1
|
Liu L, Wang L, Hao N, Du N, Li Y, Kang S. miRNA-1229-5p promotes migration and invasion and suppresses apoptosis of endometrial cells via the STMN1/p38 MAPK axis in endometriosis. Gene 2025; 950:149385. [PMID: 40037422 DOI: 10.1016/j.gene.2025.149385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Emerging evidence suggests that aberrantly expressed microRNAs (miRNAs) participate in endometriosis pathogenesis. miR-1229-5p participates in the pathogenesis of several disease, but its precise role and mechanism in endometriosis is unclear. METHODS Endometrial tissues were obtained from patients with endometriosis and healthy controls. RT-qPCR and western blotting were employed to detect the expression levels of genes and proteins, respectively. Transcriptome sequencing and luciferase reporter assay were utilized to identify the target of miR-1229-5p. CCK-8, transwell assay, wound healing assay and flow cytometry assay were performed to evaluate the functional roles of miR-1229-5p. Finally, the clinical significance of miR-1229-5p was furtherly analyzed. RESULTS MiR-1229-5p was upregulated in ectopic endometrium of ovarian endometriosis patients (n = 60) compared to normal endometria of controls (n = 40), and its expression also served as an indicator for endometriosis severity. STMN1 was identified as the target of miR-1229-5p by luciferase experiments, and its expression was significantly downregulated in ectopic endometrium. Functionally, miR-1229-5p overexpression promoted migration, invasion, and inhibited apoptosis of ESCs and Ishikawa cells. Meanwhile, upregulation of miR-1229-5p also facilitated the protein expression of Bcl-2, MMP2, MMP9, N-cadherin, and ZEB1, and repressed the protein levels of Bax and E-cadherin. Whereas downregulation of miR-1229-5p exerted opposite effects. Importantly, STMN1 overexpression could partially reverse the effects of miR-1229-5p upregulation. Mechanistically, miR-1229-5p activates the p38 mitogen-activated protein kinase (p38 MAPK) signaling via targeting STMN1. CONCLUSION The newly identified miR-1229-5p-STMN1-p38 MAPK axis illustrates the molecular mechanism of endometriosis progression and offers a potential therapeutic target for treating endometriosis.
Collapse
Affiliation(s)
- Lusha Liu
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lixian Wang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Hao
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Naiyi Du
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Li
- Department of Molecular Biology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shan Kang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Singharajkomron N, Seephan S, Iksen I, Chantaravisoot N, Wongkongkathep P, Hayakawa Y, Pongrakhananon V. CAMSAP3-mediated regulation of HMGB1 acetylation and subcellular localization in lung cancer cells: Implications for cell death modulation. Biochim Biophys Acta Gen Subj 2024; 1868:130614. [PMID: 38598971 DOI: 10.1016/j.bbagen.2024.130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Deregulation of cell death is a common characteristic of cancer, and resistance to this process often occurs in lung cancer. Understanding the molecular mechanisms underlying an aberrant cell death is important. Recent studies have emphasized the involvement of calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) in lung cancer aggressiveness, its influence on cell death regulation remains largely unexplored. METHODS CAMSAP3 was knockout in lung cancer cells using CRISPR-Cas9 system. Cell death and autophagy were evaluated using MTT and autophagic detection assays. Protein interactions were performed by proteomic analysis and immunoprecipitation. Protein expressions and their cytoplasmic localization were analyzed through immunoblotting and immunofluorescence techniques. RESULTS This study reveals a significant correlation between low CAMSAP3 expression and poor overall survival rates in lung cancer patients. Proteomic analysis identified high mobility group box 1 (HMGB1) as a candidate interacting protein involved in the regulation of cell death. Treatment with trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs) resulted in increased HMGB1 acetylation and its translocation to the cytoplasm and secretion, thereby inducing autophagic cell death. However, this process was diminished in CAMSAP3 knockout lung cancer cells. Mechanistically, immunoprecipitation indicated an interaction between CAMSAP3 and HMGB1, particularly with its acetylated form, in which this complex was elevated in the presence of TSA. CONCLUSIONS CAMSAP3 is prerequisite for TSA-mediated autophagic cell death by interacting with cytoplasmic acetylated HMGB1 and enhancing its release. SIGNIFICANT This finding provides molecular insights into the role of CAMSAP3 in regulating cell death, highlighting its potential as a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Natsaranyatron Singharajkomron
