liping Yang
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Cheri Goodall
- College of Veterinary Medicine, Oregon State University, Oregon, USA
| | | | - Milan Milovancev
- College of Veterinary Medicine, Oregon State University, Oregon, USA
| | - Shay Bracha
- College of Veterinary Medicine, Oregon State University, Oregon, USA
| | - Siva K Kolluri
- Department of Environmental & Molecular Toxicology, Oregon State University, Oregon, USA
- Linus Pauling Institute, Oregon State University, Oregon, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Oregon, USA.
- Linus Pauling Institute, Oregon State University, Oregon, USA.
| |
Collapse
|
9
|
Inhibiting the expression of anti-apoptotic genes BCL2L1 and MCL1, and apoptosis induction in glioblastoma cells by microRNA-342. Biomed Pharmacother 2020; 121:109641. [DOI: 10.1016/j.biopha.2019.109641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 12/27/2022] Open
|
10
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
11
|
Sun R, Muheremu A, Hu Y. miRNA-30c can be used as a target in the diagnosis and treatment of osteosarcoma. Onco Targets Ther 2018; 11:9091-9099. [PMID: 30588021 PMCID: PMC6299467 DOI: 10.2147/ott.s181177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective Osteosarcoma is a highly malignant osseous sarcoma with poor prognosis. Previous studies indicated that miRNA-30c may play an important role in the development of osteosarcoma, but its mechanism is not yet clear. The current research was carried out to explore the potential applications of miR-30c in the diagnosis and treatment of osteosarcoma. Materials and methods Real-time PCR and in situ hybridization were used to test the correlation between miR-30c and the onset of osteosarcoma. In vitro transfection of miR-30 mimic was used to test the effect of miR-30c on the development of osteosarcoma. Cell Counting Kit-8, formation of Petri dish clones, in vivo formation of tumor, flow cytometry tests and Transwell analysis were used to assess the effect of miR-330c on the metastatic potential and invasiveness of osteosarcoma. Results Reverse transcriptase-PCR analysis and in situ hybridization tests revealed that the expression of miR-30c was lower in the osteosarcoma tissue than in normal bone tissue (P<0.05). Low expression of miR-30c was associated with advanced osteosarcoma staging and low cellular differentiation. Multivariate analysis revealed that lower expression of miR-30c was associated with shorter survival of patients (P<0.01). U2OS cell growth was significantly inhibited when transfected with miR-30c mimic. Flow cytometry analysis revealed that overexpression of miR-30c could induce apoptosis of osteosarcoma cells. In vitro Petri dish cloning experiment showed that overexpression of miR-30c reduced the cloning ratio of U2OS cells from 21% to 7%. At the same time, overexpression of miR-30c inhibited the formation of sarcoma in nude mice. Transwell experiments indicated that overexpression of miR-30c could reduce the invasiveness of U2OS cells. Conclusion Low expression of miR-30c was associated with high probability of onset and aggressiveness of osteosarcoma and shorter patient survival. Upregulation of miR-30c could downregulate the invasiveness of osteosarcoma. Therefore, miR-30 can be used in the development of future diagnostic and therapeutic techniques.
Collapse
Affiliation(s)
- Rongxin Sun
- Department of Orthopedics, Xiangya Hospital, CentralSouth University, Kaifu District, Changsha, Hunan 86410008, China, .,Department of Orthopedics, Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Urumqi, Xinjiang 86830001, China
| | - Aikeremujiang Muheremu
- Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Urumqi, Xinjiang 86830001, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, CentralSouth University, Kaifu District, Changsha, Hunan 86410008, China,
| |
Collapse
|
12
|
Liu X, Zhou X, Xu H, He Z, Shi X, Wu S. SLC34A2 Regulates the Proliferation, Migration, and Invasion of Human Osteosarcoma Cells Through PTEN/PI3K/AKT Signaling. DNA Cell Biol 2017; 36:775-780. [PMID: 28777670 DOI: 10.1089/dna.2017.3750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a bone malignancy with high incidence. The underlying molecular mechanisms that are associated with the development of OS need further investigation. In this study, we showed that SLC34A2, a member of the solute carrier gene family, was significantly downregulated in OS patients and cell lines. Overexpression of SLC34A2 inhibited the proliferation, migration, and invasion of OS cells. Mechanistically, we found that SLC34A2 interacted with PTEN, and inactivated the PI3K/AKT signaling pathway. Collectively, our results demonstrated that SLC34A2 plays important roles in regulating the cancer cell growth of OS. The downregulation of SLC34A2 in OS patients suggested that it might be a promising target in the diagnosis and therapy of OS.
