1
|
Novák J, Takács T, Tilajka Á, László L, Oravecz O, Farkas E, Than NG, Buday L, Balogh A, Vas V. The sweet and the bitter sides of galectin-1 in immunity: its role in immune cell functions, apoptosis, and immunotherapies for cancer with a focus on T cells. Semin Immunopathol 2025; 47:24. [PMID: 40178639 PMCID: PMC11968517 DOI: 10.1007/s00281-025-01047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/07/2025] [Indexed: 04/05/2025]
Abstract
Galectin-1 (Gal-1), a member of the β-galactoside-binding soluble lectin family, is a double-edged sword in immunity. On one hand, it plays a crucial role in regulating diverse immune cell functions, including the apoptosis of activated T cells. These processes are key in resolving inflammation and preventing autoimmune diseases. On the other hand, Gal-1 has significant implications in cancer, where tumor cells and the tumor microenvironment (TME) (e.g., tumor-associated fibroblasts, myeloid-derived suppressor cells) secrete Gal-1 to evade immune surveillance and promote cancer cell growth. Within the TME, Gal-1 enhances the differentiation of tolerogenic dendritic cells, induces the apoptosis of effector T cells, and enhances the proliferation of regulatory T cells, collectively facilitating tumor immune escape. Therefore, targeting Gal-1 holds the potential to boost anti-tumor immunity and improve the efficacy of cancer immunotherapy. This review provides insights into the intricate role of Gal-1 in immune cell regulation, with an emphasis on T cells, and elucidates how tumors exploit Gal-1 for immune evasion and growth. Furthermore, we discuss the potential of Gal-1 as a therapeutic target to augment current immunotherapies across various cancer types.
Collapse
Affiliation(s)
- Julianna Novák
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Tamás Takács
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Álmos Tilajka
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Loretta László
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Orsolya Oravecz
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Emese Farkas
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Károly Rácz Conservative Medicine Division, Doctoral College, Semmelweis University, Budapest, 1091, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, 1088, Hungary
| | - László Buday
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| | - Virág Vas
- Signal Transduction and Functional Genomics Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Kim JY, Lee JH, Jung EJ, Son YS, Park HJ, Kim JM, Park T, Jeong SH, Lee J, Kim TH, Lee SM, Heo JD. Therapeutic Targeting of the Galectin-1/miR-22-3p Axis Regulates Cell Cycle and EMT Depending on the Molecular Subtype of Breast Cancer. Cells 2025; 14:310. [PMID: 39996781 PMCID: PMC11854374 DOI: 10.3390/cells14040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a highly heterogeneous disease; hence, it is crucial to understand its biology and identify new targets for the development of effective treatments. Galectin-1 is known to play an oncogenic role in breast cancer progression. It is known that oncogenic factors can influence cancer progression through interactions with miRNAs. The purpose of this study is to identify the clinical significance and biological role of galectin-1 and miR-22-3p in cancer progression according to the molecular subtype of breast cancer. We analyzed the expression of galectin-1 and miR-22-3p using cancer tissues and the correlation with clinical pathological characteristics. In addition, we investigated the regulation of the cell cycle and EMT processes of cancer progression through the galectin-1/miR-22-3p axis using cell lines of different breast cancer subtypes. miR-22-3p negatively regulates galectin-1 expression and the two molecules have opposite patterns of oncogenic and tumor-suppressive functions, respectively; furthermore, these two molecules are associated with metastasis-free survival. Cell experiments showed that miR-22-3p overexpression and galectin-1 knockdown inhibited the proliferation and invasion of breast cancer cells. Galectin-1 regulates different cancer progression pathways depending on the molecular subtype. In hormone receptor-positive breast cancer cells, galectin-1 knockdown mainly inhibited cell cycle-related substances and induced G0/G1 arrest, whereas in triple-negative breast cancer cells, it suppressed molecules related to the epithelial-mesenchymal transition pathway. In conclusion, the miR-22-3p/galectin-1 axis regulates different cancer metastasis mechanisms depending on the specific molecular subtype of breast cancer, and miR-22-3p/galectin-1 axis modulation may be a novel target for molecular subtype-specific personalized treatment.
Collapse
Affiliation(s)
- Ju Yeon Kim
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (J.Y.K.); (H.J.P.); (J.M.K.)
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (Y.S.S.); (T.P.); (S.-H.J.)
| | - Jun Ho Lee
- Department of Surgery, Changwon Hanmaeun Hospital, Hanyang University College of Medicine, Changwon 51139, Republic of Korea;
| | - Eun Jung Jung
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (Y.S.S.); (T.P.); (S.-H.J.)
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (J.L.); (T.H.K.)
| | - Young Sim Son
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (Y.S.S.); (T.P.); (S.-H.J.)
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (J.L.); (T.H.K.)
| | - Hee Jin Park
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (J.Y.K.); (H.J.P.); (J.M.K.)
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (Y.S.S.); (T.P.); (S.-H.J.)
| | - Jae Myung Kim
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (J.Y.K.); (H.J.P.); (J.M.K.)
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (Y.S.S.); (T.P.); (S.-H.J.)
| | - Taejin Park
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (Y.S.S.); (T.P.); (S.-H.J.)
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (J.L.); (T.H.K.)
| | - Sang-Ho Jeong
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; (Y.S.S.); (T.P.); (S.-H.J.)
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (J.L.); (T.H.K.)
| | - Jinkwon Lee
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (J.L.); (T.H.K.)
| | - Tae Han Kim
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (J.L.); (T.H.K.)
| | - Seon Min Lee
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea; (S.M.L.); (J.D.H.)
| | - Jeong Doo Heo
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea; (S.M.L.); (J.D.H.)
| |
Collapse
|
3
|
Hu Y, Setayesh T, Wei D, Testerman T, Ji Y, Wan YJY. Multi-pathway targeted therapy of MASH-HCC using miR-22. Cell Biosci 2025; 15:20. [PMID: 39953622 PMCID: PMC11829531 DOI: 10.1186/s13578-025-01352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The treatment options for hepatocellular carcinoma (HCC) are limited, and there is no effective drug that can improve long-term survival rates. Complicated cocktails consisting of multiple medications with toxicities are frequently used to treat cancer. The current study addresses these challenges. METHODS The study uses metabolic dysfunction-associated steatohepatitis (MASH)-HCC and HCC mouse models established by transfecting the livers using myr-AKT1, NRasV12, and Sleeping Beauty transposase. AAV8-miR-22 was delivered to MASH-HCC and HCC to study its preventive and therapeutic effects. Spatial transcriptomic profiling revealed the signaling pathways affected by miR-22 according to histological locations. RESULTS miR-22 treatment effectively treated MASH-HCC and HCC. Treating mice with miR-22 before tumor initiation prevented oncogenesis. The promising anti-cancer effects were revealed by reduced tumor load, fibrosis, and splenomegaly, extending the survival time. miR-22 treatment generated anti-tumor immunity. The favorable treatment outcomes were accompanied by a reduction in dendritic cells, T and B cells, and plasma cells, which were expanded inside the tumors of MASH-HCC. In all animal trials, miR-22 improved metabolism and reduced glycolysis inside the tumors. Moreover, miR-22 profoundly inhibited extracellular matrix (ECM) and targeted MET, PDGF, tyrosine kinase signaling, and IGF pathways inside the tumors. Furthermore, the roles of miR-22 in blocking collagen formation and cross-assembly of collagen fibrils could be due to miR-22's effects in inhibiting Rho GTPase pathways, revealed at the tumor margin. CONCLUSION miR-22 generates anti-HCC effects by targeting many critical pathways in liver carcinogenesis in cancer and tumorigenic niches, potentially revolutionizing HCC treatment.