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suthasinee Seephan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Iksen Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacy, Sekolah Tinggi Ilum Kesehatan Senior Medan, Medan 20141, Indonesia
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piriya Wongkongkathep
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Aksoy A, Varoglu A, Onalan EE, Tektemur A, Artas G, Koc M, Cakmak M, Aydin S, Kilic M, Ulas M. The knockdown of stathmin with si-RNA inhibits invasion of mesothelioma. Tissue Cell 2024; 87:102303. [PMID: 38244401 DOI: 10.1016/j.tice.2024.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND To investigate the mechanism of action of stathmin1 (STMN1) in mesothelioma (MSM) and whether it has any role in its treatment. METHODS STMN1 expression was examined using immunohistochemistry in biopsy tissues taken from MSM patients. The relationships between the levels of STMN1 expression in the pathology preparations of MSM patients, and the clinicopathological characteristics of these patients, and their survival times were investigated. Transfection of STMN1-specific siRNA into SPC212 cells was compared to negative control siRNAs. The mRNA levels of genes that may play a role in invasion, apoptosis, and autophagy were evaluated by RT-PCR. RESULTS The expression of STMN1 was shown to be high in MSM tissues (p < 0.05). It was found that the only independent predictor factor affecting the survival time of MSM patients was the disease stage (p < 0.05). STMN1 was significantly reduced after siRNA intervention (81.5%). STMN1 with specific siRNA has been shown to suppress invasion by reducing the mRNA levels of cadherin-6 (CDH6), fibroblast growth factor-8 (FGF8), hypoxia-inducible factor 1 (HIF1A), matrix metallopeptidase 1-2 (gelatinase A) (MMP1-2), and TIMP metallopeptidase inhibitor 2 (TIMP2), which are important markers for invasion. Although the expression of apoptosis and autophagy-related genes, caspase-2 (Casp2) and LC-3, was reduced by silencing STMN1 with specific siRNA in western blot analysis, this effect was not observed in PCR results. CONCLUSIONS Immunohistochemical analysis of STMN1 may contribute to the differential diagnosis of MSM, and STMN1 may also be considered as a potential therapeutic target in the early invasive stage of MSM therapy.
Collapse
Affiliation(s)
- Asude Aksoy
- Department of Medical Oncology, University of Health Sciences, Fethi Sekin City Hospital SUAM, Elazig, Turkey.
| | - Asuman Varoglu
- Department of Neurology, Medical Faculty, Medeniyet University, Istanbul, Turkey
| | - Ebru Etem Onalan
- Department of Medical Biology and Genetics, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology and Genetics, Firat University, Elazig, Turkey
| | - Gokhan Artas
- Department of Pathology, Medical Faculty, Firat University, Elazig, Turkey
| | - Mustafa Koc
- Department of Radiology, Medical Faculty, Firat University, Elazig, Turkey
| | - Muharrem Cakmak
- Department of Thoracic Surgery, Medical Faculty, Firat University, Elazig, Turkey
| | - Siyami Aydin
- Department of Thoracic Surgery, Medical Faculty, Firat University, Elazig, Turkey
| | - Murat Kilic
- Department of Thoracic Surgery, Inonu University, Malatya, Turkey
| | - Mustafa Ulas
- Department of Physiology, Medical Faculty, Firat University, Elazig, Turkey
| |
Collapse
|
4
|
Zeng L, Lyu X, Yuan J, Chen Y, Wen H, Zhang L, Shi J, Liu B, Li W, Yang S. STMN1 Promotes Tumor Metastasis in Non-small Cell Lung Cancer Through Microtubule-dependent And Nonmicrotubule-dependent Pathways. Int J Biol Sci 2024; 20:1509-1527. [PMID: 38385074 PMCID: PMC10878155 DOI: 10.7150/ijbs.84738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/15/2023] [Indexed: 02/23/2024] Open
Abstract
The relationship between STMN1 and cancer metastasis is controversial. The purpose of this study was to explore the role and mechanism of STMN1 in NSCLC metastasis. In this study, we reported that STMN1 was highly expressed in NSCLC tissues and associated with poor prognosis. Both in vivo and in vitro functional assays confirmed that STMN1 promoted NSCLC metastasis. Further studies confirmed that STMN1 promoted cell migration by regulating microtubule stability. The results of Co-IP and LC‒MS/MS illustrated that STMN1 interacts with HMGA1. HMGA1 decreases microtubule stability by regulating the phosphorylation level of STMN1 at Ser16 and Ser38 after interacting with STMN1. This result suggested that STMN1 could be activated by HMGA1 to further promote NSCLC metastasis. Meanwhile, it has been found that STMN1 could promote cell migration by activating the p38MAPK/STAT1 signaling pathway, which is not dependent on microtubule stability. However, activating p38MAPK can decrease microtubule stability by promoting the dephosphorylation of STMN1 at ser16. A positive feedback loop was formed between STMN1 and p38MAPK to synergistically promote cell migration. In summary, our study demonstrated that STMN1 could promote NSCLC metastasis through microtubule-dependent and nonmicrotubule-dependent mechanisms. STMN1 has the potential to be a therapeutic target to inhibit metastasis.