Collapse
Affiliation(s)
- Xiaozhou Liu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Xing Zhou
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Haidong Xu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Zhiwei He
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Xin Shi
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Sujia Wu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| |
Collapse
|
13
|
Cheng D, Qiu X, Zhuang M, Zhu C, Zou H, Liu Z. MicroRNAs with prognostic significance in osteosarcoma: a systemic review and meta-analysis. Oncotarget 2017; 8:81062-81074. [PMID: 29113367 PMCID: PMC5655262 DOI: 10.18632/oncotarget.19009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Introduction This study aimed to elucidate the prognostic value of microRNAs (miRNAs) in patients with osteosarcoma. Materials and Methods Studies were recruited by searching PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure, and Wanfang data-bases (final search update conducted January 2017). Eligible studies were identified and the quality was assessed using multiple search strategies. Results A total of 55 articles that investigated the correlation between miRNA expression and either patient survival or disease recurrence in osteosarcoma was initially identified. Among these, 30 studies were included in the meta-analysis. The results of our meta-analysis revealed that elevated levels of miR-21, miR-214, miR-29, miR-9 and miR-148a were associated with poor prognosis in osteosarcoma. Additionally, downregulated miR-382, miR26a, miR-126, miR-195 and miR-124 expression indicated poor prognosis in osteosarcoma. Conclusions miRNAs may act as independent prognostic factors in patients with osteosarcoma and are useful in stratifying risk.
Collapse
Affiliation(s)
- Dong Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Xubin Qiu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Ming Zhuang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Chenlei Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Hongjun Zou
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Zhiwei Liu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| |
Collapse
|
14
|
Hill KE, Kelly AD, Kuijjer ML, Barry W, Rattani A, Garbutt CC, Kissick H, Janeway K, Perez-Atayde A, Goldsmith J, Gebhardt MC, Arredouani MS, Cote G, Hornicek F, Choy E, Duan Z, Quackenbush J, Haibe-Kains B, Spentzos D. An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets. J Hematol Oncol 2017; 10:107. [PMID: 28506242 PMCID: PMC5433149 DOI: 10.1186/s13045-017-0465-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Background A microRNA (miRNA) collection on the imprinted 14q32 MEG3 region has been associated with outcome in osteosarcoma. We assessed the clinical utility of this miRNA set and their association with methylation status. Methods We integrated coding and non-coding RNA data from three independent annotated clinical osteosarcoma cohorts (n = 65, n = 27, and n = 25) and miRNA and methylation data from one in vitro (19 cell lines) and one clinical (NCI Therapeutically Applicable Research to Generate Effective Treatments (TARGET) osteosarcoma dataset, n = 80) dataset. We used time-dependent receiver operating characteristic (tdROC) analysis to evaluate the clinical value of candidate miRNA profiles and machine learning approaches to compare the coding and non-coding transcriptional programs of high- and low-risk osteosarcoma tumors and high- versus low-aggressiveness cell lines. In the cell line and TARGET datasets, we also studied the methylation patterns of the MEG3 imprinting control region on 14q32 and their association with miRNA expression and tumor aggressiveness. Results In the tdROC analysis, miRNA sets on 14q32 showed strong discriminatory power for recurrence and survival in the three clinical datasets. High- or low-risk tumor classification was robust to using different microRNA sets or classification methods. Machine learning approaches showed that genome-wide miRNA profiles and miRNA regulatory networks were quite different between the two outcome groups and mRNA profiles categorized the samples in a manner concordant with the miRNAs, suggesting potential molecular subtypes. Further, miRNA expression patterns were reproducible in comparing high-aggressiveness versus low-aggressiveness cell lines. Methylation patterns in the MEG3 differentially methylated region (DMR) also distinguished high-aggressiveness from low-aggressiveness cell lines and were associated with expression of several 14q32 miRNAs in both the cell lines and the large TARGET clinical dataset. Within the limits of available CpG array coverage, we observed a potential methylation-sensitive regulation of the non-coding RNA cluster by CTCF, a known enhancer-blocking factor. Conclusions Loss of imprinting/methylation changes in the 14q32 non-coding region defines reproducible previously unrecognized osteosarcoma subtypes with distinct transcriptional programs and biologic and clinical behavior. Future studies will define the precise relationship between 14q32 imprinting, non-coding RNA expression, genomic enhancer binding, and tumor aggressiveness, with possible therapeutic implications for both early- and advanced-stage patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0465-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine E Hill
