1
|
Edaibis R, Akel R, Shin JA. Beyond small molecules: advancing MYC-targeted cancer therapies through protein engineering. Transcription 2025; 16:67-85. [PMID: 39878458 PMCID: PMC11970745 DOI: 10.1080/21541264.2025.2453315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance. Recent advances in protein engineering offer promising alternatives by creating protein-based drugs that directly disrupt the MYC/MAX dimerization interface and/or MYC/MAX's binding to specific DNA targets. Designed DNA binding proteins like Omomyc, DuoMyc, ME47, MEF, and Mad inhibit MYC activity through specific dimerization, sequestration, and DNA-binding mechanisms. Compared to small molecules, these engineered proteins can offer superior specificity and efficacy and provide a potential pathway for overcoming the limitations of traditional cancer therapies. The success of these protein therapeutics highlights the importance of protein engineering in developing cancer treatments.
Collapse
Affiliation(s)
- Rama Edaibis
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Raneem Akel
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
2
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
3
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib Alters MDSC Differentiation and Function by Activation of GCN2. CANCER RESEARCH COMMUNICATIONS 2024; 4:765-784. [PMID: 38421883 PMCID: PMC10936428 DOI: 10.1158/2767-9764.crc-23-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.
Collapse
Affiliation(s)
- M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Nadine Nzirorera
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib alters MDSC differentiation and function by activation of GCN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552588. [PMID: 37645997 PMCID: PMC10461929 DOI: 10.1101/2023.08.09.552588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The effect of targeted therapeutics on anti-cancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Since ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5 , Mafg , and Zbtb7a . This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development towards monocytic lineage cells. In vivo , we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveals transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off target effects of dabrafenib.
Collapse
|
5
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
6
|
Bryant CJ, McCool MA, Abriola L, Surovtseva YV, Baserga SJ. A high-throughput assay for directly monitoring nucleolar rRNA biogenesis. Open Biol 2022; 12:210305. [PMID: 35078352 PMCID: PMC8790372 DOI: 10.1098/rsob.210305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies of the regulation of nucleolar function are critical for ascertaining clearer insights into the basic biological underpinnings of ribosome biogenesis (RB), and for future development of therapeutics to treat cancer and ribosomopathies. A number of high-throughput primary assays based on morphological alterations of the nucleolus can indirectly identify hits affecting RB. However, there is a need for a more direct high-throughput assay for a nucleolar function to further evaluate hits. Previous reports have monitored nucleolar rRNA biogenesis using 5-ethynyl uridine (5-EU) in low-throughput. We report a miniaturized, high-throughput 5-EU assay that enables specific calculation of nucleolar rRNA biogenesis inhibition, based on co-staining of the nucleolar protein fibrillarin (FBL). The assay uses two siRNA controls: a negative non-targeting siRNA control and a positive siRNA control targeting RNA Polymerase 1 (RNAP1; POLR1A), and specifically quantifies median 5-EU signal within nucleoli. Maximum nuclear 5-EU signal can also be used to monitor the effects of putative small-molecule inhibitors of RNAP1, like BMH-21, or other treatment conditions that cause FBL dispersion. We validate the 5-EU assay on 68 predominately nucleolar hits from a high-throughput primary screen, showing that 58/68 hits significantly inhibit nucleolar rRNA biogenesis. Our new method establishes direct quantification of nucleolar function in high-throughput, facilitating closer study of RB in health and disease.
Collapse
Affiliation(s)
- Carson J. Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Mason A. McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Susan J. Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA,Department of Genetics, Yale School of Medicine, New Haven, CT, USA,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Bai M, Cui M, Li M, Yao X, Wu Y, Zheng L, Sun L, Song Q, Wang S, Liu L, Yu C, Huang Y. Discovery of a novel HDACi structure that inhibits the proliferation of ovarian cancer cells in vivo and in vitro. Int J Biol Sci 2021; 17:3493-3507. [PMID: 34512161 PMCID: PMC8416734 DOI: 10.7150/ijbs.62339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) exhibit increased expression in cancer and promote oncogenesis via the acetylation of or interactions with key transcriptional regulators. HDAC inhibitors (HDACis) decrease HDAC activity to selectively inhibit the occurrence and development of tumors. Our study screened and obtained a new HDACi structure. In vitro experiments have showed that among the leads, Z31216525 significantly inhibited the proliferation and induced the apoptosis of epithelial ovarian cancer (EOC) cells. In vivo experiments demonstrated that compared to the control, Z31216525 significantly inhibited tumor growth and showed very low toxicity. Further mechanistic studies revealed that Z31216525 may exert an antitumor effect by inhibiting the expression of the c-Myc gene. Collectively, our studies identified a novel HDACi that is expected to become a new potential therapeutic drug for EOC and has important value for the design of new HDACi structures.
