1
|
Tan G, Spillane KM, Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. BIOLOGY 2023; 12:1079. [PMID: 37626965 PMCID: PMC10452210 DOI: 10.3390/biology12081079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.
Collapse
Affiliation(s)
- Ge Tan
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | | | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
2
|
Koh EK, Lee HR, Son WC, Park GY, Kim J, Bae JH, Park YS. Combinatorial immunotherapy with gemcitabine and ex vivo-expanded NK cells induces anti-tumor effects in pancreatic cancer. Sci Rep 2023; 13:7656. [PMID: 37169953 PMCID: PMC10175562 DOI: 10.1038/s41598-023-34827-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Pancreatic cancer is difficult to diagnose at the initial stage and is often discovered after metastasis to nearby organs. Gemcitabine is currently used as a standard treatment for pancreatic cancer. However, since chemotherapy for pancreatic cancer has not yet reached satisfactory therapeutic results, adjuvant chemotherapy methods are attempted. It can be expected that combining immune cell therapy with existing anticancer drug combination treatment will prevent cancer recurrence and increase survival rates. We isolated natural killer (NK) cells and co-cultured them with strongly activated autologous peripheral blood mononuclear cells (PBMCs) as feeder cells, activated using CD3 antibody, IFN-r, IL-2, and γ-radiation. NK cells expanded in this method showed greater cytotoxicity than resting NK cells, when co-cultured with pancreatic cancer cell lines. Tumor growth was effectively inhibited in a pancreatic cancer mouse xenograft model. Therapeutic efficacy was increased by using gemcitabine and erlotinib in combination. These findings suggest that NK cells cultured by the method proposed here have excellent anti-tumor activity. We demonstrate that activated NK cells can efficiently inhibit pancreatic tumors when used in combination with gemcitabine-based therapy.
Collapse
Affiliation(s)
- Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Ga-Young Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Juhee Kim
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Jae-Ho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea.
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea.
| |
Collapse
|
3
|
Zhu Y, Zhao Z, Xue M, Wang D, Su G, Ju X, Yang Q, Zhang S, Fan D, Zhu H, Yu M, Li Y, Kong L, Zhou H. Ciclopirox olamine sensitizes leukemia cells to natural killer cell-mediated cytolysis by upregulating NKG2DLs via the Akt signaling pathway. Biochem Biophys Res Commun 2023; 659:10-19. [PMID: 37030020 DOI: 10.1016/j.bbrc.2023.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The activating receptor natural killer group 2D (NKG2D) expressed by Natural killer (NK) cells functions as a "master-switch" in governing the awakening status of NK cells. The NKG2D-mediated cytotoxicity has been declared to be related with the expression levels of NKG2D ligands (NKG2DLs) expressed on tumor cells. Therefore, selective induction of NKG2DLs could be a reliable approach to enhance the efficacy of NK cell-mediated immunotherapy. Our existing study demonstrated that Ciclopirox Olamine (CPX), an off-patent antifungal agent, effectively elevated the expression of NKG2DLs on leukemia cells and sensitized leukemia cells to NK-cell mediated cytolysis. Induction of ROS production and AKT phosphorylation by CPX is essential for the up-regulation of NKG2DLs expressions. Inhibition of AKT by using AKT inhibitor MK2206 decreased both NKG2DLs expressions and NK cell cytotoxicity. These data indicated that increased sensitivity of CPX-treated leukemia cells to NK cell cytolysis was attributed to higher NKG2DLs expressions, resulting from activated AKT signaling pathway. Our findings support the ongoing development of CPX as an anti-tumor agent and suggest its promising immunotherapeutic value in the medication of leukemia.
Collapse
|
4
|
Fernández-Torres J, Zamudio-Cuevas Y, Martínez-Nava GA, Martínez-Flores K, Ruíz-Dávila X, Sánchez-Sánchez R. Relationship between rs4349859 and rs116488202 polymorphisms close to MHC-I region and serum urate levels in patients with gout. Mol Biol Rep 2023; 50:4367-4374. [PMID: 36943604 DOI: 10.1007/s11033-023-08359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Gout is the most common inflammatory rheumatic disease and elevated levels of serum urate (SU) are the main cause for its development. Major histocompatibility complex class 1 (MHC-1) plays an important role in the development of multiple inflammatory diseases; however, there is little evidence of its involvement in gout. The present study focused on evaluating the association of the rs4349859 and rs116488202 single nucleotide polymorphisms (SNPs) close to the MHC-1 region in patients with gout. METHODS AND RESULTS One hundred and seventy-six individuals of Mexican origin were included, of which 81 were patients with primary gout and 95 were healthy controls. The rs4349859 and rs116488202 SNPs were genotyped using TaqMan probes by allelic discrimination by real-time PCR. Serum concentrations of biochemical parameters were measured with enzymatic methods. Descriptive statistics were applied and P-values < 0.05 were considered significant. It was observed that the rs4349859 and rs116488202 SNPs showed significant association with the risk of gout (OR = 146, 95%CI = 44.8-480.2, P < 0.01; OR = 2885, 95%CI = 265-31398, P < 0.01, respectively). Our results also showed significantly higher serum SU levels in gout patients with respect to controls (P < 0.01) in the carriers of the GA genotype compared with the GG genotype of the rs4349859 variant, and in the carriers of the CT genotype compared with the CC genotype of the rs116488202 variant. CONCLUSION The study revealed that rs4349859 and rs116488202 SNPs close to MHC-I region confers strong susceptibility to gout in Mexican population, and the heterozygous genotypes of both were associated with higher levels of SU.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico.