Collapse
Affiliation(s)
- Ying Hu
- Department of Pathology and Laboratory Medicine, Research Building III, University of California Davis Health, Room 3400B, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, Research Building III, University of California Davis Health, Room 3400B, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Dongguang Wei
- Department of Pathology and Laboratory Medicine, Research Building III, University of California Davis Health, Room 3400B, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Trenton Testerman
- Department of Pathology and Laboratory Medicine, Research Building III, University of California Davis Health, Room 3400B, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yutong Ji
- Department of Pathology and Laboratory Medicine, Research Building III, University of California Davis Health, Room 3400B, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, Research Building III, University of California Davis Health, Room 3400B, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
4
|
Díaz del Arco C, Estrada Muñoz L, Cerón Nieto MDLÁ, Molina Roldán E, Fernández Aceñero MJ, García Gómez de las Heras S. Prognostic Influence of Galectin-1 in Gastric Adenocarcinoma. Biomedicines 2024; 12:1508. [PMID: 39062081 PMCID: PMC11275144 DOI: 10.3390/biomedicines12071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Galectin-1 (Gal-1), a member of the human lectin family, has garnered attention for its association with aggressive behavior in human tumors, prompting research into the development of targeted drugs. This study aims to assess the staining pattern and prognostic significance of Gal-1 immunohistochemical expression in a homogeneous cohort of Western patients with gastric cancer (GC). A total of 149 cases were included and tissue microarrays were constructed. Stromal Gal-1 expression was observed to some extent in most tumors, displaying a cytoplasmic pattern. Cases with stromal Gal-1 overexpression showed significantly more necrosis, lymphovascular invasion, advanced pTNM stages, recurrences, and cancer-related deaths. Epithelial Gal-1 expression was present in 63.8% of the cases, primarily exhibiting a cytoplasmic pattern, and its overexpression was significantly associated with lymphovascular invasion, peritumoral lymphocytic infiltration, and tumor-related death. Kaplan/Meier curves for cancer-specific survival (CSS) revealed a significantly worse prognosis for patients with tumors exhibiting stromal or epithelial Gal-1 overexpression. Furthermore, stromal Gal-1 expression stratified stage III patients into distinct prognostic subgroups. In a multivariable analysis, increased stromal Gal-1 expression emerged as an independent prognostic factor for CSS. These findings underscore the prognostic relevance of Gal-1 and suggest its potential as a target for drug development in Western patients with GC.
Collapse
Affiliation(s)
- Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lourdes Estrada Muñoz
- Department of Pathology, Rey Juan Carlos Hospital, 28933 Móstoles, Spain;
- Department of Basic Medical Sciences, School of Medicine, Rey Juan Carlos University, 28933 Móstoles, Spain;
| | - María de los Ángeles Cerón Nieto
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | |
Collapse
|
5
|
Yaylim İ, Aru M, Farooqi AA, Hakan MT, Buttari B, Arese M, Saso L. Regulation of Nrf2/Keap1 signaling pathway in cancer drug resistance by galectin-1: cellular and molecular implications. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:8. [PMID: 38434765 PMCID: PMC10905161 DOI: 10.20517/cdr.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Oxidative stress is characterized by the deregulation of the redox state in the cells, which plays a role in the initiation of various types of cancers. The activity of galectin-1 (Gal-1) depends on the cell redox state and the redox state of the microenvironment. Gal-1 expression has been related to many different tumor types, as it plays important roles in several processes involved in cancer progression, such as apoptosis, cell migration, adhesion, and immune response. The erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling pathway is a crucial mechanism involved in both cell survival and cell defense against oxidative stress. In this review, we delve into the cellular and molecular roles played by Gal-1 in the context of oxidative stress onset in cancer cells, particularly focusing on its involvement in activating the Nrf2/Keap1 signaling pathway. The emerging evidence concerning the anti-apoptotic effect of Gal-1, together with its ability to sustain the activation of the Nrf2 pathway in counteracting oxidative stress, supports the role of Gal-1 in the promotion of tumor cells proliferation, immuno-suppression, and anti-tumor drug resistance, thus highlighting that the inhibition of Gal-1 emerges as a potential strategy for the restraint and regression of tumor progression. Overall, a deeper understanding of the multi-functionality and disease-specific expression profiling of Gal-1 will be crucial for the design and development of novel Gal-1 inhibitors as anticancer agents. Excitingly, although it is still understudied, the ever-growing knowledge of the sophisticated interplay between Gal-1 and Nrf2/Keap1 will enable researchers to gain valuable insights into the underlying causes of carcinogenesis and metastasis.
Collapse
Affiliation(s)
- İlhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Melek Aru
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
- Department of Medical Education, Istinye University Faculty of Medicine, Istanbul 34396, Turkiye
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, Rome 00161, Italy
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, Rome 00185, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome 00185, Italy
| |
Collapse
|
6
|
Gu M, Yi X, Shang Z, Nong X, Lin M, Xia F. A fuel-initiated DNA molecular machine for microRNA detection in serum via poly-adenine-mediated spherical nucleic acids. J Mater Chem B 2023; 11:11052-11063. [PMID: 37946538 DOI: 10.1039/d3tb02361c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
MicroRNAs (miRNAs) have been identified as promising disease diagnostic biomarkers. However, it is challenging to sensitively detect miRNAs, especially in complex biological environments, due to their low abundance and small size. Herein, we have developed a DNA-fueled molecular machine for sensitive detection of miRNA-22 (miR-22) in undiluted serum by combining poly-adenine-mediated spherical nucleic acids (polyA-SNAs) with a toehold mediated strand displacement reaction (TMSDR). The polyA-SNAs are constructed by the assembly of diblock DNA probes on a AuNP surface through the high binding affinity of polyA to AuNPs. The surface density of the diblock DNA probe can be controlled by tuning the length of the polyA block, and the orientation of the diblock DNA probe can adopt an upright conformation, which is beneficial to target hybridization and TMSDRs. TMSDR is an enzyme-free target recycling amplification approach. Taking advantage of polyA-mediated SNAs and TMSDR, the operation of the molecular machine based on two successive TMSDRs on polyA20-SNAs is rapid and efficient, which can significantly amplify the fluorescence response for detection of miR-22 in an undiluted complex matrix. The developed sensor can detect as low as 10 pM of target miRNA/DNA in undiluted fetal bovine serum within 30 min. The synergetic effect of polyA-mediated SNAs and TMSDR presents a potential alternative tool for the detection of biomarkers in real biological samples.
Collapse
Affiliation(s)
- Menghan Gu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Zhiwei Shang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xianliang Nong
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
7
|
Barut Z, Akdeniz FT. Evaluation of the Relationship Between miRNA-22-3p and Gal-9 Levels in Glioblastoma. In Vivo 2023; 37:2577-2584. [PMID: 37905655 PMCID: PMC10621420 DOI: 10.21873/invivo.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Glioblastoma, the most prevalent primary malignant brain tumor, is significantly impacted by molecular mechanisms, including the function of microRNAs and galectins. The interplay between miRNA-22-3p and Galectin-9, a galactoside-binding lectin, is particularly notable. This study aimed to further investigate their roles in glioblastoma pathogenesis by analyzing the serum levels of these molecules in patients with glioblastoma. PATIENTS AND METHODS This investigation included 50 subjects, consisting of 25 patients with glioblastoma and an equal number of healthy controls. Blood serum specimens were obtained for miRNA isolation and subsequent cDNA synthesis. The expression of the miRNA-22-3p gene was assessed using polymerase chain reaction (PCR), and a sandwich enzyme-linked immunosorbent assay (ELISA) was utilized to quantify serum Gal-9 concentrations. RESULTS In patients diagnosed with glioblastoma, there was a significant elevation in miRNA-22-3p expression compared to healthy controls. However, despite a trend towards increased serum Gal-9 levels in the glioblastoma group, the difference did not reach statistical significance. CONCLUSION Glioblastoma patients are characterized by increased Gal-9 serum levels and reduced miRNA-22-3p expression. These results indicate their potential as diagnostic and prognostic markers as well as therapeutic targets.
