1
|
Dutta A, Rodriguez-Calero A, Ronaldson-Bouchard K, Offermann A, Rahman D, Vhatkar TB, Hasson D, Alshalalfa M, Davicioni E, Jeffrey Karnes R, Rubin MA, Vunjak-Novakovic G, Abate-Shen C, Arriaga JM. ATAD2 Drives Prostate Cancer Progression to Metastasis. Mol Cancer Res 2025; 23:379-390. [PMID: 39907729 PMCID: PMC12048280 DOI: 10.1158/1541-7786.mcr-24-0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/20/2024] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
Metastasis accounts for the overwhelming majority of cancer deaths. In prostate cancer and many other solid tumors, progression to metastasis is associated with drastically reduced survival outcomes, yet the mechanisms behind this progression remain largely unknown. ATPase family AAA domain containing 2 (ATAD2) is an epigenetic reader of acetylated histones that is overexpressed in multiple cancer types and usually associated with poor patient outcomes. However, the functional role of ATAD2 in cancer progression and metastasis has been relatively understudied. Here, we employ genetically engineered mouse models of prostate cancer bone metastasis, as well as multiple independent human cohorts, to show that ATAD2 is highly enriched in bone metastasis compared with primary tumors and significantly associated with the development of metastasis. We show that ATAD2 expression is associated with MYC pathway activation in patient datasets and that, at least in a subset of tumors, MYC and ATAD2 can regulate each other's expression. Using functional studies on mouse bone metastatic cell lines and innovative organ-on-a-chip bone invasion assays, we establish a functional role for ATAD2 inhibition in reducing prostate cancer metastasis and growth in bone. Implications: Our study highlights ATAD2 as a driver of prostate cancer progression and metastasis and suggests it may constitute a promising novel therapeutic target.
Collapse
Affiliation(s)
- Anindita Dutta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Antonio Rodriguez-Calero
- Department for BioMedical Research, University of Bern, Switzerland
- Institute of Pathology, University of Bern, Switzerland
| | | | - Anne Offermann
- Institute of Pathology, Universitätsklinikum Schleswig-Holstein. Germany
| | - Daoud Rahman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Twinkle Bapuji Vhatkar
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute and Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Switzerland
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Juan Martín Arriaga
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| |
Collapse
|
2
|
Yuan L, Li S, Zhu Y, Yang L, Zhang X, Qu Y, Wang Z, Duan J, Zhong J, Tian Y, Liu L, Sun B, Fei K, Liu Z, Zhang J, He Y, Guo Y, He D, Zhuang W, Zhang J, Ma Z, Bai H, Wang J. ATAD2 is a potential immunotherapy target for patients with small cell lung cancer harboring HLA-A∗0201. EBioMedicine 2025; 112:105515. [PMID: 39808946 PMCID: PMC11782892 DOI: 10.1016/j.ebiom.2024.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) represents a highly aggressive neuroendocrine tumour with a dismal prognosis. Currently, the identification of a specific tumour antigen that can facilitate immune-based therapies for SCLC remains elusive. METHODS We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyse cancer/testis antigens (CTAs) in SCLC cell lines and human tumour specimens. Immunohistochemistry of clinical specimens was performed to compare protein expression in SCLC, non-small cell lung cancer (NSCLC), and matched normal-adjacent tissues. Additionally, publicly available RNA sequencing databases were interrogated to identify gene expression patterns in different SCLC subtypes and in different disease stages. FINDINGS Distinct numbers and types of CTAs were identified across SCLC subtypes, with significantly higher expression levels of ATPase family AAA domain-containing protein 2 (ATAD2) observed in SCLC compared to normal adjacent tissues and NSCLC tissues. A dynamic expression pattern of ATAD2 was found throughout the clinical course of SCLC and exhibited a positive correlation with achaete-scute family bHLH transcription factor 1 (ASCL1) expression in SCLC. Immunopeptidomics analysis identified the YSDDDVPSV sequence derived from the HLA-A∗02:01 restriction epitope of ATAD2 as a highly promising tumour antigen candidate for potential immunotherapy applications. YSDDDVPSV immunopeptides were confirmed to be present in SCLC-A and SCLC-N with HLA-A∗02:01 restriction. Notably, HLA-A∗02:01 T cells exhibited a robust response upon stimulation with YSDDDVPSV immunopeptide pulsed by T2 cells. INTERPRETATION Our findings highlight the potential of targeting the ATAD2 YSDDDVPSV immunopeptide for SCLC immunotherapy, thereby offering a promising avenue for the development of adoptive T cell therapies to effectively treat ASCL1-positive or NEUROD1-positive SCLC carrying HLA-A∗02:01. FUNDING This study was supported by the National key R&D program of China (2022YFC2505000); National Natural Science Foundation of China (NSFC) general program (82272796) NSFC special program (82241229); CAMS Innovation Fund for Medical Sciences (CIFMS 2022-I2M-1-009); CAMS Key Laboratory of Translational Research on Lung Cancer (2018PT31035); Aiyou foundation (KY201701). National key R&D program of China (2022YFC2505004). NSFC general program (81972905). Medical Oncology Key Foundation of Cancer Hospital Chinese Academy of Medical Sciences (CICAMS-MOCP2022012).
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Sini Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yixiang Zhu
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Lin Yang
- Department of Pathology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Yan Qu
- Department of Radiotherapy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Jia Zhong
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Yanhua Tian
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Lihui Liu
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Boyang Sun
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Zheng Liu
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Jian Zhang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Yan He
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Yufeng Guo
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - DanMing He
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Zhang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Roy A, Sudhamalla B. ATAD2 and TWIST1 Interaction Promotes MYC Activation in Colorectal Carcinoma. Biochemistry 2025; 64:114-126. [PMID: 39686835 DOI: 10.1021/acs.biochem.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) is significantly up-regulated in many cancer types and contributes to poor patient outcomes. ATAD2 exhibits a multidomain architecture comprising an N-terminal acidic domain, two AAA+ ATPase domains, a bromodomain, and a C-terminal domain. The AAA+ ATPase domain facilitates protein oligomerization and ATP binding, while the bromodomain recognizes acetylated lysine in histones and nonhistone proteins. ATAD2 involvement in cancer extends across multiple signaling pathways, such as Rb-E2F1, PI3K/AKT, and TGF-β1/Smad3, which promotes cell proliferation and cancer progression. Herein, we report that ATAD2 directly interacts with TWIST1, and both N-terminal regions of proteins mediate the interaction. Immunofluorescence experiments suggested that ATAD2 and TWIST1 primarily colocalize in the nucleus. Notably, our qPCR results revealed the functional significance of ATAD2-TWIST1 interaction by demonstrating their synergistic effect on the transcriptional activation of MYC in colorectal carcinoma cell lines. Moreover, the ChIP-qPCR result further indicates that ATAD2 and TWIST1 significantly localize in the promoter of the MYC gene. In addition, analysis of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) data suggests a correlation between ATAD2, TWIST1, and MYC overexpression and poor survival rates in colorectal carcinoma. Lastly, the overexpression of ATAD2 and TWIST1 enhances cell proliferation, emphasizing their role in colorectal carcinoma progression through MYC activation. Together, these results suggest that ATAD2 is a crucial factor in TWIST1-dependent MYC gene activation, resulting in an active ATAD2-TWIST1-MYC axis that contributes to colon cancer cell proliferation.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
4
|
Huang D, Mela A, Bhanu NV, Garcia BA, Canoll P, Casaccia P. PDGF-BB overexpression in p53 null oligodendrocyte progenitors increases H3K27me3 and induces transcriptional changes which favor proliferation. Neoplasia 2024; 57:101042. [PMID: 39216363 PMCID: PMC11402553 DOI: 10.1016/j.neo.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Proneural gliomas are brain tumors characterized by enrichment of oligodendrocyte progenitor cell (OPC) transcripts and genetic alterations. In this study we sought to identify transcriptional and epigenetic differences between OPCs with Trp53 deletion and PDGF-BB overexpression (BB-p53n) and those carrying only p53 deletion (p53n). In culture, the BB-p53n OPCs display growth characteristics more similar to glioma cells than p53n OPCs. When injected in mouse brains, BB-p53n OPC form tumors, while the p53n OPCs do not. Unbiased histone proteomics and transcriptomic analysis on these OPC populations identified higher levels of the histone H3K27me3 mark and lower levels of the histone H4K20me3. The transcriptome of the BB-p53n OPCs was characterized by higher levels of transcripts related to proliferation and cell adhesion compared to p53n OPCs. Pharmacological inhibition of the enzyme responsible for histone H3K27 trimethylation (EZH2i) in BB-p53n OPCs, reduced cell cycle transcripts and increased the expression of differentiation markers, but was not sufficient to restore their growth characteristics. This suggests that PDGF-BB overexpression in p53n OPCs favors the early stages of transformation, by promoting proliferation and halting differentiation in a H3K27me3-dependent pathway, and favoring growth characteristics in a H3K27me3 independent manner.
