1
|
Wang X, Wang X, Xu M, Sheng W. Effects of CAF-Derived MicroRNA on Tumor Biology and Clinical Applications. Cancers (Basel) 2021; 13:cancers13133160. [PMID: 34202583 PMCID: PMC8268754 DOI: 10.3390/cancers13133160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), prominent cell components of the tumor microenvironment (TME) in most types of solid tumor, play an essential role in tumor cell growth, proliferation, invasion, migration, and chemoresistance. MicroRNAs (miRNAs) are small, non-coding, single-strand RNAs that negatively regulate gene expression by post-transcription modification. Increasing evidence has suggested the dysregulation of miRNAs in CAFs, which facilitates the conversion of normal fibroblasts (NFs) into CAFs, then enhances the tumor-promoting capacity of CAFs. To understand the process of tumor progression, as well as the development of chemoresistance, it is important to explore the regulatory function of CAF-derived miRNAs and the associated molecular mechanisms, which may become potential diagnostic and prognostic biomarkers and targets of anti-tumor therapeutics. In this review, we describe miRNAs that are differentially expressed by NFs and CAFs, summarize the modulating role of CAF-derived miRNAs in fibroblast activation and tumor advance, and eventually identify a potential clinical application for CAF-derived miRNAs as diagnostic/prognostic biomarkers and therapeutic targets in several tumors.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 200032, China; (X.W.); (X.W.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 200032, China; (X.W.); (X.W.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 200032, China; (X.W.); (X.W.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: (M.X.); (W.S.); Tel.: +86-21-64175590 (M.X. & W.S.); Fax: +86-21-64174774 (M.X. & W.S.)
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 200032, China; (X.W.); (X.W.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: (M.X.); (W.S.); Tel.: +86-21-64175590 (M.X. & W.S.); Fax: +86-21-64174774 (M.X. & W.S.)
| |
Collapse
|
2
|
Paciorek P, Żuberek M, Grzelak A. Rola miRNA w rozwoju wybranych nowotworów – potencjalne zastosowanie w diagnostyce*. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
MikroRNA (miRNA) są małymi cząsteczkami kwasu rybonukleinowego, które mimo że nie podlegają procesowi translacji, pełnią ważną funkcję regulacyjną w komórkach eukariotycznych. Ich fizjologiczną funkcją jest utrzymywanie homeostazy komórek. Zaburzona ekspresja miRNA może spowodować rozwój wielu chorób, w tym chorób nowotworowych. Działanie miRNA polega na hamowaniu tworzenia się białek, w tym białek o właściwościach onkogennych i antyonkogennych. Mutacje w miejscach kodowania miRNA mogą prowadzić do nadmiernego lub zmniejszonego wytwarzania wspomnianych białek. Odkrycie miRNA i poznanie ich roli w komórce otworzyło nowe możliwości dla diagnostyki chorób nowotworowych. Zmiany poziomu odpowiednich miRNA, w krwiobiegu lub innych płynach ustrojowych, mogą być markerem diagnostycznym chorób. Diagnostyka onkologiczna mogłaby przebiegać na podstawie badań profilu miRNA pacjenta i porównania go z opracowanymi wcześniej profilami zmian miRNA powiązanymi z występowaniem danego rodzaju choroby nowotworowej. Informacja o zmianach profilu miRNA podstawowych w regulacji ekspresji genów związanych z procesami nowotworzenia, mogłaby się przyczynić do opracowania terapii eksperymentalnych opartych na przywróceniu pierwotnego poziomu miRNA w komórkach, a tym samym, na przywróceniu prawidłowej regulacji ekspresji genów. Coraz nowsze metody wyciszania i włączania ekspresji miRNA mogą w przyszłości zaowocować skutecznymi rozwiązaniami terapeutycznymi.