Collapse
Affiliation(s)
- Zerrin Barut
- Basic Medical Sciences, Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey;
| | - Fatma Tuba Akdeniz
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
8
|
Yuan S, Zhu T, Wang J, Jiang R, Shu A, Zhang Z, Zhang P, Feng X, Zhao L. miR-22 promotes immunosuppression via activating JAK/STAT3 signaling in cutaneous squamous cell carcinoma. Carcinogenesis 2023; 44:549-561. [PMID: 37466677 DOI: 10.1093/carcin/bgad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023] Open
Abstract
Immunotherapy is the only approved systemic therapy for advanced cutaneous squamous cell carcinoma (cSCC), however, roughly 50% of patients do not respond to the therapy and resistance often occurs over time to those who initially respond. Immunosuppression could have a critical role in developing treatment resistance, thus, understanding the mechanisms of how immunosuppression is developed and regulated may be the key to improving clinical diagnosis and treatment strategies for cSCC. Here, through using a series of immunocompetent genetically engineered mouse models, we demonstrate that miR-22 promotes cSCC development by establishing regulatory T cells (Tregs)-mediated immunosuppressive tumor microenvironment (TME) in a tumor cell autonomous manner. Mechanism investigation revealed that miR-22 elicits the constitutive activation of JAK/STAT3 signaling by directly targeting its suppressor SOCS3, which augments cancer cell-derived chemokine secretion and Tregs recruitment. Epithelial-specific and global knockouts of miR-22 repress papilloma and cSCC development and progression, manifested with reduced Tregs infiltration and elevated CD8+ T cell activation. Transcriptomic analysis and functional rescue study confirmed CCL17, CCL20 and CCL22 as the main affected chemokines that mediate the chemotaxis between miR-22 highly expressing keratinocyte tumor cells and Tregs. Conversely, overexpression of SOCS3 reversed miR-22-induced Tregs recruitment toward tumor cells. Clinically, gradually increasing Tregs infiltration during cSCC progression was negatively correlated with SOCS3 abundance, supported by previously documented elevated miR-22 levels. Thus, our study uncovers a novel miR-22-SOCS3-JAK/STAT3-chemokines regulatory mechanism in defining the immunosuppressive TME and highlights the promising clinical application value of miR-22 as a common targeting molecule against JAK/STAT3 signaling and immune escape in cSCC.
Collapse
Affiliation(s)
- Shukai Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Tong Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jianan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ruoyu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Aofeng Shu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhenlei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Peitao Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Xuequan Feng
- Neurosurgical Department, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300192, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| |
Collapse
|
9
|
Cui S, Chen Y, Guo Y, Wang X, Chen D. Hsa-miR-22-3p inhibits liver cancer cell EMT and cell migration/ invasion by indirectly regulating SPRY2. PLoS One 2023; 18:e0281536. [PMID: 36749775 PMCID: PMC9904474 DOI: 10.1371/journal.pone.0281536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The general mechanism for microRNAs to play biological function is through their inhibition on the expression of their target genes. In cancer, microRNAs may accelerate cell senescence, block angiogenesis, decrease energy supplies, repress tumor cell cycle and promote apoptosis to function as the tumor repressors. On the other hand, microRNAs can modulate tumor suppressor molecules to activate oncogene relevant signaling pathway to initiate tumorigenesis and promote tumor progression. By targeting different genes, miR-22 can function as either a tumor suppressor or a tumor promoter in different types of cancer. In liver cancer, miR-22 mainly functions as a tumor suppressor via its regulation on different genes. In this study, we demonstrated that miR-22 indirectly regulates SPRY2 by inhibiting CBL, an E3 ligase for SPRY2 that has been confirmed. As one of the modulators of the MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) signaling pathway, SPRY2 plays important roles in many developmental and physiological processes, and its deregulation has been reported in different types of cancer and shown to affect cancer development, progression, and metastasis. By inhibiting the expression of CBL, which stabilizes SPRY2, miR-22 indirectly upregulates SPRY2, thereby suppressing the epithelial-mesenchymal transition (EMT), cell migration, and invasion and decreasing the expression of liver cancer stem cell (CSC) marker genes. The inhibitory effects of miR-22 on EMT, cell migration, and invasion can be blocked by the knockdown of SPRY2 expression in miR-22 overexpressing cells. Additionally, we demonstrated that miR-22 expression inhibits the ERK signaling pathway and that this effect is due to its upregulation of SPRY2. Overall, our study revealed a novel miR-22-3p/CBL/SPRY2/ERK axis that plays an important role in EMT, cell migration, and invasion of liver cancer cells.
Collapse
Affiliation(s)
- Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xing Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- * E-mail:
| |
Collapse
|
10
|
Laderach DJ, Compagno D. Inhibition of galectins in cancer: Biological challenges for their clinical application. Front Immunol 2023; 13:1104625. [PMID: 36703969 PMCID: PMC9872792 DOI: 10.3389/fimmu.2022.1104625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Galectins play relevant roles in tumor development, progression and metastasis. Accordingly, galectins are certainly enticing targets for medical intervention in cancer. To date, however, clinical trials based on galectin inhibitors reported inconclusive results. This review summarizes the galectin inhibitors currently being evaluated and discusses some of the biological challenges that need to be addressed to improve these strategies for the benefit of cancer patients.
Collapse
Affiliation(s)
- Diego José Laderach
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina,*Correspondence: Diego José Laderach,
| | - Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Testosterone attenuates senile cavernous fibrosis by regulating TGFβR1 and galectin-1 signaling pathways through miR-22-3p. Mol Cell Biochem 2022:10.1007/s11010-022-04641-8. [PMID: 36571651 DOI: 10.1007/s11010-022-04641-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Erectile dysfunction (ED) is a major health problem affecting a large proportion of the general population. Testosterone also plays a key role in sexual dysfunction. In this study, we found that testosterone can inhibit cavernous fibrosis by affecting the expression of miR-22-3p, providing a new basis for research and treatment of ED. Old and young rats were used to study the effects of testosterone on cavernous fibrosis. Hematoxylin and eosin (HE) and Masson's staining were used to observe the cavernous tissue. A luciferase assay was used to analyze the relationship between the miR-22-3p, TGFβR1, and Galectin-1 signaling pathways. CCK-8 and flow cytometry were used to detect the proliferation and apoptosis rates of cavernosum smooth muscle cells (CSMCs) following testosterone intervention. Immunohistochemical analysis was performed to examine the positive rate of caspase 3 and Ki67. IF was used to analyze the expression of collagen IV, MMP2, and α-SMA. The levels of GnRH, tT, LH, and F-TESTO in old rats increased after testosterone intervention. miR-22-3p inhibits the expression of TGFβR1 and Galectin-1. The protein expression of TGFβR1, Galectin-1, SMAD2, and p-SMAD2 was reduced by testosterone. The expression levels of α-SMA, collagen I, collagen IV, FN, and MMP2 in the cavernous tissues of old rats treated with testosterone were significantly reduced. The levels of caspase 3 and collagen IV decreased, and the levels of MMP2, Ki67, and α-SMA increased. Testosterone and miR-22-3p inhibit CSMC apoptosis and promote cell proliferation. Testosterone promoted the expression of miR-22-3p to interfere with the expression of the cavernous TGFβR1 and Galectin-1 signaling pathways. Testosterone can reduce cavernous fibrosis during the treatment of functional ED.
Collapse
|
12
|
Reprograming immune microenvironment modulates CD47 cancer stem cells in hepatocellular carcinoma. Int Immunopharmacol 2022; 113:109475. [PMID: 36435064 DOI: 10.1016/j.intimp.2022.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
|
13
|
Kim SS, Harford JB, Moghe M, Doherty C, Chang EH. A Novel P53 Nanomedicine Reduces Immunosuppression and Augments Anti-PD-1 Therapy for Non-Small Cell Lung Cancer in Syngeneic Mouse Models. Cells 2022; 11:3434. [PMID: 36359830 PMCID: PMC9654894 DOI: 10.3390/cells11213434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 09/26/2023] Open
Abstract
Lung cancer is among the most common and lethal cancers and warrants novel therapeutic approaches to improving patient outcomes. Although immune checkpoint inhibitors (ICIs) have demonstrated substantial clinical benefits, most patients remain unresponsive to currently approved ICIs or develop resistance after initial response. Many ongoing clinical studies are investigating combination therapies to address the limited efficacy of ICIs. Here, we have assessed whether p53 gene therapy via a tumor-targeting nanomedicine (termed SGT-53) can augment anti-programmed cell death-1 (PD-1) immunotherapy to expand its use in non-responding patients. Using syngeneic mouse models of lung cancers that are resistant to anti-PD-1, we demonstrate that restoration of normal p53 function potentiates anti-PD-1 to inhibit tumor growth and prolong survival of tumor-bearing animals. Our data indicate that SGT-53 can restore effective immune responses against lung cancer cells by reducing immuno-suppressive cells (M2 macrophages and regulatory T cells) and by downregulating immunosuppressive molecules (e.g., galectin-1, a negative regulator of T cell activation and survival) while increasing activity of cytotoxic T cells. These results suggest that combining SGT-53 with anti-PD-1 immunotherapy could increase the fraction of lung cancer patients that responds to anti-PD-1 therapy and support evaluation of this combination particularly in patients with ICI-resistant lung cancers.