Collapse
Affiliation(s)
- Dennis Huang
- Program in Molecular, Cellular and Developmental Biology at The Graduate Center of The City University of New, York 365 5th Ave, New York, NY 10016, United States; Belfer Research Institute, City University of New York & Weill Cornell Medical College, 413 E 69th St, New York, NY 10021, United States; Neuroscience Initiative, Advance Science Research Center, Graduate Center of The City University of New York, 85 St Nicholas Terrace, New York, NY 10031, United States; Department of Biological Sciences, Hunter College, City University of New York, 695 Park Ave, New York, NY 10065, United States
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, United States
| | - Natarajan V Bhanu
- Department Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Benjamin A Garcia
- Department Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, United States
| | - Patrizia Casaccia
- Program in Molecular, Cellular and Developmental Biology at The Graduate Center of The City University of New, York 365 5th Ave, New York, NY 10016, United States; Neuroscience Initiative, Advance Science Research Center, Graduate Center of The City University of New York, 85 St Nicholas Terrace, New York, NY 10031, United States.
| |
Collapse
|
5
|
Phillips M, Malone KL, Boyle BW, Montgomery C, Kressy IA, Joseph FM, Bright KM, Boyson SP, Chang S, Nix JC, Young NL, Jeffers V, Frietze S, Glass KC. Impact of Combinatorial Histone Modifications on Acetyllysine Recognition by the ATAD2 and ATAD2B Bromodomains. J Med Chem 2024; 67:8186-8200. [PMID: 38733345 PMCID: PMC11149620 DOI: 10.1021/acs.jmedchem.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.
Collapse
Affiliation(s)
- Margaret Phillips
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Kiera L Malone
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Brian W Boyle
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Cameron Montgomery
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Isabelle A Kressy
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Faith M Joseph
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kathleen M Bright
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Samuel P Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Sunsik Chang
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, California 94720, United States
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Karen C Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| |
Collapse
|
6
|
Huang D, Mela A, Bhanu NV, Garcia BA, Canoll P, Casaccia P. PDGF-BB overexpression in p53 null oligodendrocyte progenitors increases H3K27me3 and induces transcriptional changes which favor proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594214. [PMID: 38798631 PMCID: PMC11118351 DOI: 10.1101/2024.05.14.594214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proneural gliomas are brain tumors characterized by enrichment of oligodendrocyte progenitor cell (OPC) transcripts and genetic alterations. In this study we sought to identify transcriptional and epigenetic differences between OPCs with Trp53 deletion and PDGF-BB overexpression (BB-p53n), which form tumors when transplanted in mouse brains, and those carrying only p53 deletion (p53n), which do not. We used unbiased histone proteomics and RNA-seq analysis on these two genetically modified OPC populations and detected higher levels of H3K27me3 in BB-p53n compared to p53n OPCs. The BB-p53n OPC were characterized by higher levels of transcripts related to proliferation and lower levels of those related to differentiation. Pharmacological inhibition of histone H3K27 trimethylation in BB-p53n OPC reduced cell cycle transcripts and increased the expression of differentiation markers. These data suggest that PDGF-BB overexpression in p53 null OPC results in histone post-translational modifications and consequent transcriptional changes favoring proliferation while halting differentiation, thereby promoting the early stages of transformation.
Collapse
|
7
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Naik A, Lattab B, Qasem H, Decock J. Cancer testis antigens: Emerging therapeutic targets leveraging genomic instability in cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200768. [PMID: 38596293 PMCID: PMC10876628 DOI: 10.1016/j.omton.2024.200768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer care has witnessed remarkable progress in recent decades, with a wide array of targeted therapies and immune-based interventions being added to the traditional treatment options such as surgery, chemotherapy, and radiotherapy. However, despite these advancements, the challenge of achieving high tumor specificity while minimizing adverse side effects continues to dictate the benefit-risk balance of cancer therapy, guiding clinical decision making. As such, the targeting of cancer testis antigens (CTAs) offers exciting new opportunities for therapeutic intervention of cancer since they display highly tumor specific expression patterns, natural immunogenicity and play pivotal roles in various biological processes that are critical for tumor cellular fitness. In this review, we delve deeper into how CTAs contribute to the regulation and maintenance of genomic integrity in cancer, and how these mechanisms can be exploited to specifically target and eradicate tumor cells. We review the current clinical trials targeting aforementioned CTAs, highlight promising pre-clinical data and discuss current challenges and future perspectives for future development of CTA-based strategies that exploit tumor genomic instability.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Boucif Lattab
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Hanan Qasem
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
9
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
10
|
Rattanapan Y, Narkpetch S, Chareonsirisuthigul T. Upregulation of miR-20a-5p as the Potential MicroRNA Marker in Red Blood Cell Storage Lesion. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5598590. [PMID: 37829050 PMCID: PMC10567411 DOI: 10.1155/2023/5598590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Background Packed red blood cells (PRBCs) can be preserved for 42 days, and stored PRBCs have slow, dangerous changes over time during storage. miRNA is approximately 22 nucleotides long, a small single-stranded noncoding RNA molecule. miRNA guides by pairing bases with their downstream target mRNA to regulate negative expression. They are essential in many life processes, including cell differentiation, proliferation, and apoptosis. Therefore, miRNA alterations may represent possible biomarkers of PRBC storage lesions. This study is aimed at validating the miR-20a-5p in PRBC storage. Study Design and Methods. A total of 20 PRBC samples were divided into day 1 and day 20 storage groups. Total miRNA was extracted and quantified by probe-based RT-qPCR assays to explore the potential role of miRNAs in PRBC storage lesions. Results Upregulated miR-20a-5p in PRBC storage on day 20 compared to day 1. MiR-20a-5p promoted cell survival, which may affect the downstream regulation and decrease PRBC viability in prolonged storage. Conclusion On this basis, this detection may help to assess the quality of stored PRBCs.
Collapse
Affiliation(s)
- Yanisa Rattanapan
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sodsai Narkpetch
- Blood Bank, Maharaj Nakhon Si Thammarat Hospital, Nakhon Si Thammarat 80000, Thailand
| | - Takol Chareonsirisuthigul
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Cho C, Ganser C, Uchihashi T, Kato K, Song JJ. Structure of the human ATAD2 AAA+ histone chaperone reveals mechanism of regulation and inter-subunit communication. Commun Biol 2023; 6:993. [PMID: 37770645 PMCID: PMC10539301 DOI: 10.1038/s42003-023-05373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
ATAD2 is a non-canonical ATP-dependent histone chaperone and a major cancer target. Despite widespread efforts to design drugs targeting the ATAD2 bromodomain, little is known about the overall structural organization and regulation of ATAD2. Here, we present the 3.1 Å cryo-EM structure of human ATAD2 in the ATP state, showing a shallow hexameric spiral that binds a peptide substrate at the central pore. The spiral conformation is locked by an N-terminal linker domain (LD) that wedges between the seam subunits, thus limiting ATP-dependent symmetry breaking of the AAA+ ring. In contrast, structures of the ATAD2-histone H3/H4 complex show the LD undocked from the seam, suggesting that H3/H4 binding unlocks the AAA+ spiral by allosterically releasing the LD. These findings, together with the discovery of an inter-subunit signaling mechanism, reveal a unique regulatory mechanism for ATAD2 and lay the foundation for developing new ATAD2 inhibitors.
Collapse
Affiliation(s)
- Carol Cho
- Department of Biological Sciences, KAIST Stem Cell Center, Basic Science 4.0 Institute, and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
| | - Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Physics and Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa-ku, Furo-cho, Nagoya, Aichi, 464-8602, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Ji-Joon Song
- Department of Biological Sciences, KAIST Stem Cell Center, Basic Science 4.0 Institute, and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
| |
Collapse
|
12
|
Sun T, Liu Z. MicroRNA-139-5p suppresses non-small cell lung cancer progression by targeting ATAD2. Pathol Res Pract 2023; 249:154719. [PMID: 37595446 DOI: 10.1016/j.prp.2023.154719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
MiR-139-5p is a suppressor in multiple types of cancer. However, whether miR-139-5p affects NSCLC is unknown. In this study, miR-139-5p expression in clinical samples was examined by real-time PCR and in situ hybridization (ISH). MiR-139-5p mimic was transfected to monitor NSCLC cell behaviors. Potential target was predicated using bioinformatics database. Next, whether miR-139-5p impacted cell behaviors via regulation of its predicted target gene were further evaluated. The result revealed that miR-139-5p was lower in NSCLC samples/cells. MiR-139-5p restrained A549 cell proliferation, accelerated apoptosis, and inhibited the β-catenin signaling. ATAD2 was a predicted target of miR-139-5p, and it was highly expressed in NSCLC tissues. ATAD2 overexpression abolished the miR-139-5p's anti-tumor effect on cell proliferation and apoptosis. TWS119 (a β-catenin signaling activator) partially reversed miR-139-5p overexpression-induced suppression of cell proliferation and promotion of cell apoptosis. In tumor xenografts, miR-139-5p restrained tumor growth. MiR-139-5p was a tumor suppressor in NSCLC by regulating the oncogene ATAD2 and β-catenin signaling. Our study provides a promising target for cancer treatment.