Collapse
Affiliation(s)
- Patrycja Paciorek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Mariusz Żuberek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Agnieszka Grzelak
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| |
Collapse
|
3
|
Fang Z, Xu J, Zhang B, Wang W, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. The promising role of noncoding RNAs in cancer-associated fibroblasts: an overview of current status and future perspectives. J Hematol Oncol 2020; 13:154. [PMID: 33213510 PMCID: PMC7678062 DOI: 10.1186/s13045-020-00988-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
As the most important component of the stromal cell population in the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) are crucial players in tumor initiation and progression. The interaction between CAFs and tumor cells, as well as the resulting effect, is much greater than initially expected. Numerous studies have shown that noncoding RNAs (ncRNAs) play an irreplaceable role in this interplay, and related evidence continues to emerge and advance. Under the action of ncRNAs, normal fibroblasts are directly or indirectly activated into CAFs, and their metabolic characteristics are changed; thus, CAFs can more effectively promote tumor progression. Moreover, via ncRNAs, activated CAFs can affect the gene expression and secretory characteristics of cells, alter the TME and enhance malignant biological processes in tumor cells to contribute to tumor promotion. Previously, ncRNA dysregulation was considered the main mechanism by which ncRNAs participate in the crosstalk between CAFs and tumor cells. Recently, however, exosomes containing ncRNAs have been identified as another vital mode of interaction between these two types of cells, with a more direct and clear function. Gaining an in-depth understanding of ncRNAs in CAFs and the complex regulatory network connecting CAFs with tumor cells might help us to establish more effective and safer approaches for cancer therapies targeting ncRNAs and CAFs and offer new hope for cancer patients.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Yin J, Hu W, Xue X, Fu W, Dai L, Jiang Z, Zhong S, Deng B, Zhao J. Epigenetic activation of hepatocyte growth factor is associated with epithelial-mesenchymal transition and clinical outcome in non-small cell lung cancer. J Cancer 2019; 10:5070-5081. [PMID: 31602259 PMCID: PMC6775597 DOI: 10.7150/jca.30034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte growth factor (HGF) expression is repressed in normal differentiated lung epithelial cells, but its expression is aberrantly upregulated in non-small cell lung cancer (NSCLC) and acts as a poor prognostic factor. The underlying molecular mechanisms of aberrant HGF expression are unclear. In this study, a novel differential methylation region located in the HGF promoter was identified, which was associated with aberrant HGF expression in NSCLC. The correlations of HGF promoter methylation detected by methylation specific PCR and HGF expression detected by immunohistochemistry with clinical outcomes were assessed in NSCLC patients. DNA methylation of the HGF promoter was correlated with the activation of HGF expression, which induced epithelial-mesenchymal transition, cell migration and invasion. According to the clinical correlation analysis in 63 NSCLC patients, those with high methylation were more likely to have stages III and IV (51.6% vs. 25.0%, P<0.05) and metastasis (57.5% vs. 16.7%, P<0.05) than patients with low methylation. In addition, compared with the protein marker of HGF expression, the DNA methylation marker of the HGF promoter had higher specificity for prognostic analysis of metastases in NSCLC. Our study indicated the regulatory mechanisms related to DNA methylation of the HGF promoter for HGF expression in NSCLC epithelial cells, and suggested that the DNA methylation signature of the HGF promoter could potentially be employed as a biomarker to improve the prognostic accuracy of NSCLC.
Collapse
Affiliation(s)
- Jun Yin
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weimin Hu
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xingyang Xue
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenfan Fu
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lu Dai
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zeyong Jiang
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengpeng Zhong
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Boyun Deng
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Zhao
- Department of Chest Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Yuan L, Bing Z, Yan P, Li R, Wang C, Sun X, Yang J, Shi X, Zhang Y, Yang K. Integrative data mining and meta-analysis to investigate the prognostic role of microRNA-200 family in various human malignant neoplasms: A consideration on heterogeneity. Gene 2019; 716:144025. [DOI: 10.1016/j.gene.2019.144025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
|
6
|
Du M, Wang J, Chen H, Wang S, Chen L, Xu Y, Su F, Lu X. MicroRNA‑200a suppresses migration and invasion and enhances the radiosensitivity of NSCLC cells by inhibiting the HGF/c‑Met signaling pathway. Oncol Rep 2018; 41:1497-1508. [PMID: 30569179 PMCID: PMC6365696 DOI: 10.3892/or.2018.6925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte growth factor (HGF), an activator of the c‑Met signaling pathway, is involved in tumor invasiveness, metastasis and radiotherapy resistance. In the present study, a novel HGF regulatory pathway in lung cancer involving micro-RNAs (miRNAs/miR) is described. Immunohistochemical staining and western blot analyses demonstrated that HGF was upregulated and associated with miR‑200a downregulation in non‑small cell lung cancer (NSCLC) samples compared with normal lung tissues. The association between HGF and miR‑200a was associated with the degree of tumor malignancy and cell migration and invasion. miR‑200a negatively regulated HGF expression by targeting the 3'‑untranslated region of the HGF mRNA. miR‑200a overexpression induced HGF downregulation, decreased NSCLC cell migration and invasion, promoted apoptosis, and decreased cell survival in A549 and H1299 cells in response to ionizing radiation. The present results revealed a previously uncharacterized role of miRNA‑200a in regulating tumor malignancy and radiosensitivity by suppressing HGF expression, a key factor in the HGF/c‑Met pathway.