Collapse
Affiliation(s)
- Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA
| | | | - Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Caroline Doherty
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Esther H. Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
14
|
Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C, Foti M. MiR-22 Deficiency Fosters Hepatocellular Carcinoma Development in Fatty Liver. Cells 2022; 11:cells11182860. [PMID: 36139435 PMCID: PMC9496902 DOI: 10.3390/cells11182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
MiR-22 is mostly considered as a hepatic tumor-suppressor microRNA based on in vitro analyses. Yet, whether miR-22 exerts a tumor-suppressive function in the liver has not been investigated in vivo. Herein, in silico analyses of miR-22 expression were performed in hepatocellular carcinomas from human patient cohorts and different mouse models. Diethylnitrosamine-induced hepatocellular carcinomas were then investigated in lean and diet-induced obese miR-22-deficient mice. The proteome of liver tissues from miR-22-deficient mice prior to hepatocellular carcinoma development was further analyzed to uncover miR-22 regulated factors that impact hepatocarcinogenesis with miR-22 deficiency. MiR-22 downregulation was consistently observed in hepatocellular carcinomas from all human cohorts and mouse models investigated. The time of appearance of the first tumors was decreased and the number of tumoral foci induced by diethylnitrosamine was significantly increased by miR-22-deficiency in vivo, two features which were further drastically exacerbated with diet-induced obesity. At the molecular level, we provide evidence that the loss of miR-22 significantly affects the energetic metabolism and mitochondrial functions of hepatocytes, and the expression of tumor-promoting factors such as thrombospondin-1. Our study demonstrates that miR-22 acts as a hepatic tumor suppressor in vivo by restraining pro-carcinogenic metabolic deregulations through pleiotropic mechanisms and the overexpression of relevant oncogenes.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
15
|
Guda MR, Tsung AJ, Asuthkar S, Velpula KK. Galectin-1 activates carbonic anhydrase IX and modulates glioma metabolism. Cell Death Dis 2022; 13:574. [PMID: 35773253 PMCID: PMC9247167 DOI: 10.1038/s41419-022-05024-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Galectins are a family of β-galactose-specific binding proteins residing within the cytosol or nucleus, with a highly conserved carbohydrate recognition domain across many species. Accumulating evidence shows that Galectin 1 (Gal-1) plays an essential role in cancer, and its expression correlates with tumor aggressiveness and progression. Our preliminary data showed Gal-1 promotes glioma stem cell (GSC) growth via increased Warburg effect. mRNA expression and clinical data were obtained from The Cancer Genome Atlas database. The immunoblot analysis conducted using our cohort of human glioblastoma patient specimens (hGBM), confirmed Gal-1 upregulation in GBM. GC/MS analysis to evaluate the effects of Gal-1 depletion showed elevated levels of α-ketoglutaric acid, and citric acid with a concomitant reduction in lactic acid levels. Using Biolog microplate-1 mitochondrial functional assay, we confirmed that the depletion of Gal-1 increases the expression levels of the enzymes from the TCA cycle, suggesting a reversal of the Warburg phenotype. Manipulation of Gal-1 using RNA interference showed reduced ATP, lactate levels, cell viability, colony-forming abilities, and increased expression levels of genes implicated in the induction of apoptosis. Gal-1 exerts its metabolic role via regulating the expression of carbonic anhydrase IX (CA-IX), a surrogate marker for hypoxia. CA-IX functions downstream to Gal-1, and co-immunoprecipitation experiments along with proximity ligation assays confirm that Gal-1 physically associates with CA-IX to regulate its expression. Further, silencing of Gal-1 in mice models showed reduced tumor burden and increased survival compared to the mice implanted with GSC controls. Further investigation of Gal-1 in GSC progression and metabolic reprogramming is warranted.
Collapse
Affiliation(s)
- Maheedhara R. Guda
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| | - Andrew J. Tsung
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,Illinois Neurological Institute, Peoria, IL USA
| | - Swapna Asuthkar
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| | - Kiran K. Velpula
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| |
Collapse
|
16
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
17
|
An Y, Xu S, Liu Y, Xu X, Philips CA, Chen J, Méndez-Sánchez N, Guo X, Qi X. Role of Galectins in the Liver Diseases: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:744518. [PMID: 34778306 PMCID: PMC8578830 DOI: 10.3389/fmed.2021.744518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Galectins, a family of β-galactoside-binding proteins, are related to the development and progression of various human diseases such as cancer, heart failure, and chronic kidney disease. However, its role in liver diseases is unclear. Methods: The PubMed, Embase, and Cochrane Library databases were searched. Hazard ratios (HRs), odds ratios (ORs), and mean differences (MDs) with 95% CIs were pooled to evaluate the association of the galectins with the outcomes and risk of liver diseases by a random effects model. Results: Thirty three studies involving 43 cohorts and 4,168 patients with liver diseases were included. In the patients with hepatocellular carcinoma (HCC), high expression of galectin-1 and -3 in the tissues was significantly associated with worse overall survival (galectin-1: HR = 1.94, 95% CI = 1.61-2.34, p < 0.001; galectin-3: HR = 3.29, 95% CI = 1.62-6.68, p < 0.001) and positive vascular invasion (galectin-1: OR = 1.74, 95% CI = 1.18-2.58, p = 0.005; galectin-3: OR = 2.98, 95% CI = 1.58-5.60, p = 0.001); but, high expression of galectin-4 and -9 in the tissues was significantly associated with better overall survival (galectin-4: HR = 0.53, 95% CI = 0.36-0.79, p = 0.002; galectin-9: HR = 0.56, 95% CI = 0.44-0.71, p < 0.001) and negative vascular invasion (galectin-4: OR = 0.36, 95% CI = 0.19-0.72, p = 0.003; galectin-9: OR = 0.60, 95% CI = 0.37-0.97, p = 0.037). Serum galectin-3 level was significantly higher in HCC (MD = 3.06, 95% CI = 1.79-4.32, p < 0.001), liver failure (MD = 0.44, 95% CI = 0.23-0.66, p < 0.001), liver cirrhosis (MD = 1.83, 95% CI = 1.15-2.51, p < 0.001), and chronic active hepatitis B (MD = 18.95, 95% CI = 10.91-27.00, p < 0.001); serum galectin-9 level was significantly higher in HCC (MD = 3.74, 95% CI = 2.57-4.91, p < 0.001) and autoimmune hepatitis (MD = 8.80, 95% CI = 7.61-9.99, p < 0.001). Conclusion: High galectin-1 and -3 and low galectin-4 and -9 expression indicate worse outcomes of patients with HCC. Serum galectin-3 and -9 levels are positively associated with the risk of chronic liver diseases.
Collapse
Affiliation(s)
- Yang An
- Meta-Analysis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, Shenyang Pharmaceutical University, Shenyang, China
| | - Shixue Xu
- Meta-Analysis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiting Liu
- Meta-Analysis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Department of Physical Examination Center, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiangbo Xu
- Meta-Analysis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, Shenyang Pharmaceutical University, Shenyang, China
| | - Cyriac Abby Philips
- The Liver Unit and Monarch Liver Laboratory, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, India
| | - Jiang Chen
- Meta-Analysis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Nahum Méndez-Sánchez
- Liver Research Unit Medica Sur Clinic and Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Xiaozhong Guo
- Meta-Analysis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xingshun Qi
- Meta-Analysis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
18
|
Galectins in Cancer and the Microenvironment: Functional Roles, Therapeutic Developments, and Perspectives. Biomedicines 2021; 9:biomedicines9091159. [PMID: 34572346 PMCID: PMC8465754 DOI: 10.3390/biomedicines9091159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in cell growth and metabolism are affected by the surrounding environmental factors to adapt to the cell’s most appropriate growth model. However, abnormal cell metabolism is correlated with the occurrence of many diseases and is accompanied by changes in galectin (Gal) performance. Gals were found to be some of the master regulators of cell–cell interactions that reconstruct the microenvironment, and disordered expression of Gals is associated with multiple human metabolic-related diseases including cancer development. Cancer cells can interact with surrounding cells through Gals to create more suitable conditions that promote cancer cell aggressiveness. In this review, we organize the current understanding of Gals in a systematic way to dissect Gals’ effect on human disease, including how Gals’ dysregulated expression affects the tumor microenvironment’s metabolism and elucidating the mechanisms involved in Gal-mediated diseases. This information may shed light on a more precise understanding of how Gals regulate cell biology and facilitate the development of more effective therapeutic strategies for cancer treatment by targeting the Gal family.