Collapse
Affiliation(s)
- Tong Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
13
|
Nin DS, Deng LW. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023; 12:cells12060926. [PMID: 36980267 PMCID: PMC10047177 DOI: 10.3390/cells12060926] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumour-specific antigens have been an area of interest in cancer therapy since their discovery in the middle of the 20th century. In the era of immune-based cancer therapeutics, redirecting our immune cells to target these tumour-specific antigens has become even more relevant. Cancer-testis antigens (CTAs) are a class of antigens with an expression specific to the testis and cancer cells. CTAs have also been demonstrated to be expressed in a wide variety of cancers. Due to their frequency and specificity of expression in a multitude of cancers, CTAs have been particularly attractive as cancer-specific therapeutic targets. There is now a rapid expansion of CTAs being identified and many studies have been conducted to correlate CTA expression with cancer and therapy-resistant phenotypes. Furthermore, there is an increasing number of clinical trials involving using some of these CTAs as molecular targets in pharmacological and immune-targeted therapeutics for various cancers. This review will summarise the current knowledge of the biology of known CTAs in tumorigenesis and the regulation of CTA genes. CTAs as molecular targets and the therapeutic implications of these CTA-targeted anticancer strategies will also be discussed.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
14
|
Kustatscher G, Hödl M, Rullmann E, Grabowski P, Fiagbedzi E, Groth A, Rappsilber J. Higher-order modular regulation of the human proteome. Mol Syst Biol 2023; 19:e9503. [PMID: 36891684 PMCID: PMC10167480 DOI: 10.15252/msb.20209503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Operons are transcriptional modules that allow bacteria to adapt to environmental changes by coordinately expressing the relevant set of genes. In humans, biological pathways and their regulation are more complex. If and how human cells coordinate the expression of entire biological processes is unclear. Here, we capture 31 higher-order co-regulation modules, which we term progulons, by help of supervised machine-learning on proteomics data. Progulons consist of dozens to hundreds of proteins that together mediate core cellular functions. They are not restricted to physical interactions or co-localisation. Progulon abundance changes are primarily controlled at the level of protein synthesis and degradation. Implemented as a web app at www.proteomehd.net/progulonFinder, our approach enables the targeted search for progulons of specific cellular processes. We use it to identify a DNA replication progulon and reveal multiple new replication factors, validated by extensive phenotyping of siRNA-induced knockdowns. Progulons provide a new entry point into the molecular understanding of biological processes.
Collapse
Affiliation(s)
- Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Martina Hödl
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edward Rullmann
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Piotr Grabowski
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Data Sciences and Artificial Intelligence, Clinical Pharmacology & Safety Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Emmanuel Fiagbedzi
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Sigismondo G, Arseni L, Palacio-Escat N, Hofmann TG, Seiffert M, Krijgsveld J. Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair. Nucleic Acids Res 2023; 51:687-711. [PMID: 36629267 PMCID: PMC9881138 DOI: 10.1093/nar/gkac1264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR) is essential to maintain genome stability, and its deregulation predisposes to carcinogenesis while encompassing attractive targets for cancer therapy. Chromatin governs the DDR via the concerted interplay among different layers, including DNA, histone post-translational modifications (hPTMs) and chromatin-associated proteins. Here, we employ multi-layered proteomics to characterize chromatin-mediated functional interactions of repair proteins, signatures of hPTMs and the DNA-bound proteome during DNA double-strand break (DSB) repair at high temporal resolution. Our data illuminate the dynamics of known and novel DDR-associated factors both at chromatin and at DSBs. We functionally attribute novel chromatin-associated proteins to repair by non-homologous end-joining (NHEJ), homologous recombination (HR) and DSB repair pathway choice. We reveal histone reader ATAD2, microtubule organizer TPX2 and histone methyltransferase G9A as regulators of HR and involved in poly-ADP-ribose polymerase-inhibitor sensitivity. Furthermore, we distinguish hPTMs that are globally induced by DNA damage from those specifically acquired at sites flanking DSBs (γH2AX foci-specific) and profiled their dynamics during the DDR. Integration of complementary chromatin layers implicates G9A-mediated monomethylation of H3K56 in DSBs repair via HR. Our data provide a dynamic chromatin-centered view of the DDR that can be further mined to identify novel mechanistic links and cell vulnerabilities in DSB repair.
Collapse
Affiliation(s)
- Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nicolàs Palacio-Escat
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | |
Collapse
|
16
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
17
|
Fu J, Zhang J, Chen X, Liu Z, Yang X, He Z, Hao Y, Liu B, Yao D. ATPase family AAA domain-containing protein 2 (ATAD2): From an epigenetic modulator to cancer therapeutic target. Theranostics 2023; 13:787-809. [PMID: 36632213 PMCID: PMC9830439 DOI: 10.7150/thno.78840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) has been widely reported to be a new emerging oncogene that is closely associated with epigenetic modifications in human cancers. As a coactivator of transcription factors, ATAD2 can participate in epigenetic modifications and regulate the expression of downstream oncogenes or tumor suppressors, which may be supported by the enhancer of zeste homologue 2. Moreover, the dominant structure (AAA + ATPase and bromine domains) can make ATAD2 a potential therapeutic target in cancer, and some relevant small-molecule inhibitors, such as GSK8814 and AZ13824374, have also been discovered. Thus, in this review, we focus on summarizing the structural features and biological functions of ATAD2 from an epigenetic modulator to a cancer therapeutic target, and further discuss the existing small-molecule inhibitors targeting ATAD2 to improve potential cancer therapy. Together, these inspiring findings would shed new light on ATAD2 as a promising druggable target in cancer and provide a clue on the development of candidate anticancer drugs.
Collapse
Affiliation(s)
- Jiahui Fu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xuetao Yang
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| |
Collapse
|
18
|
Rosochowicz MA, Lipowicz JM, Karwacka MI, Ostapowicz J, Cisek M, Mackiewicz AA, Czerwinska P. It Runs in the Bromodomain Family: Speckled Proteins (SP) Play a Role in the Antitumor Immune Response in Solid Tumors. Int J Mol Sci 2022; 24:ijms24010549. [PMID: 36614001 PMCID: PMC9820261 DOI: 10.3390/ijms24010549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Cells and immune cells in the extracellular matrix: Depending on the tumor type and variety of TAAs (tumor-associated antigens), immune infiltrates are composed of many different subpopulations of immune cells. Epigenetic changes are also considered to be characteristic of cancer. Epigenetic factors taking part in the regulation of gene expression include the VII group of bromodomain proteins (BrD)-SP-family proteins. Here, we used transcriptomic data from the TCGA database, as well as immunological evidence from ESTIMATE, TIP, and TIMER2.0 databases for various solid tumor types and harnessed several publicly available bioinformatic tools (such as GSEA and GSCA) to demonstrate mechanisms and interactions between BrD proteins and immune infiltrates in cancer. We present a consistently positive correlation between the SP-family genes and immune score regardless of the tumor type. The SP-family proteins correlate positively with T cells' trafficking and infiltration into tumor. Our results also show an association between the high expression of SP family genes and enriched transcriptome profiles of inflammatory response and TNF-α signaling via NF-κβ. We also show that the SP-family proteins could be considered good predictors of high immune infiltration phenotypes.
