1
|
Cotino‐Nájera S, García‐Villa E, Cruz‐Rosales S, Gariglio P, Díaz‐Chávez J. The role of Lin28A and Lin28B in cancer beyond Let-7. FEBS Lett 2024; 598:2963-2979. [PMID: 39152528 PMCID: PMC11665955 DOI: 10.1002/1873-3468.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.
Collapse
Affiliation(s)
- Sandra Cotino‐Nájera
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Enrique García‐Villa
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Samantha Cruz‐Rosales
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Patricio Gariglio
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - José Díaz‐Chávez
- Departamento de Biología Celular, Facultad de CienciasUNAMMexico CityMexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones BiomédicasUNAM/Instituto Nacional de CancerologíaMexico CityMexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la SaludMexico
| |
Collapse
|
2
|
Si TE, Li Z, Zhang J, Su S, Liu Y, Chen S, Peng GH, Cao J, Zang W. Epigenetic mechanisms of Müller glial reprogramming mediating retinal regeneration. Front Cell Dev Biol 2023; 11:1157893. [PMID: 37397254 PMCID: PMC10309042 DOI: 10.3389/fcell.2023.1157893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Retinal degenerative diseases, characterized by retinal neuronal death and severe vision loss, affect millions of people worldwide. One of the most promising treatment methods for retinal degenerative diseases is to reprogram non-neuronal cells into stem or progenitor cells, which then have the potential to re-differentiate to replace the dead neurons, thereby promoting retinal regeneration. Müller glia are the major glial cell type and play an important regulatory role in retinal metabolism and retinal cell regeneration. Müller glia can serve as a source of neurogenic progenitor cells in organisms with the ability to regenerate the nervous system. Current evidence points toward the reprogramming process of Müller glia, involving changes in the expression of pluripotent factors and other key signaling molecules that may be regulated by epigenetic mechanisms. This review summarizes recent knowledge of epigenetic modifications involved in the reprogramming process of Müller glia and the subsequent changes to gene expression and the outcomes. In living organisms, epigenetic mechanisms mainly include DNA methylation, histone modification, and microRNA-mediated miRNA degradation, all of which play a crucial role in the reprogramming process of Müller glia. The information presented in this review will improve the understanding of the mechanisms underlying the Müller glial reprogramming process and provide a research basis for the development of Müller glial reprogramming therapy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Tian-En Si
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhixiao Li
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jingjing Zhang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Songxue Su
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yupeng Liu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Shiyue Chen
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Kang S, Larbi D, Andrade M, Reardon S, Reh TA, Wohl SG. A Comparative Analysis of Reactive Müller Glia Gene Expression After Light Damage and microRNA-Depleted Müller Glia-Focus on microRNAs. Front Cell Dev Biol 2021; 8:620459. [PMID: 33614628 PMCID: PMC7891663 DOI: 10.3389/fcell.2020.620459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Müller glia (MG) are the predominant glia in the neural retina and become reactive after injury or in disease. microRNAs (miRNAs) are translational repressors that regulate a variety of processes during development and are required for MG function. However, no data is available about the MG miRNAs in reactive gliosis. Therefore, in this study, we aimed to profile miRNAs and mRNAs in reactive MG 7 days after light damage. Light damage was performed for 8 h at 10,000 lux; this leads to rapid neuronal loss and strong MG reactivity. miRNAs were profiled using the Nanostring platform, gene expression analysis was conducted via microarray. We compared the light damage dataset with the dataset of Dicer deleted MG in order to find similarities and differences. We found: (1) The vast majority of MG miRNAs declined in reactive MG 7 days after light damage. (2) Only four miRNAs increased after light damage, which included miR-124. (3) The top 10 genes found upregulated in reactive MG after light damage include Gfap, Serpina3n, Ednrb and Cxcl10. (4) The miRNA decrease in reactive MG 7 days after injury resembles the profile of Dicer-depleted MG after one month. (5) The comparison of both mRNA expression datasets (light damage and Dicer-cKO) showed 1,502 genes were expressed under both conditions, with Maff , Egr2, Gadd45b, and Atf3 as top upregulated candidates. (6) The DIANA-TarBase v.8 miRNA:RNA interaction tool showed that three miRNAs were found to be present in all networks, i.e., after light damage, and in the combined data set; these were miR-125b-5p, let-7b and let-7c. Taken together, results show there is an overlap of gene regulatory events that occur in reactive MG after light damage (direct damage of neurons) and miRNA-depleted MG (Dicer-cKO), two very different paradigms. This suggests that MG miRNAs play an important role in a ubiquitous MG stress response and manipulating these miRNAs could be a first step to attenuate gliosis.