Collapse
Affiliation(s)
- Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, P.R. China
| | - Xin Lyu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, P.R. China
| | - Jingyan Yuan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, P.R. China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, P.R. China
| | - Haimei Wen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, P.R. China
| | - Lei Zhang
- Department of Pharmacy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China, Xi'an 710061, Shaanxi, P.R. China
| | - Jie Shi
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, P.R. China
| | - Boxuan Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, P.R. China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, P.R. China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, Shaanxi, P.R. China
| |
Collapse
|
5
|
Yang X, Wang H, Zhang L, Yao S, Dai J, Wen G, An J, Jin H, Du Q, Hu Y, Zheng L, Chen X, Yi Z, Tuo B. Novel roles of karyopherin subunit alpha 2 in hepatocellular carcinoma. Biomed Pharmacother 2023; 163:114792. [PMID: 37121148 DOI: 10.1016/j.biopha.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Hepatocellular carcinoma is the most common type of liver cancer and associated with a high fatality rate. This disease poses a major threat to human health worldwide. A considerable number of genetic and epigenetic factors are involved in the development of hepatocellular carcinoma. However, the molecular mechanism underlying the progression of hepatocellular carcinoma remains unclear. Karyopherin subunit alpha 2 (KPNA2), also termed importin α1, is a member of the nuclear transporter family. In recent years, KPNA2 has been gradually linked to the nuclear transport pathway for a variety of tumor-associated proteins. Furthermore, it promotes tumor development by participating in various pathophysiological processes such as cell proliferation, apoptosis, immune response, and viral infection. In hepatocellular carcinoma, it has been found that KPNA2 expression is significantly higher in liver cancer tissues versus paracancerous tissues. Moreover, it has been identified as a marker of poor prognosis and early recurrence in patients with hepatocellular carcinoma. Nevertheless, the role of KPNA2 in the development of hepatocellular carcinoma remains to be determined. This review summarizes the current knowledge on the pathogenesis and role of KPNA2 in hepatocellular carcinoma, and provides new directions and strategies for the diagnosis, treatment, and prediction of prognosis of this disease.
Collapse
Affiliation(s)
- Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Dai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China; The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
6
|
Yang H. Tau and stathmin proteins in breast cancer: A potential therapeutic target. Clin Exp Pharmacol Physiol 2022; 49:445-452. [PMID: 35066919 DOI: 10.1111/1440-1681.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/26/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer is the most common malignant neoplasm among women, responsible for 30% of all malignant tumours, and the second most significant reason of cancer fatality in women. Treatment failure and tumour recurrence are common outcomes of chemotherapy when patients develop multidrug resistance (MDR). New therapeutic methods like molecularly targeted therapeutic interventions need a thorough understanding of malignant tumour's molecular processes. Numerous studies published in the last few years indicate that stathmin and tubulin-associated units (tau) are upregulated in a range of human malignant tumours, suggesting that they may enhance the incidence and progression of malignancies. By promoting cancer cell reproduction, infiltration and generating drug resistance, these proteins aid in the disease's development. Existing information on the expression of tau protein and stathmin in breast cancer, as well as their involvement in treatment methods, is summarized in this literature review.