- Hematology-Oncology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrew D Kelly
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Marieke L Kuijjer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William Barry
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ahmed Rattani
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA, USA
| | - Cassandra C Garbutt
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Haydn Kissick
- Department of Urology, Medical School, Emory University, Atlanta, GA, USA
| | - Katherine Janeway
- Department of Pediatric Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonio Perez-Atayde
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Goldsmith
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark C Gebhardt
- Orthopedics, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohamed S Arredouani
- Surgery, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Greg Cote
- Cancer Center, Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francis Hornicek
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin Choy
- Cancer Center, Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Computer Science, University of Toronto, Toronto, Canada.,Ontario Institute of Cancer Research, Toronto, Canada
| | - Dimitrios Spentzos
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Hematology-Oncology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
miR-454 functions as an oncogene by inhibiting CHD5 in hepatocellular carcinoma. Oncotarget 2016; 6:39225-34. [PMID: 26287602 PMCID: PMC4770768 DOI: 10.18632/oncotarget.4407] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/17/2015] [Indexed: 01/04/2023] Open
Abstract
Previous studies showed that miR-454 acted as an oncogene or tumor suppressor in cancer. However, its function in HCC remains unknown. In this study, we found that miR-454 expression was upregulated in HCC cell lines and tissues. Knockdown of miR-454 inhibited HCC cell proliferation and invasion and epithelial mesenchymal transition (EMT), whereas overexpression of miR-454 promoted HCC cell proliferation and invasion and EMT. Furthermore, we identified the CHD5 as a direct target of miR-454. CHD5 was downregulated in HCC tissues and cell lines and the expression level of CHD5 was inversely correlated with the expression of miR-454 in HCC tissues. In addition, knockdown of miR-454 inhibited the growth of HepG2-engrafted tumors in vivo. Taken together, these results indicated that miR-454 functioned as an oncogene in HCC.
Collapse
|
16
|
miR-125b and miR-100 Are Predictive Biomarkers of Response to Induction Chemotherapy in Osteosarcoma. Sarcoma 2016; 2016:1390571. [PMID: 27990096 PMCID: PMC5136640 DOI: 10.1155/2016/1390571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignancy in bone. Patients who respond poorly to induction chemotherapy are at higher risk of adverse prognosis. The molecular basis for such poor prognosis remains unclear. We investigated miRNA expression in eight open biopsy samples to identify miRNAs predictive of response to induction chemotherapy and thus maybe used for risk stratification therapy. The samples were obtained from four patients with inferior necrosis (Huvos I/II) and four patients with superior necrosis (Huvos III/IV) following induction chemotherapy. We found six miRNAs, including miR-125b and miR-100, that were differentially expressed > 2-fold (p < 0.05) in patients who respond poorly to treatment. The association between poor prognosis and the abundance of miR-125b and miR-100 was confirmed by quantitative reverse transcriptase-polymerase chain reaction in 20 additional osteosarcoma patients. Accordingly, overexpression of miR-125b and miR-100 in three osteosarcoma cell lines enhanced cell proliferation, invasiveness, and resistance to chemotherapeutic drugs such as methotrexate, doxorubicin, and cisplatin. In addition, overexpression of miR-125b blocked the ability of these chemotherapy agents to induce apoptosis. As open biopsy is routinely performed to diagnose osteosarcoma, levels of miR-125b and miR-100 in these samples may be used as basis for risk stratification therapy.