Collapse
Affiliation(s)
- Seoyoung Kang
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| | - Daniel Larbi
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| | - Monica Andrade
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| | - Sara Reardon
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, United States
| | - Thomas A. Reh
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, United States
| | - Stefanie G. Wohl
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| |
Collapse
|
5
|
Fairchild CLA, Cheema SK, Wong J, Hino K, Simó S, La Torre A. Let-7 regulates cell cycle dynamics in the developing cerebral cortex and retina. Sci Rep 2019; 9:15336. [PMID: 31653921 PMCID: PMC6814839 DOI: 10.1038/s41598-019-51703-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
In the neural progenitors of the developing central nervous system (CNS), cell proliferation is tightly controlled and coordinated with cell fate decisions. Progenitors divide rapidly during early development and their cell cycle lengthens progressively as development advances to eventually give rise to a tissue of the correct size and cellular composition. However, our understanding of the molecules linking cell cycle progression to developmental time is incomplete. Here, we show that the microRNA (miRNA) let-7 accumulates in neural progenitors over time throughout the developing CNS. Intriguingly, we find that the level and activity of let-7 oscillate as neural progenitors progress through the cell cycle by in situ hybridization and fluorescent miRNA sensor analyses. We also show that let-7 mediates cell cycle dynamics: increasing the level of let-7 promotes cell cycle exit and lengthens the S/G2 phase of the cell cycle, while let-7 knock down shortens the cell cycle in neural progenitors. Together, our findings suggest that let-7 may link cell proliferation to developmental time and regulate the progressive cell cycle lengthening that occurs during development.
Collapse
Affiliation(s)
- Corinne L A Fairchild
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Joanna Wong
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Fu X, Ou B. miR-152/LIN28B axis modulates high-glucose-induced angiogenesis in human retinal endothelial cells via VEGF signaling. J Cell Biochem 2019; 121:954-962. [PMID: 31609010 DOI: 10.1002/jcb.28978] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes contributing to blindness in patients. Inhibiting retinal neovascularization is a potent strategy for diabetic retinopathy treatment. Reportedly, the stable expression of lin-28 homolog B (LIN28B), a member of the highly conserved RNA-binding protein LIN28 family, could promote vascular endothelial growth factor (VEGF) expression; herein, we investigated the role and mechanism of LIN28B in diabetic retinopathy progression from the perspective of microRNA (miRNA) regulation. We identified miR-152 as a miRNA that may target the LIN28B 3'-untranslated region and can be significantly downregulated under high-glucose (HG) condition. The expression of miR-152 was remarkably suppressed, whereas the expression of LIN28B was significantly increased under HG condition within both human retinal endothelial cells (hRECs) and retinal microvascular endothelial cell line (hRMECs). miR-152 overexpression significantly suppressed, while LIN28B overexpression promoted the angiogenesis and the protein levels of proangiogenesis factors in both hRECs and hRMECs. More importantly, LIN28B overexpression could remarkably attenuate the effect of miR-152 overexpression. In summary, miR-152 overexpression could inhibit HG-induced angiogenesis in both hRECs and hRMECs via targeting LIN28B and suppressing VEGF signaling. Further, in vivo experiments are needed for the application of miR-152/LIN28B axis in the treatment for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiaolin Fu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Ophthalmology, Hainan Western Central Hospital, Danzhou, Hainan, China
| | - Bo Ou
- Department of Ophthalmology, Hainan General Hospital, Haikou, Hainan, China
| |
Collapse
|
7
|
Liu Y, Dong N, Miao J, Li C, Wang X, Ruan J. Lin28 promotes dental pulp cell proliferation via upregulation of cyclin-dependent proteins and interaction with let-7a/IGF2BP2 pathways. Biomed Pharmacother 2019; 113:108742. [PMID: 30851545 DOI: 10.1016/j.biopha.2019.108742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 01/23/2023] Open