Collapse
Affiliation(s)
- Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Mengqi Cui
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Xinlei Yao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yulun Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Qiuhang Song
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- Research Center of Agriculture and Medicine gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
8
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Liaño-Pons J, Lafita-Navarro MC, García-Gaipo L, Colomer C, Rodríguez J, von Kriegsheim A, Hurlin PJ, Ourique F, Delgado MD, Bigas A, Espinosa L, León J. A novel role of MNT as a negative regulator of REL and the NF-κB pathway. Oncogenesis 2021; 10:5. [PMID: 33419981 PMCID: PMC7794610 DOI: 10.1038/s41389-020-00298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
MNT, a transcription factor of the MXD family, is an important modulator of the oncoprotein MYC. Both MNT and MYC are basic-helix-loop-helix proteins that heterodimerize with MAX in a mutually exclusive manner, and bind to E-boxes within regulatory regions of their target genes. While MYC generally activates transcription, MNT represses it. However, the molecular interactions involving MNT as a transcriptional regulator beyond the binding to MAX remain unexplored. Here we demonstrate a novel MAX-independent protein interaction between MNT and REL, the oncogenic member of the NF-κB family. REL participates in important biological processes and it is altered in a variety of tumors. REL is a transcription factor that remains inactive in the cytoplasm in an inhibitory complex with IκB and translocates to the nucleus when the NF-κB pathway is activated. In the present manuscript, we show that MNT knockdown triggers REL translocation into the nucleus and thus the activation of the NF-κB pathway. Meanwhile, MNT overexpression results in the repression of IκBα, a bona fide REL target. Both MNT and REL bind to the IκBα gene on the first exon, suggesting its regulation as an MNT-REL complex. Altogether our data indicate that MNT acts as a repressor of the NF-κB pathway by two mechanisms: (1) retention of REL in the cytoplasm by MNT interaction, and (2) MNT-driven repression of REL-target genes through an MNT-REL complex. These results widen our knowledge about MNT biological roles and reveal a novel connection between the MYC/MXD and NF-κB pathways, two of the most prominent pathways in cancer.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, Stockholm, Sweden
| | - M Carmen Lafita-Navarro
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Department of Cell Biology UT Southwestern Medical Center, Dallas, TX, USA
| | - Lorena García-Gaipo
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Carlota Colomer
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Javier Rodríguez
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Edinburgh Cancer Research Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter J Hurlin
- Shriners Hospitals for Children Research Center, Department of Cell, Developmental and Cancer Biology and Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, USA
| | - Fabiana Ourique
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
- Dept. of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - M Dolores Delgado
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Anna Bigas
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Lluis Espinosa
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Barcelona, Spain
| | - Javier León
- Departmento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
10
|
Demma MJ, Hohn MJ, Sun A, Mapelli C, Hall B, Walji A, O'Neil J. Inhibition of Myc transcriptional activity by a mini-protein based upon Mxd1. FEBS Lett 2020; 594:1467-1476. [PMID: 32053209 DOI: 10.1002/1873-3468.13759] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Myc, a transcription factor with oncogenic activity, is upregulated by amplification, translocation, and mutation of the cellular pathways that regulate its stability. Inhibition of the Myc oncogene by various modalities has had limited success. One Myc inhibitor, Omomyc, has limited cellular and in vivo activity. Here, we report a mini-protein, referred to as Mad, which is derived from the cellular Myc antagonist Mxd1. Mad localizes to the nucleus in cells and is 10-fold more potent than Omomyc in inhibiting Myc-driven cell proliferation. Similar to Mxd1, Mad also interacts with Max, the binding partner of Myc, and with the nucleolar upstream binding factor. Mad binds to E-Box DNA in the promoters of Myc target genes and represses Myc-mediated transcription to a greater extent than Omomyc. Overall, Mad appears to be more potent than Omomyc both in vitro and in cells.