Collapse
Affiliation(s)
- Hanzhao Yang
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Cen R, Wang L, He Y, Yue C, Tan Y, Li L, Lei X. Dermal Fibroblast Migration and Proliferation Upon Wounding or Lipopolysaccharide Exposure is Mediated by Stathmin. Front Pharmacol 2022; 12:781282. [PMID: 35153746 PMCID: PMC8831846 DOI: 10.3389/fphar.2021.781282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The dermal fibroblast is a crucial executor involved in wound healing, and lipopolysaccharide is a key factor in initiating the migration and proliferation of the dermal fibroblasts, followed by wound healing. However, the underlying molecular mechanism is still unknown. In this study, we demonstrated that stathmin increased concomitantly with p38/MAPK pathway activation by lipopolysaccharide stimulation of the human dermal fibroblast (HDF), which induced microtubule (MT) depolymerization followed by increased HDF migration and proliferation. In contrast, the application of taxol, the small interfering RNA transfection of stathmin, or the application of the p38/MAPK inhibitor SB203580 suppressed MT depolymerization and HDF migration and proliferation. Additionally, the overexpression of a MKK6(Glu) mutant, which constitutively activated p38/MAPK, resulted in MT depolymerization and, subsequently, promoted HDF migration and proliferation. Our data reveal a crucial role of stathmin in HDF migration and proliferation. These findings will provide new targets and strategies for clinical interventions in wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingfei Li
- *Correspondence: Lingfei Li, ; Xia Lei, .
| | - Xia Lei
- *Correspondence: Lingfei Li, ; Xia Lei, .
| |
Collapse
|
8
|
Yoshie M, Ishida A, Ohashi H, Nakachi N, Azumi M, Tamura K. Stathmin dynamics modulate the activity of eribulin in breast cancer cells. Pharmacol Res Perspect 2021; 9:e00786. [PMID: 34176226 PMCID: PMC8236080 DOI: 10.1002/prp2.786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 12/02/2022] Open
Abstract
Stathmin, a phosphoprotein that modulates microtubule dynamics, is highly expressed in breast cancer cells. Eribulin, a microtubule‐depolymerizing agent, is used to treat patients with advanced breast cancer. However, the detailed mechanisms underlying the action of eribulin during microtubule catastrophe, and the interaction between eribulin and stathmin dynamics, remain unclear. Here, we investigated the role of stathmin in the antiproliferative activity of eribulin in breast cancer cells. Eribulin induced phosphorylation of stathmin in MCF7 and MDA‐MB‐231 cells; this was attenuated by an inhibitor of protein kinase A (H89) and an inhibitor of Ca2+/calmodulin‐dependent kinase II (KN62). In addition, expression of phosphorylated stathmin was reduced by the protein phosphatase PP2A activator FTY720 but increased by the PP2A inhibitor okadaic acid. Of note, expression of PP2A subunits in eribulin‐treated cells decreased, although eribulin did not affect the phosphatase activity of recombinant PP2A directly. Furthermore, the antiproliferative effect of eribulin was stronger in stathmin‐overexpressing cells. These results suggest that stathmin dynamics are closely associated with the antiproliferative effects of eribulin and stathmin is a possible biomarker for predicting the therapeutic effects of eribulin in breast cancer patients.