Abstract
Caries, pulpitis, and trauma are the main causes of dental pulp damage. The regeneration capacity of dental pulp declines with age. Lin28 is a conserved RNA-binding protein in higher eukaryotes that regulates several important cellular functions associated with development, glucose metabolism, differentiation, and pluripotency. Conditional reactivation of Lin28 gene in adult mice markedly accelerates the wound-healing process in injured digits. However, little is known about its functions and molecular mechanism in human dental pulp. The aim of this study was to investigate the effects and mechanism of overexpression of Lin28 gene on the proliferation of human dental pulp cells (HDPCs). For this purpose, a number of molecular and biochemical analytical techniques, including the ethynyl-2'-deoxyuridine (EdU) incorporation assay, RNA-protein immunoprecipitation (RIP) analysis, and luciferase assays, were used for detailed characterization. In addition, factors regulating HDPCs activation were explored through gain-of-function and loss-of-function analyses. The results demonstrate that Lin28 promotes cell proliferation and the S-G2/M transition of HDPCs and directly binds to a group of cell cycle regulatory mRNAs in HDPCs. Through bioinformatics analysis and luciferase assays, we confirmed that let-7a targets IGF2BP2. Silencing of IGF2BP2 showed similar cellular and molecular effects as let-7a. Similarly, restoration of IGF2BP2 counteracted the effects of let-7a expression. In conclusion, Lin28 promotes cell proliferation by regulation of both mRNA translation (let-7-independent) and miRNA biogenesis (let-7-dependent). Lin28 can promote the expression of pro-proliferative genes by directly enhancing their translation to maintain a tight control over HDPC proliferation.
Collapse
Affiliation(s)
- Yan Liu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Ning Dong
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jiyu Miao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chenxing Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jianping Ruan
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|
8
|
He X, Sun D, Chen S, Xu H. Activation of liver X receptor delayed the retinal degeneration of rd1 mice through modulation of the immunological function of glia. Oncotarget 2018; 8:32068-32082. [PMID: 28404878 PMCID: PMC5458269 DOI: 10.18632/oncotarget.16643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Retinal degeneration (RD), including retinitis pigmentosa (RP), is an inherited eye disease characterized by progressive degeneration of photoreceptors. Recently, immune cells, including microglia, Müller cells and astrocytes, in degenerative retina are demonstrated to play key roles in the development of RD and can be used as potential therapeutic targets. Liver X receptors (LXRs) are important immuno-inflammatory response transcription factors that have been reported to be a new potential therapeutic drug target for neurodegenerative diseases. However, the potential therapeutic utility of LXRs for RP has not been evaluated. In the present study, Pde6β (rd1) mice received intraperitoneal injections of T0901317 (T0, 50 mg/kg/d) or vehicle (2% DMSO) for 7 days with age-matched C57/BL6 mice as controls. The effect of T0 was examined by quantitating photoreceptor apoptosis, microglial density and the expression of inflammatory mediators; the underlying mechanisms were then explored with a microarray assay. T0 markedly delayed apoptosis of the photoreceptors, partially through suppressing the activation of microglia and the gliosis of Müller cells, and decreased the expression levels of IL-6, iNOS, COX-2 and ENG in rd1 mice; as a result, the visual function of T0-treated rd1 mice measured with electroretinograms (ERG) was preserved for a longer time than that of vehicle-treated rd1 mice. The microarray assay showed that the Janus kinase/Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway was significantly affected in the retina of rd1 mice with T0 treatment. Our data suggested that T0 modulated the immunologic function of glia cells in the degenerative retina through the JAK3/STAT pathway and delayed the apoptosis of photoreceptors.