Collapse
|
17
|
Heyns M, Kovalchuk O. Non-coding RNAs including miRNAs, piRNAs, and tRNAs in human cancer. Oncotarget 2016; 6:23055-7. [PMID: 26405161 PMCID: PMC4695107 DOI: 10.18632/oncotarget.5048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/17/2015] [Indexed: 12/18/2022] Open
Abstract
Over 98% of our genes code for RNA transcripts that will never become translated into protein. Numerous non-coding RNA (ncRNA) transcripts are structurally and functionally diverse. In particular, micro RNAs (miRNAs), piwi-interacting RNAs (piRNAs), and, more recently, transfer RNAs (tRNAs) are implicated as regulators of key genes and processes that are involved in various human diseases, including cancer. Here, we summarize the recent findings and perspectives in the small RNA and cancer research.
Collapse
Affiliation(s)
- Mieke Heyns
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
18
|
Liu J, Wu J, Zhou L, Pan C, Zhou Y, Du W, Chen JM, Zhu X, Shen J, Chen S, Liu RY, Huang W. ZD6474, a new treatment strategy for human osteosarcoma, and its potential synergistic effect with celecoxib. Oncotarget 2016; 6:21341-52. [PMID: 26050198 PMCID: PMC4673269 DOI: 10.18632/oncotarget.4179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/12/2015] [Indexed: 12/23/2022] Open
Abstract
ZD6474, a small molecule VEGFR and EGFR tyrosine kinase inhibitor, has been considered as a promising tumor-targeted drug in various malignancies. EGFR and cyclooxygenase-2 (COX-2) were found overexpressed in osteosarcoma in previous reports, so here we tried to explore the anti-osteosarcoma effect of ZD6474 alone or combination with celecoxib, a COX-2 inhibitor. The data demonstrated that ZD6474 inhibited the growth of osteosarcoma cells, and promoted G1-phase cell cycle arrest and apoptosis by inhibiting the activity of EGFR tyrosine kinase, and consequently suppressing its downstream PI3k/Akt and MAPK/ERK pathway. Additionally, daily administration of ZD6474 produced a dose-dependent inhibition of tumor growth in nude mice. Celecoxib also significantly inhibited the growth of osteosarcoma cells in dose-dependent manner, while combination of ZD6474 and celecoxib displayed a synergistic or additive antitumor effect on osteosarcoma in vitro and in vivo. The possible molecular mechanisms to address the synergism are likely that ZD6474 induces the down-regulation of COX-2 expression through inhibiting ERK phosphorylation, while celecoxib promotes ZD6474-directed inhibition of ERK phosphorylation. In conclusion, ZD6474 exerts direct anti-proliferative effects on osteosarcoma cells, and the synergistic antitumor effect of the combination of ZD6474 with celecoxib may indicate a new strategy of the combinative treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Jiani Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Oncology, Jingzhou Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jingzhou, Hubei, China
| | - Jiangxue Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ling Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changchuan Pan
- Medical Oncology, Sichuan Cancer Hospital and Institute, Second People's Hospital of Sichuan Province, Chengdu, China
| | - Yi Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wuying Du
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jie-Min Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaofeng Zhu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jingnan Shen
- Musculoskeletal Oncology Department, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuai Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ran-Yi Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Tumor Targeted Drugs and Guangzhou Enterprise Key Laboratory of Gene Medicine, Guangzhou Doublle Bioproducts Co. Ltd., Guangzhou, China
| |
Collapse
|
19
|
Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 2016; 6:8474-90. [PMID: 25893379 PMCID: PMC4496162 DOI: 10.18632/oncotarget.3523] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous 22 nt non-coding RNAs that target mRNAs for cleavage or translational repression. Numerous miRNAs regulate programmed cell death including apoptosis, autophagy and necroptosis. We summarize how miRNAs regulate apoptotic, autophagic and necroptotic pathways and cancer progression. We also discuss how miRNAs link different types of cell death.