Collapse
|
19
|
Zhang L, Yang P, Wang J, Liu Q, Wang T, Wang Y, Lin F. MiR-22 regulated T cell differentiation and hepatocellular carcinoma growth by directly targeting Jarid2. Am J Cancer Res 2021; 11:2159-2173. [PMID: 34094675 PMCID: PMC8167680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023] Open
Abstract
MiR-22 has been demonstrated to inhibits tumor growth in several cancers. However, its function in the tumor microenvironment is still unclear, especially for T cell differentiation. Here, miR-22 expression in the circulating T cells from hepatocellular carcinoma (HCC) patients and healthy controls was analyzed with quantitative polymerase chain reaction (qPCR). Diethylnitrosamine (DEN)/phenobarbital (PB)-mediated primary HCC and Hepa1-6 subcutaneous tumor mouse models were established and subjected to lenti-miR-22 injection. Mice immunoreconstituted with miR-22-overexpressing T cells were employed to investigate the antitumor effect of miR-22 in mice. Luciferase assay, immunofluorescent staining, in vitro Th17 cell differentiation assay, and rescue experiments were employed to investigate the mechanism underlying the miR-22-mediated regulation of Th17 cell differentiation and liver tumor growth. Results confirmed the dramatic downregulation of miR-22 expression in malignant tissues and circulating T cells from patients with HCC. MiR-22 expression correlated with good prognosis of patients. Overexpression of miR-22 impaired the DEN/PB-induced primary HCC formation and the growth of Hepa1-6 subcutaneous tumors by promoting Th17 differentiation. Injection of miR-22-overexpressing T cells in irradiated mice resulted in the inhibition of Hepa1-6 subcutaneous tumor growth via Th17 differentiation promotion. MiR-22 could directly bind to Jarid2, which played an important role during the miR-22-mediated regulation of Th17 differentiation. Taken together, our study expands the understanding of miR-22 function and provides a therapy target for HCC.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Oncology, Affiliated Eighth People's Hospital, Jiangsu University Shanghai, China
| | - Ping Yang
- Department of Oncology, Affiliated Eighth People's Hospital, Jiangsu University Shanghai, China
| | - Jing Wang
- Department of Oncology, Affiliated Eighth People's Hospital, Jiangsu University Shanghai, China
| | - Qi Liu
- Department of Oncology, Affiliated Eighth People's Hospital, Jiangsu University Shanghai, China
| | - Tian Wang
- Department of Oncology, Affiliated Eighth People's Hospital, Jiangsu University Shanghai, China
| | - Yaling Wang
- Department of Oncology, Affiliated Eighth People's Hospital, Jiangsu University Shanghai, China
| | - Feng Lin
- Department of Oncology, Affiliated Eighth People's Hospital, Jiangsu University Shanghai, China
| |
Collapse
|
20
|
Yang X, Su W, Li Y, Zhou Z, Zhou Y, Shan H, Han X, Zhang M, Zhang Q, Bai Y, Guo C, Yang S, Beer DG, Chen G. MiR-22-3p suppresses cell growth via MET/STAT3 signaling in lung cancer. Am J Transl Res 2021; 13:1221-1232. [PMID: 33841651 PMCID: PMC8014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
MiR-22-3p has been reported to be down-regulated in several cancers, but its expression pattern and roles in lung cancer is unclear. Given the crucial role of microRNAs in cancer progression, we examined the expression and function of miR-22-3p in lung adenocarcinoma. MiR-22-3p expression in lung cancer tissues and cell lines was measured by qRT-PCR. Cell proliferation was measured by WST-1 and colony formation assays were used to reveal the role of miR-22-3p in lung cancer in vitro. MiR-22-3p was notably down-regulated in lung cancer tissues as compared to normal lung tissues, but it was not associated with the clinical characteristics of tumor stage, differentiation and patient's smoking status. Colony formation ability and cell proliferation were suppressed by miR-22-3p mimics in lung cancer cell lines. Mechanistically, miR-22-3p mimics could reduce MET and STAT3 protein expression and induce apoptosis as measured by PARP protein. We conclude that miR-22-3p may play a tumor suppressor role via inhibiting MET-STAT3 signaling and have potential to be a therapeutic target and biomarker in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xia Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Wenmei Su
- Department of Oncology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang, China
| | - Yu Li
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Zhiqing Zhou
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Yi Zhou
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Hu Shan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Xiaoling Han
- Department of Oncology, Affiliated Hospital of Guangdong Medical UniversityZhanjiang, China
| | - Ming Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Qiuhong Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Ying Bai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - Chunfang Guo
- Department of Surgery, University of MichiganAnn Arbor, Michigan, USA
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, China
| | - David G Beer
- Department of Surgery, University of MichiganAnn Arbor, Michigan, USA
| | - Guoan Chen
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| |
Collapse
|
21
|
Setayesh T, Colquhoun SD, Wan YJY. Overexpression of Galectin-1 and Galectin-3 in hepatocellular carcinoma. LIVER RESEARCH 2020; 4:173-179. [PMID: 34567824 PMCID: PMC8460053 DOI: 10.1016/j.livres.2020.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Galectins (Gals) are evolutionarily conserved proteins that bind to β-galactoside containing glycans. Abnormal expression of Gals is associated with the development, progression, and metastasis of different types of cancer. Among the 11 Gals identified in humans, the roles of Gal-1 and Gal-3 have been extensively investigated in various tumors. Here, we summarize the roles of overly expressed Gal-1 and Gal-3 in the pathogenesis of hepatocellular carcinoma (HCC). The overexpression of Gal-1 and Gal-3 correlates with tumor growth, HCC cell migration and invasion, tumor aggressiveness, metastasis, and poor prognosis. A potentially promising future treatment strategy for HCC may include the combination of immunotherapy with Gal-1 inhibition. Additional research is warranted to investigate targeting Gal-1 and Gal-3 for HCC treatment.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | | | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA,Corresponding author. Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
22
|
Sun MJ, Cao ZQ, Leng P. The roles of galectins in hepatic diseases. J Mol Histol 2020; 51:473-484. [PMID: 32734557 DOI: 10.1007/s10735-020-09898-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022]
Abstract
Hepatic diseases include all diseases that occur in the liver, including hepatitis, cirrhosis, hepatocellular carcinoma, etc. Hepatic diseases worldwide are characterized by high incidences of digestive system diseases, which present with subtle symptoms, are difficult to treat and have high mortality. Galectins are β-galactoside-binding proteins that have been found to be aberrantly expressed during hepatic disease progression. An increasing number of studies have shown that abnormal expression of galectins is extensively involved in hepatic diseases, such as hepatocellular carcinoma (HCC), liver cirrhosis, hepatitis and liver fibrosis. Galectins function as intracellular and extracellular hepatic disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates expressed in hepatocytes. In this review, we summarize current research on the various roles of galectins in cirrhosis, hepatitis, liver fibrosis and HCC, which may provide a preliminary theoretical basis for the exploration of new targets for the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Mei-Juan Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China
| | - Zhan-Qi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
23
|
Galectins in the Tumor Microenvironment: Focus on Galectin-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:17-38. [PMID: 32578169 DOI: 10.1007/978-3-030-43093-1_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Wang L, Wang YS, Mugiyanto E, Chang WC, Yvonne Wan YJ. MiR-22 as a metabolic silencer and liver tumor suppressor. LIVER RESEARCH 2020; 4:74-80. [PMID: 33005474 PMCID: PMC7523703 DOI: 10.1016/j.livres.2020.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With obesity rate consistently increasing, a strong relationship between obesity and fatty liver disease has been discovered. More than 90% of bariatric surgery patients also have non-alcoholic fatty liver diseases (NAFLDs). NAFLD and non-alcoholic steatohepatitis (NASH), which are the hepatic manifestations of metabolic syndrome, can lead to liver carcinogenesis. Unfortunately, there is no effective medicine that can be used to treat NASH or liver cancer. Thus, it is critically important to understand the mechanism underlying the development of these diseases. Extensive evidence suggests that microRNA 22 (miR-22) can be a diagnostic marker for liver diseases as well as a treatment target. This review paper focuses on the roles of miR-22 in metabolism, steatosis, and liver carcinogenesis. Literature search is limited based on the publications included in the PubMed database in the recent 10 years.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA,The College of Life Science, Yangtze University, Jingzhou, Hubei