Collapse
Affiliation(s)
- Xiao He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Dayu Sun
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| |
Collapse
|
9
|
Pesaresi M, Bonilla-Pons SA, Simonte G, Sanges D, Di Vicino U, Cosma MP. Endogenous Mobilization of Bone-Marrow Cells Into the Murine Retina Induces Fusion-Mediated Reprogramming of Müller Glia Cells. EBioMedicine 2018. [PMID: 29525572 PMCID: PMC5952225 DOI: 10.1016/j.ebiom.2018.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Müller glial cells (MGCs) represent the most plastic cell type found in the retina. Following injury, zebrafish and avian MGCs can efficiently re-enter the cell cycle, proliferate and generate new functional neurons. The regenerative potential of mammalian MGCs, however, is very limited. Here, we showed that N-methyl-d-aspartate (NMDA) damage stimulates murine MGCs to re-enter the cell cycle and de-differentiate back to a progenitor-like stage. These events are dependent on the recruitment of endogenous bone marrow cells (BMCs), which, in turn, is regulated by the stromal cell-derived factor 1 (SDF1)-C-X-C motif chemokine receptor type 4 (CXCR4) pathway. BMCs mobilized into the damaged retina can fuse with resident MGCs, and the resulting hybrids undergo reprogramming followed by re-differentiation into cells expressing markers of ganglion and amacrine neurons. Our findings constitute an important proof-of-principle that mammalian MGCs retain their regenerative potential, and that such potential can be activated via cell fusion with recruited BMCs. In this perspective, our study could contribute to the development of therapeutic strategies based on the enhancement of mammalian endogenous repair capabilities. Endogenous bone marrow cells migrate into NMDA-damaged murine retinae and fuse with retinal Müller glial cells (MGCs). MGCs can be reprogrammed to retinal progenitors to then differentiate into ganglion and amacrine neurons. Modulation of the SDF1/CXCR4 pathway regulates BMC migration, BMC-MGC fusion, and MGC reprogramming.
Retinal degeneration is present in a large and heterogeneous group of debilitating diseases, often not curable. Cell therapy represents an interesting approach to regenerate injured retinal tissue. However, it comes with some hurdles in terms of engraftment and differentiation of the transplanted cells. Here, we reported that murine Müller glia cells can be converted into retinal neurons after fusion with endogenous bone marrow cells. The efficiency of this mechanism can be enhanced by perturbation of the SDF1/CXCR4 signaling pathway. Our study provides an important proof-of-principle that the limited endogenous regeneration capability of mammals can be enhanced by modulation of specific signaling pathways.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; Universitat de Barcelona (UB), Barcelona, Spain
| | - Giacoma Simonte
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Sanges
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; ICREA, Barcelona, Spain..
| |
Collapse
|
10
|
Lei D, Shao Z, Zhou X, Yuan H. Synergistic neuroprotective effect of rasagiline and idebenone against retinal ischemia-reperfusion injury via the Lin28-let-7-Dicer pathway. Oncotarget 2018; 9:12137-12153. [PMID: 29552298 PMCID: PMC5844734 DOI: 10.18632/oncotarget.24343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal ischemia-reperfusion (RIR) injury causes neuronal degeneration and initiates various optic nerve diseases. This study aimed to investigate the synergistic neuroprotective effect of rasagiline and idebenone against RIR injury. A combination of rasagiline and idebenone was administered intraperitoneally immediately after establishment of the RIR model. Treatment with the combination of the two drugs resulted in a significant restoration of retinal thickness and retinal ganglion cells. Apoptosis of cells in ganglion cell layers was also ameliorated, suggesting that the effect of the two drugs was synergistic and the expression of brain-derived neurotrophic factor increased. Furthermore, idebenone and rasagiline induced the expression of Lin28A and Lin28B, respectively, which resulted in a reduced expression of microRNAs in the let-7 family and an increased protein output of Dicer. The data obtained from gene overexpression and knockdown experiments indicated that let-7 and Dicer were necessary for the synergistic neuroprotective effect of the two drugs. Our findings suggested that combination therapy with rasagiline and idebenone produced a synergistic effect that ameliorated RIR injury and restored visual function. In addition, the combined treatment provided neuroprotection via enhancement of the selective regulation of let-7 by Lin28A/B. These findings implied that a treatment with the combination of rasagiline and idebenone is a feasible treatment option for optic nerve diseases.