Collapse
Affiliation(s)
- Mikihiro Yoshie
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Akari Ishida
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Haruka Ohashi
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Nami Nakachi
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Mana Azumi
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
9
|
Kuru Hİ, Buyukozkan M, Tastan O. PRER: A patient representation with pairwise relative expression of proteins on biological networks. PLoS Comput Biol 2021; 17:e1008998. [PMID: 34038408 PMCID: PMC8238204 DOI: 10.1371/journal.pcbi.1008998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 06/28/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022] Open
Abstract
Changes in protein and gene expression levels are often used as features in predictive modeling such as survival prediction. A common strategy to aggregate information contained in individual proteins is to integrate the expression levels with the biological networks. In this work, we propose a novel patient representation where we integrate proteins’ expression levels with the protein-protein interaction (PPI) networks: Patient representation with PRER (Pairwise Relative Expressions with Random walks). PRER captures the dysregulation patterns of proteins based on the neighborhood of a protein in the PPI network. Specifically, PRER computes a feature vector for a patient by comparing the source protein’s expression level with other proteins’ levels that are within its neighborhood. The neighborhood of the source protein is derived by biased random-walk strategy on the network. We test PRER’s performance in survival prediction task in 10 different cancers using random forest survival models. PRER yields a statistically significant predictive performance in 9 out of 10 cancers when compared to the same model trained with features based on individual protein expressions. Furthermore, we identified the pairs of proteins that their interactions are predictive of patient survival but their individual expression levels are not. The set of identified relations provides a valuable collection of protein biomarkers with high prognostic value. PRER can be used for other complex diseases and prediction tasks that use molecular expression profiles as input. PRER is freely available at: https://github.com/hikuru/PRER. Cancer remains to be one of the most prevalent and challenging diseases to treat. Cancer is a complex disease with several disrupted molecular mechanisms at play. The protein expression level is a fundamental indicator of how the molecular mechanisms are altered in each tumor. Predicting patient survival based on the changes is essential for understanding the cancer mechanisms and arriving at patient-specific treatment plans. For this task, existing machine learning models are used, such as random survival forest, which requires a feature-based representation of each patient based on her tumors. Most of these models use the individual molecular quantities of the tumors. However, cancer is a complex disease in which molecular mechanisms are dysregulated in various ways. In this work, we present a new patient representation scheme in which we integrate each tumor’s protein expression levels with their neighboring proteins’ expression levels in a protein-protein interaction network to capture patient-specific dysregulation patterns. Our results suggest that proteins’ relative expressions are more predictive than their individual expressions. We also analyze which of the protein interactions are more predictive of patient survival. The identified set of important protein interactions can be potentially used for cancer prognosis.
Collapse
Affiliation(s)
| | | | - Oznur Tastan
- Faculty of Natural Sciences and Engineering, Sabanci University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
10
|
Oncoprotein 18 is necessary for malignant cell proliferation in bladder cancer cells and serves as a G3-specific non-invasive diagnostic marker candidate in urinary RNA. PLoS One 2020; 15:e0229193. [PMID: 32614890 PMCID: PMC7332083 DOI: 10.1371/journal.pone.0229193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Background Urine-based diagnostics indicated involvement of oncoprotein 18 (OP18) in bladder cancer. In cell culture models we investigated the role of OP18 for malignant cell growth. Methods We analyzed 113 urine samples and investigated two human BCa cell lines as a dual model: RT-4 and ECV-304, which represented differentiated (G1) and poorly differentiated (G3) BCa. We designed specific siRNA for down-regulation of OP18 in both cell lines. Phenotypes were characterized by cell viability, proliferation, and expression of apoptosis-related genes. Besides, sensitivity to cisplatin treatment was evaluated. Results Analysis of urine samples from patients with urothelial BCa revealed a significant correlation of the RNA-ratio OP18:uroplakin 1A with bladder cancer. High urinary ratios were mainly found in moderately to poorly differentiated tumors (grade G2-3) that were muscle invasive (stage T2-3), whereas samples from patients with more differentiated non-invasive BCa (G1) showed low OP18:UPK1A RNA ratios. Down-regulation of OP18 expression in ECV-304 shifted its phenotype towards G1 state. Further, OP18-directed siRNA induced apoptosis and increased chemo-sensitivity to cisplatin. Conclusions This study provides conclusive experimental evidence for the link between OP18-derived RNA as a diagnostic marker for molecular staging of BCa in non-invasive urine-based diagnostics and the patho-mechanistic role of OP18 suggesting this gene as a therapeutic target.