| | - Yu-Shiuan Wang
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei
| | - Eko Mugiyanto
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei
| | - Wei-Chiao Chang
- PhD Program in Clinical Drug Development of Chinese Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei,Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA,Corresponding author. Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
25
|
Shao Q, He J, Chen Z, Wu C. Prognostic role of galectins expression in patients with hepatic cancer: A meta-analysis. Medicine (Baltimore) 2020; 99:e19622. [PMID: 32282710 PMCID: PMC7440300 DOI: 10.1097/md.0000000000019622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The objective of this study was to illustrate the prognostic value of diversified galectins in patients with hepatic cancer via meta-analysis. METHODS We conducted a systematic search on PubMed, Embase, The Cochrane Library, Web of Science, the Chinese National Knowledge Infrastructure (CNKI) database, and Wanfang Data for studies that reported associations between galectin expression and the prognosis for hepatic cancer patients, from the inception of each database to March 20, 2019. The combined hazard ratio (HR) and 95% confidence interval (CI) were estimated to investigate the prognosis. RESULTS We collected 11 studies of 1957 patients in our meta-analysis. The pooled results indicated that overall galectin expression was not correlated with OS (HR = 1.23, 95% CI = 0.84-1.79, P = .29) or DFS/RFS (HR = 0.808, 95% CI = 0.376-1.735, P = .42) in liver cancer patients. In stratified analyses, we observed that high galectin-1 and galectin-3 expression was significantly associated with poor OS. The pooled HR of galectin-4 and galectin-9 was correlated with improved OS. CONCLUSION Our results indicate that the high expression of galectin-1 and -3 and the low expression of galectin-4 and -9 may be predictive prognostic factors for poor OS in liver cancer patients.
Collapse
Affiliation(s)
- Qi Shao
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong
- The Third Affiliated Hospital of Soochow University, Changzhou
| | - Jing He
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong
| | - Zhiming Chen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
26
|
Lai KP, Cheung A, Ho CH, Tam NYK, Li JW, Lin X, Chan TF, Lee NPY, Li R. Transcriptomic analysis reveals the oncogenic role of S6K1 in hepatocellular carcinoma. J Cancer 2020; 11:2645-2655. [PMID: 32201535 PMCID: PMC7065997 DOI: 10.7150/jca.40726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022] Open
Abstract
The p70 ribosomal protein S6 kinase 1 (S6K1), a serine/threonine kinase, is commonly overexpressed in a variety of cancers. However, its expression level and functional roles in hepatocellular carcinoma (HCC), which ranks as the third leading cause of cancer-related death worldwide, is still largely unknown. In the current report, we show the in vivo and in vitro overexpression of S6K1 in HCC. In the functional analysis, we demonstrate that S6K1 is required for the proliferation and colony formation abilities in HCC. By using comparative transcriptomic analysis followed by gene ontology enrichment analysis and Ingenuity Pathway Analysis, we find that the depletion of S6K1 can elevate the expression of a cluster of apoptotic genes, tumor suppressor genes and immune responsive genes. Moreover, the knockdown of S6K1 is predicted to reduce the tumorigenicity of HCC through the regulation of hubs of genes including STAT1, HDAC4, CEBPA and ONECUT1. In conclusion, we demonstrate the oncogenic role of S6K1 in HCC, suggesting the possible use of S6K1 as a therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Keng Po Lai
- Guanxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China.,Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Angela Cheung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Cheuk Hin Ho
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Nathan Yi-Kan Tam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jing Woei Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nikki Pui-Yue Lee
- Department of Surgery, University of Hong Kong, Hong Kong SAR, China
| | - Rong Li
- Guanxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| |
Collapse
|
27
|
Wu H, Song S, Yan A, Guo X, Chang L, Xu L, Hu L, Kuang M, Liu B, He D, Zhao R, Wang L, Wu X, Gu J, Ruan Y. RACK1 promotes the invasive activities and lymph node metastasis of cervical cancer via galectin-1. Cancer Lett 2020; 469:287-300. [DOI: 10.1016/j.canlet.2019.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022]
|
28
|
Huang MY, He JP, Zhang WQ, Liu JL. Pooling analysis reveals that galectin-1 is a reliable prognostic biomarker in various cancers. J Cell Physiol 2019; 234:13788-13798. [PMID: 30618160 DOI: 10.1002/jcp.28059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
Galectin-1 is reported to be upregulated in various human cancers. However, the relationship between galectin-1 expression and cancer prognosis has not been systematically assessed. In this study, we searched PubMed, Web of Science, and Embase to collect all relevant studies and a meta-analysis was performed. We found that increased galectin-1 expression was associated with tumor size (odds ratio [OR] = 1.75; 95% confidence interval [CI]: 1.06-2.89; p = 0.029), clinical stage (OR = 3.89; 95% CI: 2.40-6.31; p < 0.001), and poorer differentiation (OR = 1.39; 95% CI: 1.14-1.69; p = 0.001), but not with age (OR = 1.07; 95% CI: 0.82-1.39; p = 0.597), sex (OR = 0.89; 95% CI: 0.74-1.07; p = 0.202), or lymph node metastasis (OR = 2.57; 95% CI: 0.98-6.78; p = 0.056). In addition, we found that high galectin-1 expression levels were associated with poor overall survival (HR = 2.12; 95% CI: 1.71-2.64; p < 0.001). The results were further validated using The Cancer Genome Atlas data set. Moreover, high galectin-1 expression was significantly associated with disease-free survival (hazard ratio [HR] = 1.60; 95% CI: 1.17-2.19; p = 0.003), progression-free survival (HR = 1.93; 95% CI: 1.65-2.25; p < 0.001), and cancer-specific survival (HR = 1.82; 95% CI: 1.30-2.55; p < 0.001). Our meta-analysis demonstrated that galectin-1 might be a useful common biomarker for predicting prognosis in patients with cancer.
Collapse
Affiliation(s)
- Ming-Yu Huang
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jia-Peng He
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Qian Zhang
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ji-Long Liu
- Department of Anatomy and Histology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Qiu BQ, Zhang PF, Xiong D, Xu JJ, Long X, Zhu SQ, Ye XD, Wu Y, Pei X, Zhang XM, Wu YB. CircRNA fibroblast growth factor receptor 3 promotes tumor progression in non-small cell lung cancer by regulating Galectin-1-AKT/ERK1/2 signaling. J Cell Physiol 2018; 234:11256-11264. [PMID: 30565694 DOI: 10.1002/jcp.27783] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The dysregulation of circular RNA (circRNA) expression is involved in the progression of several cancers, including non-small cell lung cancer (NSCLC). However, the role and underlying molecular mechanisms of circRNA FGFR3 (circFGFR3) in NSCLC progression remains unknown. Here, we used quantitative real-time polymerase chain reaction to validate that circFGFR3 expression was higher in NSCLC tissues than in the paratumor tissues. Furthermore, our study indicated that the forced circFGFR3 expression promoted NSCLC cell invasion and proliferation. Mechanistically, we found that circFGFR3 promoted NSCLC cell invasion and proliferation via competitively combining with miR-22-3p to facilitate the galectin-1 (Gal-1), p-AKT, and p-ERK1/2 expressions. Clinically, we revealed that the high circFGFR3 expression correlates with the poor clinical outcomes in patients with NSCLC. Together, these data provide mechanistic insights into the circFGFR3-mediated regulation of both the AKT and ERK1/2 signaling pathways by sponging miR-22-3p and increasing Gal-1 expression.