Collapse
Affiliation(s)
- Mark J Demma
- Oncology Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Michael J Hohn
- Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Angie Sun
- Protein Science, Merck & Co., Inc., Boston, MA, USA
| | | | - Brian Hall
- Protein Science, Merck & Co., Inc., Boston, MA, USA
| | - Abbas Walji
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | |
Collapse
|
11
|
Lafita-Navarro MC, Liaño-Pons J, Quintanilla A, Varela I, Blanco R, Ourique F, Bretones G, Aresti J, Molina E, Carroll P, Hurlin P, Romero OA, Sanchez-Céspedes M, Eisenman RN, Delgado MD, León J. The MNT transcription factor autoregulates its expression and supports proliferation in MYC-associated factor X (MAX)-deficient cells. J Biol Chem 2020; 295:2001-2017. [PMID: 31919096 PMCID: PMC7029127 DOI: 10.1074/jbc.ra119.010389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
The MAX network transcriptional repressor (MNT) is an MXD family transcription factor of the basic helix-loop-helix (bHLH) family. MNT dimerizes with another transcriptional regulator, MYC-associated factor X (MAX), and down-regulates genes by binding to E-boxes. MAX also dimerizes with MYC, an oncogenic bHLH transcription factor. Upon E-box binding, the MYC-MAX dimer activates gene expression. MNT also binds to the MAX dimerization protein MLX (MLX), and MNT-MLX and MNT-MAX dimers co-exist. However, all MNT functions have been attributed to MNT-MAX dimers, and no functions of the MNT-MLX dimer have been described. MNT's biological role has been linked to its function as a MYC oncogene modulator, but little is known about its regulation. We show here that MNT localizes to the nucleus of MAX-expressing cells and that MNT-MAX dimers bind and repress the MNT promoter, an effect that depends on one of the two E-boxes on this promoter. In MAX-deficient cells, MNT was overexpressed and redistributed to the cytoplasm. Interestingly, MNT was required for cell proliferation even in the absence of MAX. We show that in MAX-deficient cells, MNT binds to MLX, but also forms homodimers. RNA-sequencing experiments revealed that MNT regulates the expression of several genes even in the absence of MAX, with many of these genes being involved in cell cycle regulation and DNA repair. Of note, MNT-MNT homodimers regulated the transcription of some genes involved in cell proliferation. The tight regulation of MNT and its functionality even without MAX suggest a major role for MNT in cell proliferation.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Judit Liaño-Pons
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Fabiana Ourique
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Gabriel Bretones
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Julia Aresti
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Ester Molina
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Patrick Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Peter Hurlin
- Shriners Hospitals for Children Research Center, and Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Octavio A Romero
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, 08908 Barcelona, Spain
| | - Montse Sanchez-Céspedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, 08908 Barcelona, Spain
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain.
| |
Collapse
|
12
|
Bang JS, Choi NY, Lee M, Ko K, Park YS, Ko K. Reprogramming of Cancer Cells into Induced Pluripotent Stem Cells Questioned. Int J Stem Cells 2019; 12:430-439. [PMID: 31474029 PMCID: PMC6881048 DOI: 10.15283/ijsc19067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives Several recent studies have claimed that cancer cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, in most cases, cancer cells seem to be resistant to cellular reprogramming. Furthermore, the underlying mechanisms of limited reprogramming in cancer cells are largely unknown. Here, we identified the candidate barrier genes and their target genes at the early stage of reprogramming for investigating cancer reprogramming. Methods We tried induction of pluripotency in normal human fibroblasts (BJ) and both human benign (MCF10A) and malignant (MCF7) breast cancer cell lines using a classical retroviral reprogramming method. We conducted RNA-sequencing analysis to compare the transcriptome of the three cell lines at early stage of reprogramming. Results We could generate iPSCs from BJ, whereas we were unable to obtain iPSCs from cancer cell lines. To address the underlying mechanism of limited reprogramming in cancer cells, we identified 29 the candidate barrier genes based on RNA-sequencing data. In addition, we found 40 their target genes using Cytoscape software. Conclusions Our data suggest that these genes might one of the roadblock for cancer cell reprogramming. Furthermore, we provide new insights into application of iPSCs technology in cancer cell field for therapeutic purposes.