Collapse
|
11
|
Mass Spectrometric Comparison of HPV-Positive and HPV-Negative Oropharyngeal Cancer. Cancers (Basel) 2020; 12:cancers12061531. [PMID: 32545200 PMCID: PMC7352546 DOI: 10.3390/cancers12061531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) consist of two distinct biological entities. While the numbers of classical, tobacco-induced HNSCC are declining, tumors caused by human papillomavirus (HPV) infection are increasing in many countries. HPV-positive HNSCC mostly arise in the oropharynx and are characterized by an enhanced sensitivity towards radiotherapy and a favorable prognosis. To identify molecular differences between both entities on the protein level, we conducted a mass spectrometric comparison of eight HPV-positive and nine HPV-negative oropharyngeal tumors (OPSCC). Overall, we identified 2051 proteins, of which 31 were found to be differentially expressed. Seventeen of these can be assorted to three functional groups, namely DNA replication, nuclear architecture and cytoskeleton regulation, with the differences in the last group potentially reflecting an enhanced migratory and invasive capacity. Furthermore, a number of identified proteins have been described to directly impact on DNA double-strand break repair or radiation sensitivity (e.g., SLC3A2, cortactin, RBBP4, Numa1), offering explanations for the differential prognosis. The unequal expression of three proteins (SLC3A2, MCM2 and lamin B1) was confirmed by immunohistochemical staining using a tissue microarray containing 205 OPSCC samples. The expression levels of SLC3A2 and lamin B1 were found be of prognostic relevance in patients with HPV-positive and HPV-negative OPSCC, respectively.
Collapse
|
12
|
Zyxin (ZYX) promotes invasion and acts as a biomarker for aggressive phenotypes of human glioblastoma multiforme. J Transl Med 2020; 100:812-823. [PMID: 31949244 DOI: 10.1038/s41374-019-0368-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by highly invasive growth, which leads to extensive infiltration and makes complete tumor excision difficult. Since cytoskeleton proteins are related to leading processes and cell motility, and through analysis of public GBM databases, we determined that an actin-interacting protein, zyxin (ZYX), may involved in GBM invasion. Our own glioma cohort as well as the cancer genome atlas (TCGA), Rembrandt, and Gravendeel databases consistently showed that increased ZYX expression was related to tumor progression and poor prognosis of glioma patients. In vitro and in vivo experiments further confirmed the oncogenic roles of ZYX and demonstrated the role of ZYX in GBM invasive growth. Moreover, RNA-seq and mass-spectrum data from GBM cells with or without ZYX revealed that stathmin 1 (STMN1) was a potential target of ZYX. Subsequently, we found that both mRNA and protein levels of STMN1 were positively regulated by ZYX. Functionally, STMN1 not only promoted invasion of GBM cells but also rescued the invasion repression caused by ZYX loss. Taken together, our results indicate that high ZYX expression was associated with worse prognosis and highlighted that the ZYX-STMN1 axis might be a potential therapeutic target for GBM.