Collapse
Affiliation(s)
- Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dian Xiong
- Department of Thoracic Surgery, The Central Hospital of Xuhui District, Shanghai, China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xu-Dong Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yin Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Pei
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Mei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Jiang ZJ, Shen QH, Chen HY, Yang Z, Shuai MQ, Zheng SS. Galectin-1 gene silencing inhibits the activation and proliferation but induces the apoptosis of hepatic stellate cells from mice with liver fibrosis. Int J Mol Med 2018; 43:103-116. [PMID: 30365068 PMCID: PMC6257862 DOI: 10.3892/ijmm.2018.3950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a serious threat to human health, and there is currently no effective clinical drug for treatment of the disease. Although Galectin-1 is effective, its role in liver function, inflammation, matrix metalloproteinases and the activation of hepatic stellate cells (HSCs) remains to be elucidated. The aim of the present study was to elucidate the effect of Galectin-1 on the activation, proliferation and apoptosis of HSCs in a mouse model of liver fibrosis. Following successful model establishment and tissue collection, mouse HSCs (mHSCs) were identified and an mHSC line was constructed. Subsequently, to determine the role of Galectin-1 in liver fibrosis, the expression levels of transforming growth factor (TGF)-β1, connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) pre- and post-transfection were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analyses. In addition, the effects of Galectin-1 on the biological behavior and mitochondrial function of mHSCs were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and a scratch test. It was first observed that the expression levels of Galectin-1, TGF-β1, CTGF and α-SMA were downregulated by silencing the gene expression of Galectin-1. Additionally, silencing the gene expression of Galectin-1 inhibited cell cycle progression, proliferation and migration but induced the apoptosis of mHSCs from mice with liver fibrosis. Furthermore, the in vivo experimental results suggested that silencing the gene expression of Galectin-1 improved liver fibrosis. Collectively, it was concluded that silencing the gene expression of Galectin-1 ameliorates liver fibrosis and that functionally suppressing Galectin-1 may be a future therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Zhi-Jun Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qing-Hua Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine (Jinyun Branch), Jinyun, Zhejiang 321400, P.R. China
| | - Hai-Yong Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ming-Qi Shuai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
32
|
Chen TH, Chiu CT, Lee C, Chu YY, Cheng HT, Hsu JT, Wu RC, Yeh TS, Lin KH. Circulating microRNA-22-3p Predicts the Malignant Progression of Precancerous Gastric Lesions from Intestinal Metaplasia to Early Adenocarcinoma. Dig Dis Sci 2018; 63:2301-2308. [PMID: 29736829 DOI: 10.1007/s10620-018-5106-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gastric cancer has a poor outcome and identifying useful biomarkers from peripheral blood or tissue could allow its early detection, or potentially precancerous changes, thus improving the curative rates. MicroRNAs (miRNAs) have been shown to offer great potential in cancer diagnosis and prediction. AIM Here, we investigated the role of plasma miRNAs in the natural course of gastric cancer, from intestinal metaplasia to early cancer. The findings were used to understand whether patients at a high risk of malignancy could be given appropriate interventions in the early disease process, such as using endoscopic submucosal dissection to treat gastric dysplasia or early gastric cancer. METHODS Participants were divided into healthy control, intestinal metaplasia (IM), and dysplasia/early cancer (pT1a/b) groups. Microarray was used to select potential markers in tissue. RESULTS Quantitative real-time polymerase chain reaction data showed circulating miRNA-22-3p had significantly different expression in patients with precancerous lesions or gastric adenocarcinoma. The areas under the curve of incomplete IM versus healthy control, low-grade/high-grade dysplasia, early gastric cancer, and GED were 0.8080, 0.8040, 0.8494, and 0.8095, respectively (all P values < 0.05). CONCLUSIONS Circulating miRNA-22-3p could be a potential biomarker for gastric precancerous dysplasia and early cancer detection.
Collapse
Affiliation(s)
- Tsung-Hsing Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Tang Chiu
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chieh Lee
- Department of Industrial Engineering and Management, Yuan Ze University College of Engineering, Chung-Li City, Taiwan
| | - Yin-Yi Chu
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hao-Tsai Cheng
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jun-Te Hsu
- Department of Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wen-hwa 1 Road, Taoyuan, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wen-hwa 1 Road, Taoyuan, Taiwan.
| | - Kwang-Huei Lin
- Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
33
|
Prognostic significance of galectin-1 expression in patients with cancer: a meta-analysis. Cancer Cell Int 2018; 18:108. [PMID: 30087582 PMCID: PMC6076397 DOI: 10.1186/s12935-018-0607-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Background The prognostic significance of galectin-1 (Gal-1) expression in cancerous patients has been assessed for several years while the results remain controversial. Thus, we performed the first comprehensive meta-analysis to evaluate the prognostic value of Gal-1 expression in cancerous patients. Methods We searched Pubmed, Embase and Web of Science to recruit studies on the prognostic impact of Gal-1 expression in cancerous patients. Eighteen studies containing 2674 patients were involved in this meta-analysis until March 30, 2018. Pooled hazard ratios (HRs) with 95% confidence interval (95% CI) were calculated to estimate the effect using random-effects model. Results The pooled results revealed that high Gal-1 expression in cancer tissue associated with a poor OS (HR = 1.79, 95% CI 1.54–2.08, P < 0.001). In the subgroup of tumor type, it’s observed that high Gal-1 expression was significant correlated with poor OS in digestive cancers without heterogeneity (HR = 1.94, 95% CI 1.64–2.30, P < 0.001; fixed-effects model; I2 = 20.1%, P = 0.276). Conclusions Our present meta-analysis indicates that high Gal-1 expression might be a predictive factor of poor prognosis in cancers, particularly in digestive cancers.
Collapse
|
34
|
Chen M, Hu W, Xiong CL, Qu Z, Yin CQ, Wang YH, Luo CL, Guan Q, Yuan CH, Wang FB. miR-22 targets YWHAZ to inhibit metastasis of hepatocellular carcinoma and its down-regulation predicts a poor survival. Oncotarget 2018; 7:80751-80764. [PMID: 27811373 PMCID: PMC5348352 DOI: 10.18632/oncotarget.13037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Many miRNAs are associated with the carcinogenesis of hepatocellular carcinoma (HCC) and some exhibit potential prognostic value. In this study, to further confirm the prognostic value of miRNAs in HCC, we employed miRNA-sequencing data of tumor tissues of 372 HCC patients released by The Cancer Genome Atlas (TCGA) and identified 3 miRNAs including miR-22, miR-9-1 and miR-9-2 could be used as independent predictors for HCC prognostic evaluation. As a tumor-suppressive miRNA, miR-22 was down-regulated in HCC tissues. This down-regulation correlated with tumor vascular invasion, Edmondson–Steiner grade, TNM stage, and AFP level. Moreover, biofunctional investigations revealed that miR-22 significantly attenuated cellular proliferation, migration and invasion of HCC cells. Additionally, through gene expression profiles and bioinformatics analysis, YWHAZ was identified to be a direct target of miR-22 and its overexpression partially counteracted the inhibitory effects of miR-22 on HCC cells. Finally, molecular studies further confirmed that miR-22 promoted the accumulation of FOXO3a in nucleus and subsequently reversed invasive phenotype of HCC cells by repressing YWHAZ-mediated AKT phosphorylation. Taken together, these data demonstrate that miR-22 exhibits tumor-suppressive effects in HCC cells by regulating YWHAZ/AKT/FOXO3a signaling and might be used as an independent prognostic indicator for HCC patients.