- Biology Department, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| | - Yessica Zamudio-Cuevas
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | | | - Karina Martínez-Flores
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | | | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| |
Collapse
|
5
|
Wang J, Hu Y, Liu P, Xu X. Xanthine oxidoreductase mediates genotoxic drug-induced autophagy and apoptosis resistance by uric acid accumulation and TGF-β-activated kinase 1 (TAK1) activation. FASEB J 2023; 37:e22723. [PMID: 36583708 DOI: 10.1096/fj.202201436r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Autophagy is a highly conserved cellular process that profoundly impacts the efficacy of genotoxic chemotherapeutic drugs. TGF-β-activated kinase 1 (TAK1) is a serine/threonine kinase that activates several signaling pathways involved in inducing autophagy and suppressing cell death. Xanthine oxidoreductase (XOR) is a rate-limiting enzyme that converts hypoxanthine to xanthine, and xanthine to uric acid and hydrogen peroxide in the purine catabolism pathway. Recent studies showed that uric acid can bind to TAK1 and prolong its activation. We hypothesized that genotoxic drugs may induce autophagy and apoptosis resistance by activating TAK1 through XOR-generated uric acid. Here, we report that gemcitabine and 5-fluorouracil (5-FU), two genotoxic drugs, induced autophagy in HeLa and HT-29 cells by activating TAK1 and its two downstream kinases, AMP-activated kinase (AMPK) and c-Jun terminal kinase (JNK). XOR knockdown and the XOR inhibitor allopurinol blocked gemcitabine-induced TAK1, JNK, AMPK, and Unc51-like kinase 1 (ULK1)S555 phosphorylation and gemcitabine-induced autophagy. Inhibition of the ATM-Chk pathway, which inhibits genotoxic drug-induced uric acid production, blocked gemcitabine-induced autophagy by inhibiting TAK1 activation. Exogenous uric acid in its salt form, monosodium urate (MSU), induced autophagy by activating TAK1 and its downstream kinases JNK and AMPK. Gene knockdown or the inhibitors of these kinases blocked gemcitabine- and MSU-induced autophagy. Inhibition of autophagy by allopurinol, chloroquine, and 5Z-7-oxozeaenol (5Z), a TAK1-specific inhibitor, enhanced gemcitabine-induced apoptosis. Our study uncovers a previously unrecognized role of XOR in regulating genotoxic drug-induced autophagy and apoptosis and has implications for designing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Jingxiang Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanhua Hu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Penggang Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Wang K, Cadzow M, Bixley M, Leask MP, Merriman ME, Yang Q, Li Z, Takei R, Phipps-Green A, Major TJ, Topless R, Dalbeth N, King F, Murphy R, Stamp LK, de Zoysa J, Wang Z, Shi Y, Merriman TR. A Polynesian-specific copy number variant encompassing the MICA gene associates with gout. Hum Mol Genet 2022; 31:3757-3768. [PMID: 35451026 PMCID: PMC9616569 DOI: 10.1093/hmg/ddac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Gout is of particularly high prevalence in the Māori and Pacific (Polynesian) populations of Aotearoa New Zealand (NZ). Here, we investigated the contribution of common population-specific copy number variation (CNV) to gout in the Aotearoa NZ Polynesian population. Microarray-generated genome-wide genotype data from Aotearoa NZ Polynesian individuals with (n = 1196) and without (n = 1249) gout were analyzed. Comparator population groups were 552 individuals of European ancestry and 1962 of Han Chinese ancestry. Levels of circulating major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) were measured by enzyme-linked immunosorbent assay. Fifty-four CNV regions (CNVRs) appearing in at least 10 individuals were detected, of which seven common (>2%) CNVRs were specific to or amplified in Polynesian people. A burden test of these seven revealed associations of insertion/deletion with gout (odds ratio (OR) 95% confidence interval [CI] = 1.80 [1.01; 3.22], P = 0.046). Individually testing of the seven CNVRs for association with gout revealed nominal association of CNVR1 with gout in Western Polynesian (Chr6: 31.36-31.45 Mb, OR = 1.72 [1.03; 2.92], P = 0.04), CNVR6 in the meta-analyzed Polynesian sample sets (Chr1: 196.75-196.92 Mb, OR = 1.86 [1.16; 3.00], P = 0.01) and CNVR9 in Western Polynesian (Chr1: 189.35-189.54 Mb, OR = 2.75 [1.15; 7.13], P = 0.03). Analysis of European gout genetic association data demonstrated a signal of association at the CNVR1 locus that was an expression quantitative trait locus for MICA. The most common CNVR (CNVR1) includes deletion of the MICA gene, encoding an immunomodulatory protein. Expression of MICA was reduced in the serum of individuals with the deletion. In summary, we provide evidence for the association of CNVR1 containing MICA with gout in Polynesian people, implicating class I MHC-mediated antigen presentation in gout.