Collapse
Affiliation(s)
- Menghua Du
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jin Wang
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Huan Chen
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shouli Wang
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liesong Chen
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yichang Xu
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Fengtao Su
- Cancer Institute, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xueguan Lu
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
7
|
Prognostic Role of MicroRNAs in Human Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2018; 2018:8309015. [PMID: 30538784 PMCID: PMC6260404 DOI: 10.1155/2018/8309015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Abstract
Background MicroRNAs (miRNAs) have been found to play an important role in the development and outcomes for multiple human cancers. Their role as a prognostic biomarker in non-small-cell lung cancer (NSCLC) remains unclear. This meta-analysis aims to clarify the role of various miRNAs in the survival of NSCLC patients. Materials and Methods All studies were identified through medical database search engines. A meta-analysis was conducted to assess the correlation between miRNAs expressions and overall survival among those NSCLC studies. Relevant data were extracted from each eligible study regarding baseline characteristics and key statistics such as hazard ratio (HR), 95% confidence interval (CI), and P value, which were utilized to calculate a pooled effect size. Result Thirty-two studies were included in the meta-analysis. Using a random effect model, the combined HR and 95% CI for overall survival (OS) was calculated as 1.59 (1.39–1.82), predicting a poor overall survival. Five miRNAs (miR-21, miR-155, miR-let-7, miR-148a, and miR-148b) were found to be of significance for predicting OS in at least two studies, hence, selected for subgroup analysis. Subgroup analysis disclosed that elevated levels of miR-21 and miR-155 in both cancer tissue and blood samples were associated with worse OS. Compared to American studies (I-squared: <0.001% and P value: 0.94), Asian and European studies exhibited greater heterogeneity in miRNA expression and relationship to OS (I-squared, P values were approximately 78.85%, <0.001 and 61.28%, 0.006, respectively). These subgroup analyses also highlighted that elevated expression of miR-21 and miR-155 and low levels of expression of miR-148a, miR-148b, and miR-let-7 were associated with poor prognosis in NSCLC. Conclusion miR-21, miR-155, miR-148a, miR-148b, and miR-let-7 are consistently up- or downregulated in NSCLC and are associated with poor OS. These miRNAs show potential as useful prognostic biomarkers in the diagnosis, treatment, and follow-up of NSCLC.
Collapse
|
8
|
García-Vilas JA, Medina MÁ. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol 2018; 24:3695-3708. [PMID: 30197476 PMCID: PMC6127652 DOI: 10.3748/wjg.v24.i33.3695] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and is the second leading cause of cancer death. Since the diagnosis of HCC is difficult, in many cases patients with HCC are diagnosed advanced stage of development. Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition receptor (c-Met) axis is a key signaling pathway in HCC, either via canonical or non-canonical pathways. Available treatments against HCC based upon HGF/c-Met inhibition can increase patient lifespan, but do not reach the expected therapeutic benefits. In HCC, c-Met monomers can bind other receptor monomers, activating several noncanonical signaling pathways, leading to increased cell proliferation, invasion, motility, and drug resistance. All of these processes are enhanced by the tumor microenvironment, with stromal cells contributing to boost tumor progression through oxidative stress, angiogenesis, lymphangiogenesis, inflammation, and fibrosis. Novel treatments against HCC are being explored to modulate other targets such as microRNAs, methyltransferases, and acetyltransferases, which are all involved in the regulation of gene expression in cancer. This review compiles basic knowledge regarding signaling pathways in HCC, and compounds already used or showing potential to be used in clinical trials.