Collapse
Affiliation(s)
- Jin Seok Bang
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Na Young Choi
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Minseong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Yo Seph Park
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea.,Research Institute of Medical Science, Konkuk University, Seoul, Korea
| |
Collapse
|
13
|
Omomyc Reveals New Mechanisms To Inhibit the MYC Oncogene. Mol Cell Biol 2019; 39:MCB.00248-19. [PMID: 31501275 PMCID: PMC6817756 DOI: 10.1128/mcb.00248-19] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 11/21/2022] Open
Abstract
The MYC oncogene is upregulated in human cancers by translocation, amplification, and mutation of cellular pathways that regulate Myc. Myc/Max heterodimers bind to E box sequences in the promoter regions of genes and activate transcription. The MYC oncogene is upregulated in human cancers by translocation, amplification, and mutation of cellular pathways that regulate Myc. Myc/Max heterodimers bind to E box sequences in the promoter regions of genes and activate transcription. The MYC inhibitor Omomyc can reduce the ability of MYC to bind specific box sequences in promoters of MYC target genes by binding directly to E box sequences as demonstrated by chromatin immunoprecipitation (CHIP). Here, we demonstrate by both a proximity ligation assay (PLA) and double chromatin immunoprecipitation (ReCHIP) that Omomyc preferentially binds to Max, not Myc, to mediate inhibition of MYC-mediated transcription by replacing MYC/MAX heterodimers with Omomyc/MAX heterodimers. The formation of Myc/Max and Omomyc/Max heterodimers occurs cotranslationally; Myc, Max, and Omomyc can interact with ribosomes and Max RNA under conditions in which ribosomes are intact. Taken together, our data suggest that the mechanism of action of Omomyc is to bind DNA as either a homodimer or a heterodimer with Max that is formed cotranslationally, revealing a novel mechanism to inhibit the MYC oncogene. We find that in vivo, Omomyc distributes quickly to kidneys and liver and has a short effective half-life in plasma, which could limit its use in vivo.
Collapse
|
14
|
Lin YM, Chu PH, Ouyang P. Ectopically expressed pNO40 suppresses ribosomal RNA synthesis by inhibiting UBF-dependent transcription activation. Biochem Biophys Res Commun 2019; 516:381-387. [DOI: 10.1016/j.bbrc.2019.06.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 11/24/2022]
|
15
|
Huan C, Jin L, Heng W, Na A, Yuming P, Xin D, Qiaoxia Z. MXD1 regulates the imatinib resistance of chronic myeloid leukemia cells by repressing BCR-ABL1 expression. Leuk Res 2018; 75:1-6. [PMID: 30419548 DOI: 10.1016/j.leukres.2018.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 11/27/2022]
Abstract
Tyrosine kinase inhibitors have achieved unprecedented efficacy in the treatment of chronic myeloid leukemia (CML); however, imatinib resistance has emerged as a major problem in the clinic. Because the overexpression of BCR-ABL1 critically contributes to CML pathogenesis and drug resistance, targeting the regulation of BCR-ABL1 gene expression may be an alternative therapeutic strategy. In this study, we found that the transcriptional repressor MXD1 showed low expression in CML patients and was negatively correlated with BCR-ABL1. Overexpression of MXD1 markedly inhibited the proliferation of K562 cells and sensitized the imatinib-resistant K562/G01 cell line to imatinib, with decreased BCR-ABL1 mRNA and protein expression. Further investigation using reporter gene analysis showed that MXD1 significantly inhibited the transcriptional activity of the BCR-ABL1 gene promoter. Taken together, these data show that MXD1 functions as a negative regulator of BCR-ABL1 expression and subsequently inhibits proliferation and sensitizes CML cells to imatinib treatment.
Collapse
Affiliation(s)
- Chen Huan
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lou Jin
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wang Heng
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - An Na
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Pan Yuming
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Du Xin
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhang Qiaoxia
- Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Institute of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
16
|
Lafita-Navarro MC, Kim M, Borenstein-Auerbach N, Venkateswaran N, Hao YH, Ray R, Brabletz T, Scaglioni PP, Shay JW, Conacci-Sorrell M. The aryl hydrocarbon receptor regulates nucleolar activity and protein synthesis in MYC-expressing cells. Genes Dev 2018; 32:1303-1308. [PMID: 30254109 PMCID: PMC6169836 DOI: 10.1101/gad.313007.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
MYC enhances protein synthesis by regulating genes involved in ribosome biogenesis and protein translation. Here, we show that MYC-induced protein translation is mediated by the transcription factor aryl hydrocarbon receptor (AHR), which is induced by MYC in colonic cells. AHR promotes protein synthesis by activating the transcription of genes required for ribosome biogenesis and protein translation, including OGFOD1 and NOLC1. Using surface sensing of translation (SUnSET) to measure global protein translation, we found that silencing AHR or its targets diminishes protein synthesis. Therefore, targeting AHR or its downstream pathways could provide a novel approach to limit biomass production in MYC-driven tumors.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Min Kim