Collapse
Affiliation(s)
- Dawei Lei
- Department of Ophthalmology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zhengbo Shao
- Department of Ophthalmology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xinrong Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Huiping Yuan
- Department of Ophthalmology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
11
|
Boda E, Nato G, Buffo A. Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 2017. [PMID: 28647491 DOI: 10.1016/j.bcp.2017.06.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are emerging as leading contributors to the global disease burden. While some drug-based approaches have been designed to limit or prevent neuronal loss following acute damage or chronic neurodegeneration, regeneration of functional neurons in the adult Central Nervous System (CNS) still remains an unmet need. In this context, the exploitation of endogenous cell sources has recently gained an unprecedented attention, thanks to the demonstration that, in some CNS regions or under specific circumstances, glial cells can activate spontaneous neurogenesis or can be instructed to produce neurons in the adult mammalian CNS parenchyma. This field of research has greatly advanced in the last years and identified interesting molecular and cellular mechanisms guiding the neurogenic activation/conversion of glia. In this review, we summarize the evolution of the research devoted to understand how resident glia can be directed to produce neurons. We paid particular attention to pharmacologically-relevant approaches exploiting the modulation of niche-associated factors and the application of selected small molecules.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy.
| | - Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
12
|
Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci Rep 2017; 7:199. [PMID: 28298640 PMCID: PMC5428026 DOI: 10.1038/s41598-017-00241-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is one of hereditary retinal diseases characterized by the loss of photoreceptors. Cell transplantation has been clinically applied to treat RP patients. Human retinal progenitor cells (HRPCs) and human bone marrow-derived mesenchymal stem cells (HBMSCs) are the two commonly and practically used stem cells for transplantation. Since combined transplantation could be a promising way to integrate the advantages of both stem cell types, we transplanted HRPCs and HBMSCs into the subretinal space (SRS) of Royal College of Surgeons (RCS) rats. We report that HRPCs/HBMSCs combined transplantation maintains the electroretinogram results much better than HRPCs or HBMSCs single transplantations. The thickness of outer nuclear layer also presented a better outcome in the combined transplantation. Importantly, grafted cells in the combination migrated better, both longitudinally and latitudinally, than single transplantation. The photoreceptor differentiation of grafted cells in the retina of RCS rats receiving combined transplantation also showed a higher ratio than single transplantation. Finally, activation of microglia and the gliosis of Müller cells were more effectively suppressed in combined transplantation, indicating better immunomodulatory and anti-gliosis effects. Taken together, combining the transplantation of HRPCs and HBMSCs is a more effective strategy in stem cell-based therapy for retinal degenerative diseases.
Collapse
|
13
|
Lin28b stimulates the reprogramming of rat Müller glia to retinal progenitors. Exp Cell Res 2017; 352:164-174. [PMID: 28189638 DOI: 10.1016/j.yexcr.2017.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 02/08/2017] [Indexed: 11/22/2022]
Abstract
In lower-order vertebrates, Müller glia exhibit characteristics of retinal progenitor cells, while in higher vertebrates, such as mammals, the regenerative capacity of Müller glia is limited. Recently, we reported that Lin28b promoted the trans-differentiation of Müller cells to rod photoreceptor and bipolar cells in the retina of retinitis pigmentosa rat model, whereas it is unclear whether Lin28b can stimulate the reprogramming of Müller glia in vitro for transplantation into a damaged retina. In the present study, Long-Evens rat Müller glia were infected with Adeno-Lin28b or Adeno-GFP. Over-expression of Lin28b in isolated rat Müller glia resulted in the suppression of GFAP expression, enhancement of cell proliferation and a significant increase of the expression of retinal progenitor markers 5 days after infection. Moreover, Lin28b caused a significant reduction of the Let-7 family of microRNAs. Following sub-retinal space transplantation, Müller glia-derived retinal progenitors improved b-wave amplification of 30d Royal College of Surgeons retinitis pigmentosa model (RCS-P+) rats, as detected by electroretinography (ERG) recordings. Taken together, these data suggest that the up-regulation of Lin28b expression facilitated the reprogramming of Müller cells toward characteristics of retinal progenitors.
Collapse
|