Collapse
Affiliation(s)
- Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Wei Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Chen-Ling Xiong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Zhen Qu
- Guangdong Food and Drug Vocational College, Guangzhou 510520, P.R. China
| | - Chang-Qing Yin
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Yu-Hui Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Chang-Liang Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Qing Guan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Chun-Hui Yuan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan 430071, P.R. China
| |
Collapse
|
35
|
Tang D, Zhang J, Yuan Z, Zhang H, Chong Y, Huang Y, Wang J, Xiong Q, Wang S, Wu Q, Tian Y, Lu Y, Ge X, Shen W, Wang D. PSC-derived Galectin-1 inducing epithelial-mesenchymal transition of pancreatic ductal adenocarcinoma cells by activating the NF-κB pathway. Oncotarget 2017; 8:86488-86502. [PMID: 29156810 PMCID: PMC5689700 DOI: 10.18632/oncotarget.21212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Galectin-1 has previously been shown to be strongly expressed in activated pancreatic stellate cells (PSCs) and promote the development and metastasis of pancreatic ductal adenocarcinoma (PDAC). However, the molecular mechanisms by which Galectin-1 promotes the malignant behavior of pancreatic cancer cells remain unclear. In this study, we examined the effects of Galectin-1 knockdown or overexpression in PSCs co-cultured with pancreatic cancer (PANC-1) cells. Immunohistochemical analysis showed expression of epithelial-mesenchymal transition (EMT) markers and MMP9 were positively associated with the expression of Galectin-1 in 66 human PDAC tissues. In addition, our in vitro studies showed PSC-derived Galectin-1 promoted the proliferation, invasion, and survival (anti-apoptotic effects) of PANC-1 cells. We also showed PSC-derived Galectin-1 induced EMT of PANC-1 cells and activated the NF-кB pathway in vitro. Our mixed (PSCs and PANC-1 cells) mouse orthotopic xenograft model indicated that overexpression of Galectin-1 in PSCs significantly promoted the proliferation, growth, invasion, and liver metastasis of the transplanted tumor. Moreover, Galectin-1 overexpression in PSCs was strongly associated with increased expression of EMT markers in both the orthotopic xenograft tumor in the pancreas and in metastatic lesions of naked mice. We conclude that PSC-derived Galectin-1 promotes the malignant behavior of PDAC by inducing EMT via activation of the NF-κB pathway. Our results suggest that targeting Galectin-1 in PSCs could represent a promising therapeutic strategy for PDAC progression and metastasis.
Collapse
Affiliation(s)
- Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Zhongxu Yuan
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei, Anhui Province, P.R. China
| | - Hongpeng Zhang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Yang Chong
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Yuqin Huang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Jie Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Qingquan Xiong
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Qi Wu
- Department of Clinical Medicine, Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Ying Tian
- Department of Clinical Medicine, Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Yongdie Lu
- Department of Clinical Medicine, Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Xiao Ge
- Department of Clinical Medicine, Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Wenjing Shen
- Department of Clinical Medicine, Medical College of Yangzhou University, Yangzhou, P.R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
36
|
Han C, Zheng W, Ge M, Wang K, Xiang Y, Wang P. Downregulation of cyclin-dependent kinase 8 by microRNA-148a suppresses proliferation and invasiveness of papillary thyroid carcinomas. Am J Cancer Res 2017; 7:2081-2090. [PMID: 29119056 PMCID: PMC5665854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023] Open
Abstract
MicroRNAs (miRNAs) are important gene regulators that play key roles in tumor genesis. In this study, we investigate the role of miR-148a in the development of papillary thyroid cancer (PTC). Data from the cancer genome atlas (TCGA) indicate that miR-148a is downregulated in PTC tissues; we also find that miR-148a is downregulated in tissue samples from PTC patients and PTC cell lines. Overexpression of miR-148a significantly suppresses PTC cell proliferation, migration and invasiveness in vitro, and inhibits tumor growth in vivo as well. We have identified the cyclin-dependent kinase 8 (CDK8) gene as a direct target of miR-148a using the online software packages TargetScan and miRanda. Overexpression of miR-148a significantly represses CDK8 expression by directly targeting the 3'-untranslated region (3'-UTR) of the CDK8 gene in PTC tissues and cell lines; overexpression of CDK8 reverses the inhibitory effects of miR-148a on PTC cell growth, migration and invasiveness. Taken together, our results indicate that miR-148a functions as a tumor suppressor in PTC by repressing CDK8 expression.
Collapse
Affiliation(s)
- Chun Han
- Department of Head & Neck Surgery, Zhejiang Cancer HospitalHangzhou 310022, China
| | - Weihui Zheng
- Department of Head & Neck Surgery, Zhejiang Cancer HospitalHangzhou 310022, China
| | - Minghua Ge
- Department of Head & Neck Surgery, Zhejiang Cancer HospitalHangzhou 310022, China
| | - Kejing Wang
- Department of Head & Neck Surgery, Zhejiang Cancer HospitalHangzhou 310022, China
| | - Yangfeng Xiang
- Department of Head & Neck Surgery, Zhejiang Cancer HospitalHangzhou 310022, China
| | - Peng Wang
- Department of Head & Neck Surgery, Zhejiang Cancer HospitalHangzhou 310022, China
| |
Collapse
|
37
|
Bacigalupo ML, Carabias P, Troncoso MF. Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression. World J Gastroenterol 2017; 23:5266-5281. [PMID: 28839427 PMCID: PMC5550776 DOI: 10.3748/wjg.v23.i29.5266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 06/18/2017] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer is a group of tumors that affect multiple sites of the digestive system, including the stomach, liver, colon and pancreas. These cancers are very aggressive and rapidly metastasize, thus identifying effective targets is crucial for treatment. Galectin-1 (Gal-1) belongs to a family of glycan-binding proteins, or lectins, with the ability to cross-link specific glycoconjugates. A variety of biological activities have been attributed to Gal-1 at different steps of tumor progression. Herein, we summarize the current literature regarding the roles of Gal-1 in gastrointestinal malignancies. Accumulating evidence shows that Gal-1 is drastically up-regulated in human gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic ductal adenocarcinoma tissues, both in tumor epithelial and tumor-associated stromal cells. Moreover, Gal-1 makes a crucial contribution to the pathogenesis of gastrointestinal malignancies, favoring tumor development, aggressiveness, metastasis, immunosuppression and angiogenesis. We also highlight that alterations in Gal-1-specific glycoepitopes may be relevant for gastrointestinal cancer progression. Despite the findings obtained so far, further functional studies are still required. Elucidating the precise molecular mechanisms modulated by Gal-1 underlying gastrointestinal tumor progression, might lead to the development of novel Gal-1-based diagnostic methods and/or therapies.
Collapse
|
38
|
Epigenetic Bases of Aberrant Glycosylation in Cancer. Int J Mol Sci 2017; 18:ijms18050998. [PMID: 28481247 PMCID: PMC5454911 DOI: 10.3390/ijms18050998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as “glycogenes“. The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code.
Collapse
|
39
|
Shimizu D, Inokawa Y, Sonohara F, Inaoka K, Nomoto S. Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors. Oncol Rep 2017; 37:2527-2542. [DOI: 10.3892/or.2017.5541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
40
|
Dhar S, Kumar A, Gomez CR, Akhtar I, Hancock JC, Lage JM, Pound CR, Levenson AS. MTA1-activated Epi-microRNA-22 regulates E-cadherin and prostate cancer invasiveness. FEBS Lett 2017; 591:924-933. [PMID: 28231399 DOI: 10.1002/1873-3468.12603] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/14/2022]
Abstract
We have previously shown that metastasis-associated protein 1 (MTA1), a chromatin remodeler, plays an important role in prostate cancer invasiveness, likely through regulation of epithelial-to-mesenchymal transition. Here, we identified miR-22 as an epigenetic-microRNA (Epi-miR) directly induced by MTA1 and predicted to target E-cadherin. Loss-of-function and overexpression studies of MTA1 reinforced its regulatory role in miR-22 expression. MiR-22 directly targets the 3'-untranslated region of E-cadherin, and ectopic overexpression of miR-22 diminishes E-cadherin expression. Overexpression of miR-22 in prostate cancer cells promotes cell invasiveness and migration. Meta-analysis of patient tumor samples indicates a positive correlation between MTA1 and miR-22, supporting their inhibitory effect on E-cadherin expression. Our findings implicate the MTA1/Epi-miR-22/E-cadherin axis as a new epigenetic signaling pathway that promotes tumor invasion in prostate cancer.
Collapse
Affiliation(s)
- Swati Dhar
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- School of Medicine-Department of Radiation/Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Avinash Kumar
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Christian R Gomez
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- School of Medicine-Department of Radiation/Oncology, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Israh Akhtar
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - John C Hancock
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Janice M Lage
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charles R Pound
- Division of Urology, Department of Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|