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Nofit Borenstein-Auerbach
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Roshni Ray
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Thomas Brabletz
- Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nurnberg, 91054 Erlangen, Germany
| | - Pier Paolo Scaglioni
- Department of Medicine, Division of Hematology Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
17
|
Zheng D, Wu W, Dong N, Jiang X, Xu J, Zhan X, Zhang Z, Hu Z. Mxd1 mediates hypoxia-induced cisplatin resistance in osteosarcoma cells by repression of the PTEN tumor suppressor gene. Mol Carcinog 2017; 56:2234-2244. [PMID: 28543796 DOI: 10.1002/mc.22676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022]
Abstract
Hypoxia-induced chemoresistance remains a major obstacle to treating osteosarcoma effectively. Mxd1, a member of the Myc/Max/Mxd family, was shown to be involved in the development of drug resistance under hypoxia. However, the effect of Mxd1 on hypoxia-induced cisplatin (CDDP) resistance and its mechanism in osteosarcoma have not been fully elucidated. In this study, we demonstrated that HIF-1α-induced Mxd1 contributed to CDDP resistance in hypoxic U-2OS and MG-63 cells. The knockdown of Mxd1 expression elevated PTEN expression at both protein and RNA levels in these hypoxic cells. Using Luciferase reporter and ChIP assays, we confirmed that Mxd1 directly bound to the E-box sites within the PTEN promoter region. We further demonstrated that PTEN knockdown decreased CDDP sensitivity in Mxd1 siRNA-transfected U-2OS and MG-63 cells under hypoxia. Our results also showed that Mxd1 deficiency in hypoxic U-2OS and MG-63 cells lead to inactivation of PI3K/AKT signaling, which is the downstream of PTEN. Furthermore, blockade of PI3K/AKT signal re-sensitized hypoxic U-2OS and MG-63 cells to CDDP. Taken together, these findings suggest that HIF-1α-induced Mxd1 up-regulation suppresses the expression of PTEN under hypoxia, which leads to the activation of PI3K/AKT antiapoptotic and survival pathway. As a result CDDP resistance in osteosarcoma cells is induced.
Collapse
Affiliation(s)
- Datong Zheng
- Clinical Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Weiling Wu
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Na Dong
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xiuqin Jiang
- Clinical Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jinjin Xu
- Clinical Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhengdong Zhang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Zhenzhen Hu
- Clinical Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
18
|
Tapia O, Narcís JO, Riancho J, Tarabal O, Piedrafita L, Calderó J, Berciano MT, Lafarga M. Cellular bases of the RNA metabolism dysfunction in motor neurons of a murine model of spinal muscular atrophy: Role of Cajal bodies and the nucleolus. Neurobiol Dis 2017; 108:83-99. [PMID: 28823932 DOI: 10.1016/j.nbd.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by a homozygous deletion or mutation in the survival motor neuron 1 (SMN1) gene that leads to reduced levels of SMN protein resulting in degeneration of motor neurons (MNs). The best known functions of SMN is the biogenesis of spliceosomal snRNPs. Linked to this function, Cajal bodies (CBs) are involved in the assembly of spliceosomal (snRNPs) and nucleolar (snoRNPs) ribonucleoproteins required for pre-mRNA and pre-rRNA processing. Recent studies support that the interaction between CBs and nucleoli, which are especially prominent in neurons, is essential for the nucleolar rRNA homeostasis. We use the SMN∆7 murine model of type I SMA to investigate the cellular basis of the dysfunction of RNA metabolism in MNs. SMN deficiency in postnatal MNs produces a depletion of functional CBs and relocalization of coilin, which is a scaffold protein of CBs, in snRNP-free perinucleolar caps or within the nucleolus. Disruption of CBs is the earliest nuclear sign of MN degeneration. We demonstrate that depletion of CBs, with loss of CB-nucleolus interactions, induces a progressive nucleolar dysfunction in ribosome biogenesis. It includes reorganization and loss of nucleolar transcription units, segregation of dense fibrillar and granular components, retention of SUMO-conjugated proteins in intranucleolar bodies and a reactive, compensatory, up-regulation of mature 18S rRNA and genes encoding key nucleolar proteins, such as upstream binding factor, fibrillarin, nucleolin and nucleophosmin. We propose that CB depletion and nucleolar alterations are essential components of the dysfunction of RNA metabolism in SMA.
Collapse
Affiliation(s)
- Olga Tapia
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Josep Oriol Narcís
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Javier Riancho
- Service of Neurology, University Hospital Marqués de Valdecilla-IDIVAL-CIBERNED, Santander, Spain
| | - Olga Tarabal
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Lídia Piedrafita
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Jordi Calderó
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain.
| |
Collapse
|