Collapse
Affiliation(s)
- Monika Anna Rosochowicz
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Julia Maria Lipowicz
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Histology and Embriology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marianna Iga Karwacka
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Julia Ostapowicz
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Malgorzata Cisek
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Correspondence: ; Tel.: +48-61-885-06-67; Fax: +48-61-852-85-02
| | - Patrycja Czerwinska
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
19
|
Dutta M, Mohapatra D, Mohapatra AP, Senapati S, Roychowdhury A. ATAD2 suppression enhances the combinatorial effect of gemcitabine and radiation in pancreatic cancer cells. Biochem Biophys Res Commun 2022; 635:179-186. [DOI: 10.1016/j.bbrc.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
|
20
|
Shukla S, Lazarchuk P, Pavlova MN, Sidorova JM. Genome-wide survey of D/E repeats in human proteins uncovers their instability and aids in identifying their role in the chromatin regulator ATAD2. iScience 2022; 25:105464. [PMCID: PMC9672403 DOI: 10.1016/j.isci.2022.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
D/E repeats are stretches of aspartic and/or glutamic acid residues found in over 150 human proteins. We examined genomic stability of D/E repeats and functional characteristics of D/E repeat-containing proteins vis-à-vis the proteins with poly-Q or poly-A repeats, which are known to undergo pathologic expansions. Mining of tumor sequencing data revealed that D/E repeat-coding regions are similar to those coding poly-Qs and poly-As in increased incidence of trinucleotide insertions/deletions but differ in types and incidence of substitutions. D/E repeat-containing proteins preferentially function in chromatin metabolism and are the more likely to be nuclear and interact with core histones, the longer their repeats are. One of the longest D/E repeats of unknown function is in ATAD2, a bromodomain family ATPase frequently overexpressed in tumors. We demonstrate that D/E repeat deletion in ATAD2 suppresses its binding to nascent and mature chromatin and to the constitutive pericentromeric heterochromatin, where ATAD2 represses satellite transcription. Many human proteins contain runs of aspartic/glutamic acid residues (D/E repeats) D/E repeats show increased incidence of in-frame insertions/deletions in tumors Nuclear and histone-interacting proteins often have long D/E repeats D/E repeat of the oncogene ATAD2 controls its binding to pericentric chromatin
Collapse
Affiliation(s)
- Shalabh Shukla
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
- Corresponding author
| |
Collapse
|
21
|
Wang C, Yin Y, Sun Z, Wang Y, Li F, Wang Y, Zhang Z, Chen X. ATAD2 Upregulation Promotes Tumor Growth and Angiogenesis in Endometrial Cancer and Is Associated with Its Immune Infiltration. DISEASE MARKERS 2022; 2022:2334338. [PMID: 36479043 PMCID: PMC9722300 DOI: 10.1155/2022/2334338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 12/03/2022]
Abstract
Background Endometrial cancer is one of the three major gynecologic malignancies, and its incidence continues to rise. ATPase family AAA structural domain-containing protein 2 (ATAD2) is an ATPase protein, which is an independent factor for poor prognosis in endometrial cancer. However, its role in the disease is yet to be determined. Methods The Tumor IMmune Estimation Resource (TIMER) database was used to assess ATAD2 expression in pan-cancer, and the relevance of ATAD2 expression in Uterine Corpus Endometrial Carcinoma (UCEC) in clinical settings was obtained using Gene Expression Profiling Interactive Analysis (GEPIA) and UALCAN analysis. In addition, the Human Protein Atlas database was used to assess ATAD2 protein expression in UCEC. Furthermore, in vitro molecular biology and in vivo functional experiments were employed to ascertain the effect of ATAD2 expression on tumor angiogenesis and tumor growth. UALCAN was used to screen for ATAD2 coexpressed genes, and Sangerbox was utilized to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of these coexpressed genes. Finally, the TIMER, Tumor Immune System Interaction and Drug Bank (TISIDB), and GEPIA databases were used to analyze the relationship between ATAD2 and immune infiltration. Results ATAD2 is highly expressed in a variety of tumors, and in UCEC, it plays the role of a protooncogene. Basic experiments revealed that ATAD2 promotes vascular endothelial growth factor expression in endometrial cancer and affects tumor growth and angiogenesis. In addition, GO and KEGG enrichment analyses showed that ATAD2-associated genes were chiefly enriched in certain signaling pathways, such as herpes simplex virus 1 infection and that ATAD2 was associated with immune infiltration in UCEC. Conclusion Our findings suggest that ATAD2 promotes tumor growth and angiogenesis in endometrial cancer. Furthermore, ATAD2 is associated with immune infiltration and is a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Can Wang
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Yue Yin
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Zhenxing Sun
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Yiru Wang
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Fei Li
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Yan Wang
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Zexue Zhang
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Xiuwei Chen
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| |
Collapse
|
22
|
Li R, Wang TY, Shelp-Peck E, Wu SP, DeMayo FJ. The single-cell atlas of cultured human endometrial stromal cells. F&S SCIENCE 2022; 3:349-366. [PMID: 36089208 PMCID: PMC9669198 DOI: 10.1016/j.xfss.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To systematically analyze the cell composition and transcriptome of primary human endometrial stromal cells (HESCs) and transformed human endometrial stromal cells (THESCs). DESIGN The primary HESCs from 3 different donors and 1 immortalized THESC were collected from the human endometrium at the midsecretory phase and cultured in vitro. SETTING Academic research laboratory. PATIENT(S) None. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Single-cell ribonucleic acid sequencing analysis. RESULT(S) We found the individual differences among the primary HESCs and bigger changes between the primary HESCs and THESCs. Cell clustering with or without integration identified cell clusters belonging to mature, proliferative, and active fibroblasts that were conserved across all samples at different stages of the cell cycles with intensive cell communication signals. All primary HESCs and THESCs can be correlated with some subpopulations of fibroblasts in the human endometrium. CONCLUSION(S) Our study indicated that the primary HESCs and THESCs displayed conserved cell characters and distinct cell clusters. Mature, proliferative, and active fibroblasts at different stages or cell cycles were detected across all samples and presented with a complex cell communication network. The cultured HESCs and THESCs retained the features of some subpopulations within the human endometrium.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Tian-Yuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Elinor Shelp-Peck
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina; The Biological Sciences Department, The Department of Chemistry, Physics, and Geosciences, Meredith College, Raleigh, North Carolina
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina.
| |
Collapse
|
23
|
Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022; 12:biom12081040. [PMID: 36008934 PMCID: PMC9405547 DOI: 10.3390/biom12081040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has received extensive attention in recent years as one prospective oncogene with tumor-promoting features in many malignancies. ATAD2 is a highly conserved bromodomain family protein that exerts its biological functions by mainly AAA ATPase and bromodomain. ATAD2 acts as an epigenetic decoder and transcription factor or co-activator, which is engaged in cellular activities, such as transcriptional regulation, DNA replication, and protein modification. ATAD2 has been reported to be highly expressed in a variety of human malignancies, including gastrointestinal malignancies, reproductive malignancies, urological malignancies, lung cancer, and other types of malignancies. ATAD2 is involved in the activation of multiple oncogenic signaling pathways and is closely associated with tumorigenesis, progression, chemoresistance, and poor prognosis, but the oncogenic mechanisms vary in different cancer types. Moreover, the direct targeting of ATAD2’s bromodomain may be a very challenging task. In this review, we summarized the role of ATAD2 in various types of malignancies and pointed out the pharmacological direction.
Collapse
|
24
|
Sargazi ML, Jafarinejad-Farsangi S, Moazzam-Jazi M, Rostamzadeh F, Karam ZM. The crosstalk between long non-coding RNAs and the hedgehog signaling pathway in cancer. Med Oncol 2022; 39:127. [PMID: 35716241 DOI: 10.1007/s12032-022-01710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Hedgehog (Hh) is a conserved signaling pathway that is involved in embryo development as well as adult tissue maintenance and repair in invertebrates and vertebrates. Abnormal activation of this pathway in various types of malignant drug- and apoptosis-resistant tumors has made it a therapeutic target against tumorigenesis. Thus, understanding the molecular mechanisms that promote the activation or inhibition of this pathway is critical. Long non-coding RNAs (lncRNAs), a subclass of non-coding RNAs with a length of > 200 nt, affect the expression of Hh signaling components via a variety of transcriptional and post-transcriptional processes. This review focuses on the crosstalk between lncRNAs and the Hh pathway in carcinogenesis, outlines the broad role of Hh-related lncRNAs in tumor progression, and illustrates their clinical diagnostic, prognostic, and therapeutic potential in tumors.
Collapse
Affiliation(s)
- Marzieh Lotfian Sargazi
- Student Research Committee, Kerman University of Medical Sciences, Jehad Blvd, Ebn Sina Avenue, 7619813159, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, 7619813159, Kerman, Iran.