Collapse
Affiliation(s)
- Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Matt Bixley
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Megan P Leask
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Marilyn E Merriman
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
| | - Riku Takei
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ruth Topless
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Frances King
- Ngati Porou Hauora Charitable Trust, Te Puia Springs, New Zealand
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch 8013, New Zealand
| | - Janak de Zoysa
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
7
|
Chen MM, Meng LH. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol Sin 2022; 43:1623-1632. [PMID: 34811515 PMCID: PMC9253144 DOI: 10.1038/s41401-021-00800-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023]
Abstract
Xanthine oxidoreductase (XOR) is a critical, rate-limiting enzyme that controls the last two steps of purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. It also produces reactive oxygen species (ROS) during the catalytic process. The enzyme is generally recognized as a drug target for the therapy of gout and hyperuricemia. The catalytic products uric acid and ROS act as antioxidants or oxidants, respectively, and are involved in pro/anti-inflammatory actions, which are associated with various disease manifestations, including metabolic syndrome, ischemia reperfusion injury, cardiovascular disorders, and cancer. Recently, extensive efforts have been devoted to understanding the paradoxical roles of XOR in tumor promotion. Here, we summarize the expression of XOR in different types of cancer and decipher the dual roles of XOR in cancer by its enzymatic or nonenzymatic activity to provide an updated understanding of the mechanistic function of XOR in cancer. We also discuss the potential to modulate XOR in cancer therapy.
Collapse
Affiliation(s)
- Man-man Chen
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ling-hua Meng
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
8
|
Wu L, Yang W, Zhang Y, Du X, Jin N, Chen W, Li H, Zhang S, Xie B. Elevated Serum Uric Acid is Associated With Poor Survival in Advanced HCC Patients and Febuxostat Improves Prognosis in HCC Rats. Front Pharmacol 2021; 12:778890. [PMID: 34858193 PMCID: PMC8632057 DOI: 10.3389/fphar.2021.778890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Serum uric acid is associated with tumor progression and hepatocarcinogenesis. Here, we aimed to determine whether serum uric acid is related to the survival time of patients with hepatocellular carcinoma (HCC) and whether the inhibition of uric acid production affects the progression and survival of rats with HCC. Methods: The follow-up data of 288 patients with advanced HCC were analyzed. Ten purine metabolites in serum and liver samples of diethylnitrosamine (DEN)-induced HCC rats were quantitatively determined by an established UPLC-MS/MS method. On this basis, febuxostat, a specific inhibitor of xanthine oxidase (XOD), was used to interfere with HCC rats. Results: The serum uric acid level of HCC patients was significantly negatively correlated with survival days (r = -0.155). The median survival time was 133.5 days in the high uric acid group (>360 μmol/L, n = 80) and 176.0 days in the normal serum uric acid group (<360 μmol/L, n = 208, p = 0.0013). The levels of hypoxanthine, guanine, and uric acid; XOD activity; and xanthine dehydrogenase mRNA expression in the serum or liver samples of HCC rats were significantly upregulated compared with those in the control group. After febuxostat intervention in DEN-induced HCC rats, the number of atypical cells and inflammatory cells decreased significantly; the serum alpha fetoprotein level and Fisher's ratio tended to return to normal; the median survival time increased from 36 to 96 days (p = 0.08). In addition, serum malondialdehyde, superoxide dismutase, and glutathione activity nearly returned to the level of the healthy control group. Conclusion: The elevation of serum uric acid implies a risk of poor survival in advanced HCC patients and Febuxostat can reduce the generation of reactive oxygen species, thereby playing a role in delaying the progression of liver cancer.