Collapse
|
13
|
Khazaei G, Shamsabadi FT, Yamchi A, Golalipour M, Jhingan GD, Shahbazi M. Proteomics evaluation of MDA-MB-231 breast cancer cells in response to RNAi-induced silencing of hPTTG. Life Sci 2019; 239:116873. [PMID: 31521689 DOI: 10.1016/j.lfs.2019.116873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
AIMS Breast cancer is the most common cancer in women worldwide. Several genes are up-regulated in breast cancer such as human pituitary tumor transforming gene (hPTTG). This study aims to evaluate cell proliferation and the downstream expression pattern of hPTTG1 gene at the mRNA and protein levels after specific down-regulation of hPTTG1 by siRNA. MAIN METHODS The human breast cancer MDA-MB-231 cell line was transfected with siRNA against hPTTG1. The mRNA and protein expression levels were examined by Real-time PCR and Western blot, respectively. The cell proliferation was assayed by MTS. To investigate the pattern of protein expression, total cellular protein was analyzed by 2D gel electrophoresis and mass spectroscopy. Subsequently, the possible biological consequences were determined by the bioinformatics databases. KEY FINDINGS Subsequent of hPTTG1 silencing in the MDA_MB-231 cells, the proliferation of cells decreased obviously. In response to hPTTG1 silencing, the levels mRNA and protein were effectively down-regulated 80% and 50%, respectively, at 48 h post-transfection. The proteomics evidenced that PTTG1 increased the expression of 5 proteins. The reduced expression of PTTG1 was functionally involved in hypoxia (NPM1, ENO1), cell proliferation and apoptosis (ENO1, NPM1, NME1, STMN1), and metastasis (NPM1, NME1). SIGNIFICANCE We identified the hPTTG1-regulated proteins and its molecular mechanism in pathogenesis of breast cancer. Further study emphasis is to understand the association of hPTTG1 with other genes in cancer progression. This novel modality might also consider for identification of targeted drugs, prognosis and follow up in breast cancer gene therapy.
Collapse
Affiliation(s)
- Ghasem Khazaei
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh T Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahad Yamchi
- Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gagan Deep Jhingan
- VProteomics, K-37A, Ground Floor Green Park Main, New Delhi 110016, India
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; AryaTinaGene Biopharmaceutical Company, Gorgan, Iran.
| |
Collapse
|
14
|
Drucker E, Holzer K, Pusch S, Winkler J, Calvisi DF, Eiteneuer E, Herpel E, Goeppert B, Roessler S, Ori A, Schirmacher P, Breuhahn K, Singer S. Karyopherin α2-dependent import of E2F1 and TFDP1 maintains protumorigenic stathmin expression in liver cancer. Cell Commun Signal 2019; 17:159. [PMID: 31783876 PMCID: PMC6883611 DOI: 10.1186/s12964-019-0456-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Background Members of the karyopherin superfamily serve as nuclear transport receptors/adaptor proteins and provide exchange of macromolecules between the nucleo- and cytoplasm. Emerging evidence suggests a subset of karyopherins to be dysregulated in hepatocarcinogenesis including karyopherin-α2 (KPNA2). However, the functional and regulatory role of KPNA2 in liver cancer remains incompletely understood. Methods Quantitative proteomics (LC-MS/MS, ~ 1750 proteins in total) was used to study changes in global protein abundance upon siRNA-mediated KPNA2 knockdown in HCC cells. Functional and mechanistic analyses included colony formation and 2D migration assays, co-immunoprecipitation (CoIP), chromatin immunoprecipitation (ChIP), qRT-PCR, immmunblotting, and subcellular fractionation. In vitro results were correlated with data derived from a murine HCC model and HCC patient samples (3 cohorts, n > 600 in total). Results The proteomic approach revealed the pro-tumorigenic, microtubule (MT) interacting protein stathmin (STMN1) among the most downregulated proteins upon KPNA2 depletion in HCC cells. We further observed that KPNA2 knockdown leads to reduced tumor cell migration and colony formation of HCC cells, which could be phenocopied by direct knockdown of stathmin. As the underlying regulatory mechanism, we uncovered E2F1 and TFDP1 as transport substrates of KPNA2 being retained in the cytoplasm upon KPNA2 ablation, thereby resulting in reduced STMN1 expression. Finally, murine and human HCC data indicate significant correlations of STMN1 expression with E2F1/TFPD1 and with KPNA2 expression and their association with poor prognosis in HCC patients. Conclusion Our data suggest that KPNA2 regulates STMN1 by import of E2F1/TFDP1 and thereby provide a novel link between nuclear transport and MT-interacting proteins in HCC with functional and prognostic significance.