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 19839-63113, Tehran, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, 7619813159, Kerman, Iran
| | - Zahra Miri Karam
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Ali HA, Li Y, Bilal AHM, Qin T, Yuan Z, Zhao W. A Comprehensive Review of BET Protein Biochemistry, Physiology, and Pathological Roles. Front Pharmacol 2022; 13:818891. [PMID: 35401196 PMCID: PMC8990909 DOI: 10.3389/fphar.2022.818891] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications, specifically acetylation of histone plays a decisive role in gene regulation and transcription of normal cellular mechanisms and pathological conditions. The bromodomain and extraterminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT), being epigenetic readers, ligate to acetylated regions of histone and synchronize gene transcription. BET proteins are crucial for normal cellular processing as they control cell cycle progression, neurogenesis, differentiation, and maturation of erythroids and spermatogenesis, etc. Research-based evidence indicated that BET proteins (mainly BRD4) are associated with numeral pathological ailments, including cancer, inflammation, infections, renal diseases, and cardiac diseases. To counter the BET protein-related pathological conditions, there are some BET inhibitors developed and also under development. BET proteins are a topic of most research nowadays. This review, provides an ephemeral but comprehensive knowledge about BET proteins’ basic structure, biochemistry, physiological roles, and pathological conditions in which the role of BETs have been proven. This review also highlights the current and future approaches to pledge BET protein-related pathologies.
Collapse
Affiliation(s)
- Hafiz Akbar Ali
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yalan Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Akram Hafiz Muhammad Bilal
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tingting Qin
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Bansal P, Kurat CF. Yta7, a chromatin segregase regulated by the cell cycle machinery. Mol Cell Oncol 2022; 9:2039577. [PMID: 35308047 PMCID: PMC8932914 DOI: 10.1080/23723556.2022.2039577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have recently revealed the existence of a cell cycle-regulated chromatin segregase, Yta7 (Yeast Tat-binding Analog 7), involved in chromosome replication. Phosphorylation of Yta7 by S-CDK (S-phase Cyclin-Dependent Kinase) regulates its function. These findings link the cell cycle to chromatin biology and suggest how chromatin-modifying enzymes become S phase-specific.
Collapse
Affiliation(s)
- Priyanka Bansal
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christoph F Kurat
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
27
|
Haitani T, Kobayashi M, Koyasu S, Akamatsu S, Suwa T, Onodera Y, Nam JM, Nguyen PTL, Menju T, Date H, Ogawa O, Harada H. Proteolysis of a histone acetyl reader, ATAD2, induces chemoresistance of cancer cells under severe hypoxia by inhibiting cell cycle progression in S phase. Cancer Lett 2022; 528:76-84. [PMID: 34973392 DOI: 10.1016/j.canlet.2021.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/01/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022]
Abstract
Cancer cells acquire chemoresistance in hypoxic regions of solid tumors, which is suggested to be at least partly due to reduction of their proliferative activity. However, molecular mechanisms behind it have not been fully elucidated. Here, we revealed the importance of active proteolysis of a histone acetylation reader, ATPase family AAA domain containing 2 (ATAD2), under hypoxia. We found that inactivation of an O2/Fe2+/α-ketoglutarate-dependent dioxygenase triggered ATAD2 proteolysis by the proteasome system upon severe hypoxia in a hypoxia-inducible factors (HIFs)-independent manner. Consistently, ATAD2 expression levels were markedly lower in perinecrotic hypoxic regions in both xenografted and clinical tumor tissues. The ATAD2 proteolysis was accompanied by a decrease in the amount of acetylated histone H3 lysine 27 and inhibited cell cycle progression from the early to late S phase under severe hypoxia. The retardation of S phase progression induced chemoresistance, which was blocked by overexpression of ATAD2. Together, these results indicate that ATAD2 proteolysis upon severe hypoxia induces chemoresistance of cancer cells through heterochromatinization and the subsequent retardation of S phase progression; therefore, inhibition of ATAD2 proteolysis is expected to be a strategy to overcome chemoresistance of hypoxic tumor cells.
Collapse
Affiliation(s)
- Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Suwa
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Jin-Min Nam
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Phuong Thi Lien Nguyen
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
28
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
29
|
Kelly V, Al-Rawi A, Lewis D, Kustatscher G, Ly T. Low Cell Number Proteomic Analysis Using In-Cell Protease Digests Reveals a Robust Signature for Cell Cycle State Classification. Mol Cell Proteomics 2022; 21:100169. [PMID: 34742921 PMCID: PMC8760417 DOI: 10.1016/j.mcpro.2021.100169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Comprehensive proteome analysis of rare cell phenotypes remains a significant challenge. We report a method for low cell number MS-based proteomics using protease digestion of mildly formaldehyde-fixed cells in cellulo, which we call the "in-cell digest." We combined this with averaged MS1 precursor library matching to quantitatively characterize proteomes from low cell numbers of human lymphoblasts. About 4500 proteins were detected from 2000 cells, and 2500 proteins were quantitated from 200 lymphoblasts. The ease of sample processing and high sensitivity makes this method exceptionally suited for the proteomic analysis of rare cell states, including immune cell subsets and cell cycle subphases. To demonstrate the method, we characterized the proteome changes across 16 cell cycle states (CCSs) isolated from an asynchronous TK6 cells, avoiding synchronization. States included late mitotic cells present at extremely low frequency. We identified 119 pseudoperiodic proteins that vary across the cell cycle. Clustering of the pseudoperiodic proteins showed abundance patterns consistent with "waves" of protein degradation in late S, at the G2&M border, midmitosis, and at mitotic exit. These clusters were distinguished by significant differences in predicted nuclear localization and interaction with the anaphase-promoting complex/cyclosome. The dataset also identifies putative anaphase-promoting complex/cyclosome substrates in mitosis and the temporal order in which they are targeted for degradation. We demonstrate that a protein signature made of these 119 high-confidence cell cycle-regulated proteins can be used to perform unbiased classification of proteomes into CCSs. We applied this signature to 296 proteomes that encompass a range of quantitation methods, cell types, and experimental conditions. The analysis confidently assigns a CCS for 49 proteomes, including correct classification for proteomes from synchronized cells. We anticipate that this robust cell cycle protein signature will be crucial for classifying cell states in single-cell proteomes.
Collapse
Affiliation(s)
- Van Kelly
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK; Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Aymen Al-Rawi
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David Lewis
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Georg Kustatscher
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK; Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
30
|
Ekin U, Yuzugullu H, Ozen C, Korhan P, Bagirsakci E, Yilmaz F, Yuzugullu OG, Uzuner H, Alotaibi H, Kirmizibayrak PB, Atabey N, Karakülah G, Ozturk M. Evaluation of ATAD2 as a Potential Target in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1356-1369. [PMID: 34738187 DOI: 10.1007/s12029-021-00732-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide with lack of effective systemic chemotherapy. In this study, we aimed to evaluate the value of ATPase family AAA domain-containing protein 2 (ATAD2) as a biomarker and potential therapeutic target for HCC. METHODS The expression of ATAD2 was tested in different HCC patient cohorts by immunohistochemistry and comparative transcriptional analysis. The co-expression of ATAD2 and proliferation markers was compared during liver regeneration and malignancy with different bioinformatics tools. The cellular effects of ATAD2 inactivation in liver malignancy was tested on cell cycle, apoptosis, and colony formation ability as well as tumor formation using RNA interference. The genes affected by ATAD2 inactivation in three different HCC cell lines were identified by global gene expression profiling and bioinformatics tools. RESULTS ATAD2 overexpression is closely correlated with HCC tumor stage. There was gradual increase from dysplasia, well-differentiated and poorly-differentiated HCC, respectively. We also observed transient upregulation of ATAD2 expression during rat liver regeneration in parallel to changes in Ki-67 expression. ATAD2 knockdown resulted in apoptosis and decreased cell survival in vitro and decreased tumor formation in some HCC cell lines. However, three other HCC cell lines tested were not affected. Similarly, gene expression response to ATAD2 inactivation in different HCC cell lines was highly heterogeneous. CONCLUSIONS ATAD2 is a potential proliferation marker for liver regeneration and HCC. It may also serve as a therapeutic target despite heterogeneous response of malignant cells.