Collapse
Affiliation(s)
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, Málaga 29071, Spain
- Unidad 741 de CIBER “de Enfermedades Raras” (CIBERER), Málaga 29071, Spain
- Institute of Biomedical Research in Málaga, Málaga 29071, Spain
| |
Collapse
|
9
|
miRNAtools: Advanced Training Using the miRNA Web of Knowledge. Noncoding RNA 2018; 4:ncrna4010005. [PMID: 29657302 PMCID: PMC5890392 DOI: 10.3390/ncrna4010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/06/2023] Open
Abstract
Micro-RNAs (miRNAs) are small non-coding RNAs that act as negative regulators of the genomic output. Their intrinsic importance within cell biology and human disease is well known. Their mechanism of action based on the base pairing binding to their cognate targets have helped the development not only of many computer applications for the prediction of miRNA target recognition but also of specific applications for functional assessment and analysis. Learning about miRNA function requires practical training in the use of specific computer and web-based applications that are complementary to wet-lab studies. In order to guide the learning process about miRNAs, we have created miRNAtools (http://mirnatools.eu), a web repository of miRNA tools and tutorials. This article compiles tools with which miRNAs and their regulatory action can be analyzed and that function to collect and organize information dispersed on the web. The miRNAtools website contains a collection of tutorials that can be used by students and tutors engaged in advanced training courses. The tutorials engage in analyses of the functions of selected miRNAs, starting with their nomenclature and genomic localization and finishing with their involvement in specific cellular functions.
Collapse
|
10
|
Huang CY, Zhou QY, Hu Y, Wen Y, Qiu ZW, Liang MG, Mo JL, Xu JH, Sun C, Liu FB, Chen XL. Hepatocyte growth factor is a prognostic marker in patients with colorectal cancer: a meta-analysis. Oncotarget 2017; 8:23459-23469. [PMID: 28423584 PMCID: PMC5410318 DOI: 10.18632/oncotarget.15589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/12/2017] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a crucial factor associated with development, progression and metastasis of colorectal cancer (CRC). However, its prognostic value remains unclear. Thus studies referring to the correlation between HGF and CRC patients’ prognosis were included to explore the role of HGF in CRC. At last nine articles were included. The results showed that the over-expression of HGF was associated with a poor prognosis, presented through overall survival (OS, Hazard ratio (HR) = 2.50, 95% confidence interval (CI): 2.12–2.96) and disease-free survival (DFS, HR = 1.99, 95% CI: 1.59–2.50). Subgroup analysis indicated that no significant difference was found between the Asian countries (OS: HR = 2.37; DFS: HR = 2.02) and the non-Asian countries (OS: HR = 3.15; DFS: HR = 1.87), between the studies that used univariate analyses (OS: HR = 2.51; DFS: HR = 2.07) and those that used multivariate analyses (OS: HR = 2.65; DFS: HR = 1.78), and between metastatic CRC (OS: HR = 2.26; DFS: HR = 2.06) and stage I-IV CRC (OS: HR = 3.08; DFS: HR = 0.70). Our meta-analysis has shown that the over-expression of HGF is valuable in CRC prognosis evaluation. This conclusion should be further confirmed by large-sample cohort studies.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian-Yi Zhou
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Hu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhen-Wen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Man-Guang Liang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun-Ling Mo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Hua Xu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Cong Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Feng-Bin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-Lin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, Shen H. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer 2017; 16:148. [PMID: 28851377 PMCID: PMC5576273 DOI: 10.1186/s12943-017-0718-4] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
Purpose The present review aimed to assess the role of exosomal miRNAs in cancer-associated fibroblasts (CAFs), normal fibroblasts (NFs), and cancer cells. The roles of exosomal miRNAs and miRNA dysregulation in CAF formation and activation were summarized. Methods All relevant publications were retrieved from the PubMed database, with key words such as CAFs, CAF, stromal fibroblasts, cancer-associated fibroblasts, miRNA, exosomal, exosome, and similar terms. Results Recent studies have revealed that CAFs, NFs, and cancer cells can secrete exosomal miRNAs to affect each other. Dysregulation of miRNAs and exosomal miRNAs influence the formation and activation of CAFs. Furthermore, miRNA dysregulation in CAFs is considered to be associated with a secretory phenotype change, tumor invasion, tumor migration and metastasis, drug resistance, and poor prognosis. Conclusions Finding of exosomal miRNA secretion provides novel insights into communication among CAFs, NFs, and cancer cells. MicroRNA dysregulation is also involved in the whole processes of CAF formation and function. Dysregulation of miRNAs in CAFs can affect the secretory phenotype of the latter cells.