Collapse
Affiliation(s)
- Zhenyi Su
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China.,Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650118, China
| | - Yongqing Xu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650118, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
20
|
Li YS, Deng ZH, Zeng C, Lei GH. JNK pathway in osteosarcoma: pathogenesis and therapeutics. J Recept Signal Transduct Res 2015; 36:465-70. [PMID: 26669256 DOI: 10.3109/10799893.2015.1122045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The c-Jun NH2-terminal kinase (JNK) is a member of the mitogen-activated protein kinase super family. JNK can phosphorylate a number of activator protein-1 components, activating several transcription factors, and thus, JNK signaling pathway is being involved in several carcinogenic mechanisms. OBJECTIVE In this study, we have reviewed the recent updates of the association of JNK pathway with osteosarcoma (OS), which is one of the most common and aggressive bone malignancies. METHODS In this review, we have explored the databases like PubMed, Google Scholar, MEDLINE, etc., and collected the most relevant papers of JNK signaling pathway involved in the pathogenesis and therapeutics of OS. RESULTS Evidence showed that JNK is a master protein kinase that plays an important role in osteoblast proliferation, differentiation and apoptosis. Interesting reports showed that chemical JNK inhibitors reduce OS cell proliferation and metastasis. Many of the components of this pathway have now been identified and the application of JNK inhibitors has been proven to work in vivo in human and in animal models; however, JNK pathway has not been translated into clinical use. CONCLUSION Therapeutic interventions of potent and selective inhibitors of JNK might provide promising therapeutic approaches for the treatment of OS, and could improve the survival rate and quality of life of OS patients.
Collapse
Affiliation(s)
- Yu-Sheng Li
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| | - Zhen-Han Deng
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| | - Chao Zeng
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| | - Guang-Hua Lei
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| |
Collapse
|
21
|
Yu X, Li Z. The role of microRNAs expression in laryngeal cancer. Oncotarget 2015; 6:23297-305. [PMID: 26079642 PMCID: PMC4695119 DOI: 10.18632/oncotarget.4195] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs, miRs) is a class of small non-coding RNAs, which posttranscriptionally regulate gene expression. Deregulated miRs are frequently obseved in patients with laryngeal cancer. In addition, numerous studies have showed miRs play significant roles in the pathogenesis of laryngeal cancer through regulating tumor cell proliferation, metastasis, invasion and apoptosis. miR can play either an oncogenic or tumor suppressive role in laryngeal cancer. In our review, we summarize the recent researches on laryngeal cancer-associated miRs, focusing on their role in the pathogenesis of laryngeal cancer. As changes in the levels of specific miRs in tissues or serum associate with diagnosis and prognosis of patients, we will also discuss the potential use of miRs in laryngeal cancer diagnosis and prognosis. Furthermore, supplementation of oncomiRs or inhibition of tumor suppressive miRs in vivo may be future therapeutic strategy for laryngeal cancer.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
MicroRNA-23a enhances migration and invasion through PTEN in osteosarcoma. Cancer Gene Ther 2015; 22:351-9. [PMID: 26160225 DOI: 10.1038/cgt.2015.27] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/07/2015] [Accepted: 04/11/2015] [Indexed: 02/06/2023]
Abstract
To investigate the biological significance of abundant microRNA-23a (miR-23a) expression in osteosarcoma and its correlation with PTEN in the pathogenesis of osteosarcoma migration and invasion. The human osteosarcoma cell lines MG63, HOS58 and SaoS-2, and the human normal osteoblasts (hFOB1.19) were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum. Gene and protein levels of miR-23a and PTEN were examined to determine the molecular relationship between them in the pathogenesis of osteosarcoma. Inhibition of miR-23a effectively reduced migration and invasion of osteosarcoma cell lines. Bioinformatics and luciferase-reporter assay revealed that miR-23a specifically targeted the 3'-untranslational region of PTEN and regulated its expression. Downregulation of PTEN enhanced migration and invasion of osteosarcoma cell lines. Furthermore, in tumor tissues obtained from osteosarcoma patients, the expression of miR-23a was negatively correlated with PTEN and the high expression of miR-23a combined with low expression of PTEN might serve as a risk factor for cancer patients. Besides, miR-23a-mediated suppression of PTEN led to activation of AKT/ERK pathways and epithelial-mesenchymal transition (EMT) in osteosarcoma cells, and finally enhanced the activity of osteosarcoma cell proliferation and movement and promoted osteosarcoma xenograft tumor growth in mouse models. Our study showed that miR-23a, by downregulation of PTEN, enhanced migration and invasion in osteosarcoma cells.