Collapse
Affiliation(s)
- Umut Ekin
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Haluk Yuzugullu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Institut Albert Bonniot, Grenoble, France
| | - Cigdem Ozen
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Present Address: Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Bioinformatics group, Dresden, Germany
| | - Peyda Korhan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ezgi Bagirsakci
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Funda Yilmaz
- Department of Pathology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozge Gursoy Yuzugullu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Institut Albert Bonniot, Grenoble, France
| | - Hamdiye Uzuner
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Nese Atabey
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Faculty of Medicine, Izmir Tinaztepe University, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey. .,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey. .,Institut Albert Bonniot, Grenoble, France. .,Faculty of Medicine, Izmir Tinaztepe University, Izmir, Turkey.
| |
Collapse
|
31
|
Barman S, Roy A, Bardhan I, Kandasamy T, Shivani S, Sudhamalla B. Insights into the Molecular Mechanisms of Histone Code Recognition by the BRPF3 Bromodomain. Chem Asian J 2021; 16:3404-3412. [PMID: 34448544 DOI: 10.1002/asia.202100793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Indexed: 01/16/2023]
Abstract
Bromodomains are evolutionarily conserved reader modules that recognize acetylated lysine residues on the histone tails to facilitate gene transcription. The bromodomain and PHD finger containing protein 3 (BRPF3) is a scaffolding protein that forms a tetrameric complex with HBO1 histone acetyltransferase (HAT) and two other subunits, which is known to regulate the HAT activity and substrate specificity. However, its molecular mechanism, histone ligands, and biological functions remain unknown. Herein, we identify mono- (H4K5ac) and di- (H4K5acK12ac) acetylated histone peptides as novel interacting partners of the BRPF3 bromodomain. Consistent with this, pull-down assays on purified histones from human cells confirm the interaction of BRPF3 bromodomain with acetylated histone H4. Further, MD simulation studies highlight the binding mode of acetyllysine (Kac) and the stability of bromodomain-histone peptide complexes. Collectively, our findings provide a key insight into how histone targets of the BRPF3 bromodomain direct the recruitment of HBO1 complex to chromatin for downstream transcriptional regulation.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Ishita Bardhan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Thirukumaran Kandasamy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Shivani Shivani
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| |
Collapse
|
32
|
Wang T, Perazza D, Boussouar F, Cattaneo M, Bougdour A, Chuffart F, Barral S, Vargas A, Liakopoulou A, Puthier D, Bargier L, Morozumi Y, Jamshidikia M, Garcia-Saez I, Petosa C, Rousseaux S, Verdel A, Khochbin S. ATAD2 controls chromatin-bound HIRA turnover. Life Sci Alliance 2021; 4:4/12/e202101151. [PMID: 34580178 PMCID: PMC8500222 DOI: 10.26508/lsa.202101151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
Taking advantage of the evolutionary conserved nature of ATAD2, we report here a series of parallel functional studies in human, mouse, and Schizosaccharomyces pombe to investigate ATAD2's conserved functions. In S. pombe, the deletion of ATAD2 ortholog, abo1, leads to a dramatic decrease in cell growth, with the appearance of suppressor clones recovering normal growth. The identification of the corresponding suppressor mutations revealed a strong genetic interaction between Abo1 and the histone chaperone HIRA. In human cancer cell lines and in mouse embryonic stem cells, we observed that the KO of ATAD2 leads to an accumulation of HIRA. A ChIP-seq mapping of nucleosome-bound HIRA and FACT in Atad2 KO mouse ES cells demonstrated that both chaperones are trapped on nucleosomes at the transcription start sites of active genes, resulting in the abnormal presence of a chaperone-bound nucleosome on the TSS-associated nucleosome-free regions. Overall, these data highlight an important layer of regulation of chromatin dynamics ensuring the turnover of histone-bound chaperones.
Collapse
Affiliation(s)
- Tao Wang
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Daniel Perazza
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Fayçal Boussouar
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Matteo Cattaneo
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Alexandre Bougdour
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Florent Chuffart
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Sophie Barral
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Alexandra Vargas
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Ariadni Liakopoulou
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Denis Puthier
- Aix Marseille Université, INSERM, Theories and Approaches of Genomic Complexity (TAGC), Transcriptomique et Genomique Marseille-Luminy (TGML), Marseille, France
| | - Lisa Bargier
- Aix Marseille Université, INSERM, Theories and Approaches of Genomic Complexity (TAGC), Transcriptomique et Genomique Marseille-Luminy (TGML), Marseille, France
| | - Yuichi Morozumi
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France.,Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mahya Jamshidikia
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Isabel Garcia-Saez
- Université Grenoble Alpes/CNRS/CEA, Institut de Biologie Structurale, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes/CNRS/CEA, Institut de Biologie Structurale, Grenoble, France
| | - Sophie Rousseaux
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - André Verdel
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| | - Saadi Khochbin
- Centre National de la Recherche Scientifique (CNRS), Unite Mixte de Recherche (UMR) 5309/INSERM U1209/Université Grenoble-Alpes/Institute for Advanced Biosciences, La Tronche, France
| |
Collapse
|
33
|
Chacin E, Bansal P, Reusswig KU, Diaz-Santin LM, Ortega P, Vizjak P, Gómez-González B, Müller-Planitz F, Aguilera A, Pfander B, Cheung ACM, Kurat CF. A CDK-regulated chromatin segregase promoting chromosome replication. Nat Commun 2021; 12:5224. [PMID: 34471130 PMCID: PMC8410769 DOI: 10.1038/s41467-021-25424-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
The replication of chromosomes during S phase is critical for cellular and organismal function. Replicative stress can result in genome instability, which is a major driver of cancer. Yet how chromatin is made accessible during eukaryotic DNA synthesis is poorly understood. Here, we report the characterization of a chromatin remodeling enzyme-Yta7-entirely distinct from classical SNF2-ATPase family remodelers. Yta7 is a AAA+ -ATPase that assembles into ~1 MDa hexameric complexes capable of segregating histones from DNA. The Yta7 chromatin segregase promotes chromosome replication both in vivo and in vitro. Biochemical reconstitution experiments using purified proteins revealed that the enzymatic activity of Yta7 is regulated by S phase-forms of Cyclin-Dependent Kinase (S-CDK). S-CDK phosphorylation stimulates ATP hydrolysis by Yta7, promoting nucleosome disassembly and chromatin replication. Our results present a mechanism for how cells orchestrate chromatin dynamics in co-ordination with the cell cycle machinery to promote genome duplication during S phase.
Collapse
Affiliation(s)
- Erika Chacin
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany
| | - Priyanka Bansal
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany
| | - Karl-Uwe Reusswig
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Planegg-Martinsried, Germany
| | - Luis M Diaz-Santin
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, UK
| | - Pedro Ortega
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain
| | - Petra Vizjak
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany
| | - Belen Gómez-González
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain
| | - Felix Müller-Planitz
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany.,Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrés Aguilera
- Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER, University of Seville-CSIC, Seville, Spain
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Planegg-Martinsried, Germany
| | - Alan C M Cheung
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Christoph F Kurat
- Molecular Biology Division, Biomedical Center Munich, Ludwig-Maximilians-Universität, Munich, Planegg-Martinsried, Germany.
| |
Collapse
|
34
|
Evans CM, Phillips M, Malone KL, Tonelli M, Cornilescu G, Cornilescu C, Holton SJ, Gorjánácz M, Wang L, Carlson S, Gay JC, Nix JC, Demeler B, Markley JL, Glass KC. Coordination of Di-Acetylated Histone Ligands by the ATAD2 Bromodomain. Int J Mol Sci 2021; 22:9128. [PMID: 34502039 PMCID: PMC8430952 DOI: 10.3390/ijms22179128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
The ATPase Family, AAA domain-containing protein 2 (ATAD2) bromodomain (BRD) has a canonical bromodomain structure consisting of four α-helices. ATAD2 functions as a co-activator of the androgen and estrogen receptors as well as the MYC and E2F transcription factors. ATAD2 also functions during DNA replication, recognizing newly synthesized histones. In addition, ATAD2 is shown to be up-regulated in multiple forms of cancer including breast, lung, gastric, endometrial, renal, and prostate. Furthermore, up-regulation of ATAD2 is strongly correlated with poor prognosis in many types of cancer, making the ATAD2 bromodomain an innovative target for cancer therapeutics. In this study, we describe the recognition of histone acetyllysine modifications by the ATAD2 bromodomain. Residue-specific information on the complex formed between the histone tail and the ATAD2 bromodomain, obtained through nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography, illustrates key residues lining the binding pocket, which are involved in coordination of di-acetylated histone tails. Analytical ultracentrifugation, NMR relaxation data, and isothermal titration calorimetry further confirm the monomeric state of the functionally active ATAD2 bromodomain in complex with di-acetylated histone ligands. Overall, we describe histone tail recognition by ATAD2 BRD and illustrate that one acetyllysine group is primarily engaged by the conserved asparagine (N1064), the "RVF" shelf residues, and the flexible ZA loop. Coordination of a second acetyllysine group also occurs within the same binding pocket but is essentially governed by unique hydrophobic and electrostatic interactions making the di-acetyllysine histone coordination more specific than previously presumed.