Collapse
Affiliation(s)
- Le Wu
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, China.,School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Zhang
- School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Xiaoyue Du
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, China
| | - Nan Jin
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, China
| | - Wen Chen
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Huangbao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Baogang Xie
- Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, China.,School of Pharmaceutical Science, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Sheffer M, Lowry E, Beelen N, Borah M, Amara SNA, Mader CC, Roth JA, Tsherniak A, Freeman SS, Dashevsky O, Gandolfi S, Bender S, Bryan JG, Zhu C, Wang L, Tariq I, Kamath GM, Simoes RDM, Dhimolea E, Yu C, Hu Y, Dufva O, Giannakis M, Syrgkanis V, Fraenkel E, Golub T, Romee R, Mustjoki S, Culhane AC, Wieten L, Mitsiades CS. Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. Nat Genet 2021; 53:1196-1206. [PMID: 34253920 DOI: 10.1038/s41588-021-00889-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/18/2021] [Indexed: 12/26/2022]
Abstract
To systematically define molecular features in human tumor cells that determine their degree of sensitivity to human allogeneic natural killer (NK) cells, we quantified the NK cell responsiveness of hundreds of molecularly annotated 'DNA-barcoded' solid tumor cell lines in multiplexed format and applied genome-scale CRISPR-based gene-editing screens in several solid tumor cell lines, to functionally interrogate which genes in tumor cells regulate the response to NK cells. In these orthogonal studies, NK cell-sensitive tumor cells tend to exhibit 'mesenchymal-like' transcriptional programs; high transcriptional signature for chromatin remodeling complexes; high levels of B7-H6 (NCR3LG1); and low levels of HLA-E/antigen presentation genes. Importantly, transcriptional signatures of NK cell-sensitive tumor cells correlate with immune checkpoint inhibitor (ICI) resistance in clinical samples. This study provides a comprehensive map of mechanisms regulating tumor cell responses to NK cells, with implications for future biomarker-driven applications of NK cell immunotherapies.
Collapse
MESH Headings
- Allogeneic Cells/physiology
- Animals
- B7 Antigens/genetics
- Cell Line, Tumor
- Chromatin Assembly and Disassembly/physiology
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/physiology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Killer Cells, Natural/physiology
- Mice, Inbred NOD
- Xenograft Model Antitumor Assays
- HLA-E Antigens
- Mice
Collapse
Affiliation(s)
- Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| | - Emily Lowry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicky Beelen
- Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands
- School for Oncology and Developmental Biology, Maastricht University Medical Center+ GROW, Maastricht, the Netherlands
| | - Minasri Borah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Chris C Mader
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jennifer A Roth
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Aviad Tsherniak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Samuel S Freeman
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Samantha Bender
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jordan G Bryan
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Cong Zhu
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Li Wang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ifrah Tariq
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ricardo De Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Channing Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Yiguo Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Sichuan University, Chengdu, China
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Ernest Fraenkel
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Todd Golub
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Aedin C Culhane
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands
- School for Oncology and Developmental Biology, Maastricht University Medical Center+ GROW, Maastricht, the Netherlands
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Parvifoline AA Promotes Susceptibility of Hepatocarcinoma to Natural Killer Cell-Mediated Cytolysis by Targeting Peroxiredoxin. Cell Chem Biol 2019; 26:1122-1132.e6. [DOI: 10.1016/j.chembiol.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/24/2019] [Accepted: 04/02/2019] [Indexed: 12/23/2022]
|
11
|
Cifaldi L, Locatelli F, Marasco E, Moretta L, Pistoia V. Boosting Natural Killer Cell-Based Immunotherapy with Anticancer Drugs: a Perspective. Trends Mol Med 2017; 23:1156-1175. [PMID: 29133133 DOI: 10.1016/j.molmed.2017.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
Abstract
Natural killer (NK) cells efficiently recognize and kill tumor cells through several mechanisms including the expression of ligands for NK cell-activating receptors on target cells. Different clinical trials indicate that NK cell-based immunotherapy represents a promising antitumor treatment. However, tumors develop immune-evasion strategies, including downregulation of ligands for NK cell-activating receptors, that can negatively affect antitumor activity of NK cells, which either reside endogenously, or are adoptively transferred. Thus, restoration of the expression of NK cell-activating ligands on tumor cells represents a strategic therapeutic goal. As discussed here, various anticancer drugs can fulfill this task via different mechanisms. We envision that the combination of selected chemotherapeutic agents with NK cell adoptive transfer may represent a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Loredana Cifaldi
- Department of Pediatric Haematology/Oncology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.
| | - Franco Locatelli
- Department of Pediatric Haematology/Oncology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy; Department of Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Emiliano Marasco
- Department of Rheumatology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Vito Pistoia
- Immunology Research Area, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|