Collapse
|
23
|
Li Z, Yu X, Shen J, Law PT, Chan MT, Wu WK. MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget 2015; 6:13914-21. [PMID: 26040010 PMCID: PMC4546440 DOI: 10.18632/oncotarget.4227] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 01/17/2023] Open
Abstract
Gallbladder cancer is the most common biliary tract malignancy with poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous, non-coding RNAs of 19-23 nucleotides in length, which regulate gene expression at post-transcriptional and translational levels. Several studies have demonstrated aberrant expression of miRNAs in gallbladder cancer tissues. Recent evidences also demonstrated that specific miRNAs are functionally involved in gallbladder cancer development through modulating cell proliferation, apoptosis, migration, invasion and metastasis. In this review, we explore the possibilities of using miRNAs as prognostic, diagnostic markers and therapeutic targets in gallbladder cancer.
Collapse
Affiliation(s)
- Zheng Li
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Yu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Priscilla T.Y. Law
- 2 Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T.V. Chan
- 3 Department of Anaesthesia and Intensive Care and State-Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William K.K. Wu
- 3 Department of Anaesthesia and Intensive Care and State-Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Song R, Tian K, Wang W, Wang L. P53 suppresses cell proliferation, metastasis, and angiogenesis of osteosarcoma through inhibition of the PI3K/AKT/mTOR pathway. Int J Surg 2015; 20:80-7. [PMID: 25936826 DOI: 10.1016/j.ijsu.2015.04.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the role of P53 in the pathogenesis of osteosarcoma and the possible mechanism involved in it. METHODS The anti-proliferative effect of P53 was assessed using the cell counting Kit-8 assay. The migration and invasion potential were analyzed using wound-healing and transwell assays, respectively. The Matrigel capillary tube formation assay was performed to mimic in-vivo angiogenesis. Immunoblotting and immunofluorescence were used to observe protein levels and distribution of actin fibers. Finally, S2448p-mammalian target of rapamycin (mTOR) expression was detected on osteosarcoma tissues using immunohistochemistry. RESULTS Firstly, P53 potently inhibited cell proliferation in osteosarcoma cell line (MG63) and in human normal osteoblasts (hFOB1.19) in vitro at the IC50 ranged from 50 to 500 nmol/l. Then, an inhibitory effect of P53 on metastasis was observed in osteosarcoma cell line MG63, along with the cytoskeletal rearrangements and suppression of the phosphorylation of PI3K downstream factors including AKT and mTOR. CONCLUSION These results show that P53 suppresses cell proliferation and angiogenesis of osteosarcoma through inhibition of the PI3K/AKT/mTOR pathway, which might be an effective novel therapeutic candidate against osteosarcoma in the future.
Collapse
Affiliation(s)
- Ruipeng Song
- Bone Department, The First Affiliated Hospital of Zhengzhou University, China.
| | - Ke Tian
- Bone Department, The First Affiliated Hospital of Zhengzhou University, China.
| | - Weidong Wang
- Bone Department, The First Affiliated Hospital of Zhengzhou University, China.
| | - Limin Wang
- Bone Department, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|