Collapse
Affiliation(s)
- Chiara M. Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Margaret Phillips
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kiera L. Malone
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Claudia Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Simon J. Holton
- Bayer AG, Pharmaceuticals, Research & Early Development Oncology, 13353 Berlin, Germany; (S.J.H.); (M.G.)
| | - Mátyás Gorjánácz
- Bayer AG, Pharmaceuticals, Research & Early Development Oncology, 13353 Berlin, Germany; (S.J.H.); (M.G.)
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.W.); (B.D.)
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Jamie C. Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, CA 94720, USA;
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.W.); (B.D.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
35
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
36
|
Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219:113446. [PMID: 33873056 PMCID: PMC8165034 DOI: 10.1016/j.ejmech.2021.113446] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA ATPase) are essential enzymes found in all organisms. They are involved in various processes such as DNA replication, protein degradation, membrane fusion, microtubule serving, peroxisome biogenesis, signal transduction, and the regulation of gene expression. Due to the importance of AAA ATPases, several researchers identified and developed small-molecule inhibitors against these enzymes. We discuss six AAA ATPases that are potential drug targets and have well-developed inhibitors. We compare available structures that suggest significant differences of the ATP binding pockets among the AAA ATPases with or without ligand. The distances from ADP to the His20 in the His-Ser-His motif and the Arg finger (Arg353 or Arg378) in both RUVBL1/2 complex structures bound with or without ADP have significant differences, suggesting dramatically different interactions of the binding site with ADP. Taken together, the inhibitors of six well-studied AAA ATPases and their structural information suggest further development of specific AAA ATPase inhibitors due to difference in their structures. Future chemical biology coupled with proteomic approaches could be employed to develop variant specific, complex specific, and pathway specific inhibitors or activators for AAA ATPase proteins.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
37
|
Souza MDA, Ramos-Sanchez EM, Muxel SM, Lagos D, Reis LC, Pereira VRA, Brito MEF, Zampieri RA, Kaye PM, Floeter-Winter LM, Goto H. miR-548d-3p Alters Parasite Growth and Inflammation in Leishmania (Viannia) braziliensis Infection. Front Cell Infect Microbiol 2021; 11:687647. [PMID: 34178725 PMCID: PMC8224172 DOI: 10.3389/fcimb.2021.687647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
American Tegumentary Leishmaniasis (ATL) is an endemic disease in Latin America, mainly caused in Brazil by Leishmania (Viannia) braziliensis. Clinical manifestations vary from mild, localized cutaneous leishmaniasis (CL) to aggressive mucosal disease. The host immune response strongly determines the outcome of infection and pattern of disease. However, the pathogenesis of ATL is not well understood, and host microRNAs (miRNAs) may have a role in this context. In the present study, miRNAs were quantified using qPCR arrays in human monocytic THP-1 cells infected in vitro with L. (V.) braziliensis promastigotes and in plasma from patients with ATL, focusing on inflammatory response-specific miRNAs. Patients with active or self-healed cutaneous leishmaniasis patients, with confirmed parasitological or immunological diagnosis, were compared with healthy controls. Computational target prediction of significantly-altered miRNAs from in vitro L. (V.) braziliensis-infected THP-1 cells revealed predicted targets involved in diverse pathways, including chemokine signaling, inflammatory, cellular proliferation, and tissue repair processes. In plasma, we observed distinct miRNA expression in patients with self-healed and active lesions compared with healthy controls. Some miRNAs dysregulated during THP-1 in vitro infection were also found in plasma from self-healed patients, including miR-548d-3p, which was upregulated in infected THP-1 cells and in plasma from self-healed patients. As miR-548d-3p was predicted to target the chemokine pathway and inflammation is a central to the pathogenesis of ATL, we evaluated the effect of transient transfection of a miR-548d-3p inhibitor on L. (V.) braziliensis infected-THP-1 cells. Inhibition of miR-548d-3p reduced parasite growth early after infection and increased production of MCP1/CCL2, RANTES/CCL5, and IP10/CXCL10. In plasma of self-healed patients, MCP1/CCL2, RANTES/CCL5, and IL-8/CXCL8 concentrations were significantly decreased and MIG/CXCL9 and IP-10/CXCL10 increased compared to patients with active disease. These data suggest that by modulating miRNAs, L. (V.) braziliensis may interfere with chemokine production and hence the inflammatory processes underpinning lesion resolution. Our data suggest miR-548d-3p could be further evaluated as a prognostic marker for ATL and/or as a host-directed therapeutic target.
Collapse
Affiliation(s)
- Marina de Assis Souza
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | - Eduardo Milton Ramos-Sanchez
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil.,Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru
| | | | - Dimitris Lagos
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Luiza Campos Reis
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | | | | | | | - Paul Martin Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | | | - Hiro Goto
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil.,Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Kunig VBK, Potowski M, Klika Škopić M, Brunschweiger A. Scanning Protein Surfaces with DNA-Encoded Libraries. ChemMedChem 2021; 16:1048-1062. [PMID: 33295694 PMCID: PMC8048995 DOI: 10.1002/cmdc.202000869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Understanding the ligandability of a target protein, defined as the capability of a protein to bind drug-like compounds on any site, can give important stimuli to drug-development projects. For instance, inhibition of protein-protein interactions usually depends on the identification of protein surface binders. DNA-encoded chemical libraries (DELs) allow scanning of protein surfaces with large chemical space. Encoded library selection screens uncovered several protein-protein interaction inhibitors and compounds binding to the surface of G protein-coupled receptors (GPCRs) and kinases. The protein surface-binding chemotypes from DELs are predominantly chemically modified and cyclized peptides, and functional small-molecule peptidomimetics. Peptoid libraries and structural peptidomimetics have been less studied in the DEL field, hinting at hitherto less populated chemical space and suggesting alternative library designs. Roughly a third of bioactive molecules evolved from smaller, target-focused libraries. They showcase the potential of encoded libraries to identify more potent molecules from weak, for example, fragment-like, starting points.
Collapse
Affiliation(s)
- Verena B. K. Kunig
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Marco Potowski
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Mateja Klika Škopić
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
39
|
Nayak A, Dutta M, Roychowdhury A. Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. Life Sci 2021; 276:119322. [PMID: 33711386 DOI: 10.1016/j.lfs.2021.119322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
ATAD2 is a promising oncoprotein with tumor-promoting functions in many cancers. It is a valid cancer drug-target and a potential cancer-biomarker for multiple malignancies. As a cancer/testis antigen (CTA), ATAD2 could also be a probable candidate for immunotherapy. It is a unique CTA that belongs to both AAA+ ATPase and bromodomain family proteins. Since 2007, several research groups have been reported on the pleiotropic oncogenic functions of ATAD2 in diverse signaling pathways, including Rb/E2F-cMyc pathway, steroid hormone signaling pathway, p53 and p38-MAPK-mediated apoptotic pathway, AKT pathway, hedgehog signaling pathway, HIF1α signaling pathway, and Epithelial to Mesenchymal Transition (EMT) pathway in various cancers. In all these pathways, ATAD2 participates in chromatin dynamics, DNA replication, and gene transcription, demonstrating its role as an epigenetic reader and transcription factor or coactivator to promote tumorigenesis. However, despite the progress, an overall mechanism of ATAD2-mediated oncogenesis in diverse origin is elusive. In this review, we summarize the accumulated evidence to envision the overall ATAD2 signaling networks during carcinogenesis and highlight the area where missing links await further research. Besides, the structure-function aspect of ATAD2 is also discussed. Since the efforts have already been initiated to explore targeted drug molecules and RNA-based therapeutic alternatives against ATAD2, their potency and prospects have been elucidated. Together, we believe this is a well-rounded review on ATAD2, facilitating a new drift in ATAD2 research, essential for its clinical implication as a biomarker and/or cancer drug-target.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
40
|
Kang Y, Cho C, Lee KS, Song JJ, Lee JY. Single-Molecule Imaging Reveals the Mechanism Underlying Histone Loading of Schizosaccharomyces pombe AAA+ ATPase Abo1. Mol Cells 2021; 44:79-87. [PMID: 33658433 PMCID: PMC7941004 DOI: 10.14348/molcells.2021.2242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 11/27/2022] Open
Abstract