Collapse
Affiliation(s)
- Elisabeth Drucker
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Institute of Pathology, University Medicine Greifswald, Friedrich-Loeffler-Straße 23e, 17475, Greifswald, Germany
| | - Kerstin Holzer
- Institute of Pathology, University Medicine Greifswald, Friedrich-Loeffler-Straße 23e, 17475, Greifswald, Germany
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juliane Winkler
- Department of Anatomy, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Diego F Calvisi
- Institute of Pathology, University Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Eva Eiteneuer
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Alessandro Ori
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany.,Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany. .,Institute of Pathology, University Medicine Greifswald, Friedrich-Loeffler-Straße 23e, 17475, Greifswald, Germany.
| |
Collapse
|
15
|
Wang X, Zhou Z, Zhang T, Wang M, Xu R, Qin S, Zhang S. Overexpression of miR-664 is associated with poor overall survival and accelerates cell proliferation, migration and invasion in hepatocellular carcinoma. Onco Targets Ther 2019; 12:2373-2381. [PMID: 30992673 PMCID: PMC6445241 DOI: 10.2147/ott.s188658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. This study aimed to investigate the expression patterns of microRNA-664 (miR-664) in HCC tissues and cells, and assess its clinical significance and functional role in HCC. Patients and methods One hundred and thirty-four paired HCC and non-cancerous tissues were collected from patients who underwent surgery in Qianfoshan Hospital affiliated to Shandong University (Shandong, China) between 2009 and 2012. Expression of miR-664 was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Prognostic value of miR-664 in HCC was evaluated using Kaplan–Meier survival analysis and Cox regression analysis. Cell proliferation was analyzed using the CCK-8 assay, and cell migration and invasion of HCC cells was evaluated by the Transwell assay. Results Expression of miR-664 was significantly upregulated in HCC tissues and cells when compared with the normal controls (all P<0.05). MiR-664 expression was associated with lymph node metastasis, TNM stage and differentiation (all P<0.05) in the HCC patients. High miR-664 expression predicted poor overall survival (log-rank P=0.004) and acted as an independent prognostic factor (HR =1.945, 95% CI=1.078–3.508, P=0.027). According to cell experiments, the upregulation of miR-664 could promote, whereas the downregulation of miR-664 could inhibit proliferation, migration and invasion of HCC cells (all P<0.05). SIVA1 was predicted as a direct target gene of miR-664 in HCC. Conclusion All data indicated that overexpression of miR-664 is associated with poor prognosis of HCC patients, and may enhance tumor progression of HCC by targeting SIVA1. MiR-664 may be a candidate therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xianming Wang
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Zhengtong Zhou
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Tao Zhang
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Minghai Wang
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Rongwei Xu
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Shiyong Qin
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| | - Shuguang Zhang
- Department of General Surgery, Qianfoshan Hospital Affiliated to Shandong University, Shandong 250014, China, ;
| |
Collapse
|
16
|
Rong B, Nan Y, Liu H, Gao W. Increased stathmin correlates with advanced stage and poor survival of non-small cell lung cancer. Cancer Biomark 2018; 19:35-43. [PMID: 28282798 DOI: 10.3233/cbm-160239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies show that overexpression of stathmin involved in the malignant biological behavior of lung cancer. This investigation is to disclose the expression status of stathmin in non-small cell lung cancer (NSCLC) and its clinical value for the diagnosis and prognosis to lung cancer. METHODS The expression of stathmin in cells and tissues of NSCLC was examined using immunohistochemistry (IHC), in-situ hybridization (ISH), and Western blot. The correlation between stathmin expression and survival of lung cancer patients was evaluated by a Kaplan-Meier method and the multiple regression analysis. RESULTS NSCLC tissues and cells showed an overexpression of stathmin compared with normal lung tissues and cells (p< 0.05). And the expression level of stathmin was significantly associated with lung adenocarcinoma (LAC) (p< 0.05), lymphatic invasion (p< 0.05) and advanced stages of NSCLC (p< 0.05). Moreover, overexpression of stathmin predicted a reduced survival (p<0.05). CONCLUSION Increased stathmin correlated with pathologic grade, lymphatic invasion, advanced stage and poor survival of NSCLC, which indicated that stathmin could serve as a potential biomarker of NSCLC.
Collapse
Affiliation(s)
- Biaoxue Rong
- Department of Respiratory Medicine, First Affiliated Hospital, Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Yandong Nan
- Department of Respiratory Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hua Liu
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenlong Gao
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|