Collapse
Affiliation(s)
- Fengming Yang
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China
| | - Zhiqiang Ning
- Department of Oncology, The first People's Hospital of Wujiang district, Suzhou, 215200, China
| | - Ling Ma
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China
| | - Weitao Liu
- Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chuchu Shao
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China
| | - Yongqian Shu
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China.
| | - Hua Shen
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China.
| |
Collapse
|
12
|
Zhang J, Lv J, Zhang F, Che H, Liao Q, Huang W, Li S, Li Y. MicroRNA-211 expression is down-regulated and associated with poor prognosis in human glioma. J Neurooncol 2017; 133:553-559. [PMID: 28551850 DOI: 10.1007/s11060-017-2464-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/05/2017] [Indexed: 12/15/2022]
Abstract
Accumulating evidence has supported the role of microRNAs in the initiation and development of malignant tumors. MicroRNA-211 (miR-211), which was reported to involve in diverse physiological activities in several cancers, was investigated for its expression in human glioma and adjacent normal brain tissues, as well as its correlation with patient prognosis. Glioma tissues and adjacent normal brain tissues were obtained from 82 patients who underwent surgical resection, and quantitative real-time polymerase chain reaction was performed to assess the expression level of miR-211. Here, we found that miR-211 was significantly decreased in glioma tissues compared with adjacent normal brain tissues (glioma, 3.52 ± 0.14 vs. normal, 4.96 ± 0.17, p < 0.001), and inversely associated with ascending WHO classification (grade III-IV, 3.16 ± 0.21 vs. grade I-II, 4.22 ± 0.26, p < 0.001). Then, the correlation of miR-211 with clinicopathological factors was investigated by Pearson's Chi square test, indicating that miR-211 might be a potential biomarker to predict the malignant status of glioma. Further, Kaplan-Meier curves with log-rank analysis were carried out to determine the relationship between miR-211 expression level and the overall survival rate of glioma patients. Our data showed that there was a close correlation between down-regulated miR-211 and shorter survival time in 82 patients (p = 0.026). Finally, the multivariate Cox regression analysis indicated that WHO grade (HR = 2.437, 95% CI 1.251-4.966, p = 0.007), KPS (HR = 2.215, 95% CI 1.168-4.259, p = 0.016), and miR-211 expression level (HR = 3.614, 95% CI 2.152-6.748, p < 0.001) were considered as independent risk factors for glioma prognosis. These results suggested that lower miR-211 expression might be a marker for poor prognosis of glioma patients.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurosurgery, Dalang Hospital, Dongguan, 523770, Guangdong, China
| | - Jianguang Lv
- Department of Neurosurgery, Dalang Hospital, Dongguan, 523770, Guangdong, China
| | - Feng Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511447, Guangdong, China
| | - Hongmin Che
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, Shaanxi, China
| | - Qiwei Liao
- Department of Neurosurgery, Dalang Hospital, Dongguan, 523770, Guangdong, China
| | - Wobin Huang
- Department of Neurosurgery, Dalang Hospital, Dongguan, 523770, Guangdong, China
| | - Shaopeng Li
- Department of Neurosurgery, People's Hospital, Dongguan, 523770, Guangdong, China.
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
13
|
Marks DL, Olson RL, Fernandez-Zapico ME. Epigenetic control of the tumor microenvironment. Epigenomics 2016; 8:1671-1687. [PMID: 27700179 DOI: 10.2217/epi-2016-0110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stromal cells of the tumor microenvironment have been shown to play important roles in both supporting and limiting cancer growth. The altered phenotype of tumor-associated stromal cells (fibroblasts, immune cells, endothelial cells etc.) is proposed to be mainly due to epigenetic dysregulation of gene expression; however, only limited studies have probed the roles of epigenetic mechanisms in the regulation of stromal cell function. We review recent studies demonstrating how specific epigenetic mechanisms (DNA methylation and histone post-translational modification-based gene expression regulation, and miRNA-mediated translational regulation) drive aspects of stromal cell phenotype, and discuss the implications of these findings for treatment of malignancies. We also summarize the effects of epigenetic mechanism-targeted drugs on stromal cells and discuss the consideration of the microenvironment response in attempts to use these drugs for cancer treatment.
Collapse
Affiliation(s)
- David L Marks
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel Lo Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,University of Minnesota Rochester, Rochester, MN 55904, USA
| | | |
Collapse
|