Chromatin dynamics is essential for maintaining genomic integrity and regulating gene expression. Conserved bromodomain-containing AAA+ ATPases play important roles in nucleosome organization as histone chaperones. Recently, the high-resolution cryo-electron microscopy structures of Schizosaccharomyces pombe Abo1 revealed that it forms a hexameric ring and undergoes a conformational change upon ATP hydrolysis. In addition, single-molecule imaging demonstrated that Abo1 loads H3-H4 histones onto DNA in an ATP hydrolysis-dependent manner. However, the molecular mechanism by which Abo1 loads histones remains unknown. Here, we investigated the details concerning Abo1-mediated histone loading onto DNA and the Abo1- DNA interaction using single-molecule imaging techniques and biochemical assays. We show that Abo1 does not load H2A-H2B histones. Interestingly, Abo1 deposits multiple copies of H3-H4 histones as the DNA length increases and requires at least 80 bp DNA. Unexpectedly, Abo1 weakly binds DNA regardless of ATP, and neither histone nor DNA stimulates the ATP hydrolysis activity of Abo1. Based on our results, we propose an allosteric communication model in which the ATP hydrolysis of Abo1 changes the configuration of histones to facilitate their deposition onto DNA.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- These authors contributed equally to this work
| | - Carol Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- These authors contributed equally to this work
| | - Kyung Suk Lee
- Department of Physics Education, Kongju National University, Gongju 32588, Korea
| | - Ji-Joon Song
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| |
Collapse
|
41
|
Nayak A, Kumar S, Singh SP, Bhattacharyya A, Dixit A, Roychowdhury A. Oncogenic potential of ATAD2 in stomach cancer and insights into the protein-protein interactions at its AAA + ATPase domain and bromodomain. J Biomol Struct Dyn 2021; 40:5606-5622. [PMID: 33438526 DOI: 10.1080/07391102.2021.1871959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ATAD2 has recently been shown to promote stomach cancer. However, nothing is known about the functional network of ATAD2 in stomach carcinogenesis. This study illustrates the oncogenic potential of ATAD2 and the participation of its ATPase and bromodomain in stomach malignancy. Expression of ATAD2 in stomach cancer is analyzed by in silico and in vitro techniques including western blot and immunofluorescence microscopy of stomach cancer cells (SCCs) and tissues. The oncogenic potential of ATAD2 is examined thoroughly using genetic alterations, driver gene prediction, survival analysis, identification of interacting partners, and analysis of canonical pathways. To understand the protein-protein interactions (PPI) at residue level, molecular docking and molecular dynamics simulations (1200 ns) are performed. Enhanced expression of ATAD2 is observed in H. pylori-infected SCCs, patient biopsy tissues, and all stages and grades of stomach cancer. High expression of ATAD2 is found to be negatively correlated with the survival of stomach cancer patients. ATAD2 is a cancer driver gene with 37 mutational sites and a predictable factor for stomach cancer prognosis with high accuracy. The top canonical pathways of ATAD2 indicate its participation in stomach malignancy. The ATAD2-PPI in stomach cancer identify top-ranked partners; ESR1, SUMO2, SPTN2, and MYC show preference for the bromodomain whereas NCOA3 and HDA11 have preference for the ATPase domain of ATAD2. The oncogenic characterization of ATAD2 provides strong evidence to consider ATAD2 as a stomach cancer biomarker. These studies offer an insight for the first time into the ATAD2-PPI interface presenting a novel target for cancer therapeutics. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Nayak
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sugandh Kumar
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, Khurda, Odisha, India
| | | | - Anasuya Roychowdhury
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
42
|
Zhu X, Liao Y, Tang L. Targeting BRD9 for Cancer Treatment: A New Strategy. Onco Targets Ther 2020; 13:13191-13200. [PMID: 33380808 PMCID: PMC7769155 DOI: 10.2147/ott.s286867] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/12/2020] [Indexed: 01/01/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a newly identified subunit of the non-canonical barrier-to-autointegration factor (ncBAF) complex and a member of the bromodomain family IV. Studies have confirmed that BRD9 plays an oncogenic role in multiple cancer types, by regulating tumor cell growth. The tumor biological functions of BRD9 are mainly due to epigenetic modification mediated by its bromodomain. The bromodomain recruits the ncBAF complex to the promoter to regulate gene transcription. This review summarizes the potential mechanisms of action of BRD9 in carcinogenesis and the emerging strategies for targeting BRD9 for cancer therapeutics. Although the therapeutic potential of BRD9 has been exploited to some extent, research on the detailed biological mechanisms of BRD9 is still in its infancy. Therefore, targeting BRD9 to study its biological roles will be an attractive tool for cancer diagnosis and treatment, but it remains a great challenge.
Collapse
Affiliation(s)
- Xiuzuo Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Liling Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
43
|
Lloyd JT, McLaughlin K, Lubula MY, Gay JC, Dest A, Gao C, Phillips M, Tonelli M, Cornilescu G, Marunde MR, Evans CM, Boyson SP, Carlson S, Keogh MC, Markley JL, Frietze S, Glass KC. Structural Insights into the Recognition of Mono- and Diacetylated Histones by the ATAD2B Bromodomain. J Med Chem 2020; 63:12799-12813. [PMID: 33084328 DOI: 10.1021/acs.jmedchem.0c01178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bromodomains exhibit preferences for specific patterns of post-translational modifications on core and variant histone proteins. We examined the ligand specificity of the ATAD2B bromodomain and compared it to its closely related paralogue in ATAD2. We show that the ATAD2B bromodomain recognizes mono- and diacetyllysine modifications on histones H4 and H2A. A structure-function approach was used to identify key residues in the acetyllysine-binding pocket that dictate the molecular recognition process, and we examined the binding of an ATAD2 bromodomain inhibitor by ATAD2B. Our analysis demonstrated that critical contacts required for bromodomain inhibitor coordination are conserved between the ATAD2/B bromodomains, with many residues playing a dual role in acetyllysine recognition. We further characterized an alternative splice variant of ATAD2B that results in a loss of function. Our results outline the structural and functional features of the ATAD2B bromodomain and identify a novel mechanism regulating the interaction of the ATAD2B protein with chromatin.
Collapse
Affiliation(s)
- Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Kyle McLaughlin
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Mulu Y Lubula
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Jamie C Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Andrea Dest
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Margaret Phillips
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Chiara M Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Samuel P Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | | | - John L Markley
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| |
Collapse
|
44
|
Abstract
Bromodomain-containing proteins are often part of chromatin-modifying complexes, and their activity can lead to altered expression of genes that drive cancer, inflammation and neurological disorders in humans. Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ (monocytic leukemic zinc-finger protein) HAT (histone acetyltransferase) complex, which is associated with chromosomal translocations known to contribute to the development of acute myeloid leukemia (AML). BRPF1 contains a unique combination of chromatin reader domains including two plant homeodomain (PHD) fingers separated by a zinc knuckle (PZP domain), a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. BRPF1 is known to recruit the MOZ HAT complex to chromatin by recognizing acetylated lysine residues on the N-terminal histone tail region through its bromodomain. However, histone proteins can contain several acetylation modifications on their N-terminus, and it is unknown how additional marks influence bromodomain recruitment to chromatin. Here, we identify the BRPF1 bromodomain as a selective reader of di-acetyllysine modifications on histone H4. We used ITC assays to characterize the binding of di-acetylated histone ligands to the BRPF1 bromodomain and found that the domain binds preferentially to histone peptides H4K5acK8ac and H4K5acK12ac. Analytical ultracentrifugation (AUC) experiments revealed that the monomeric state of the BRPF1 bromodomain coordinates di-acetylated histone ligands. NMR chemical shift perturbation studies, along with binding and mutational analyses, revealed non-canonical regions of the bromodomain-binding pocket that are important for histone tail recognition. Together, our findings provide critical information on how the combinatorial action of post-translational modifications can modulate BRPF1 bromodomain binding and specificity.
Collapse
|
45
|
Lazarchuk P, Hernandez-Villanueva J, Pavlova MN, Federation A, MacCoss M, Sidorova JM. Mutual Balance of Histone Deacetylases 1 and 2 and the Acetyl Reader ATAD2 Regulates the Level of Acetylation of Histone H4 on Nascent Chromatin of Human Cells. Mol Cell Biol 2020; 40:e00421-19. [PMID: 32015101 PMCID: PMC7156220 DOI: 10.1128/mcb.00421-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/25/2019] [Accepted: 01/21/2020] [Indexed: 01/04/2023] Open
Abstract
Newly synthesized histone H4 that is incorporated into chromatin during DNA replication is acetylated on lysines 5 and 12. Histone deacetylase 1 (HDAC1) and HDAC2 are responsible for reducing H4 acetylation as chromatin matures. Using CRISPR-Cas9-generated hdac1- or hdac2-null fibroblasts, we determined that HDAC1 and HDAC2 do not fully compensate for each other in removing de novo acetyls on H4 in vivo Proteomics of nascent chromatin and proximity ligation assays with newly replicated DNA revealed the binding of ATAD2, a bromodomain-containing posttranslational modification (PTM) reader that recognizes acetylated H4. ATAD2 is a transcription facilitator overexpressed in several cancers and in the simian virus 40 (SV40)-transformed human fibroblast model cell line used in this study. The recruitment of ATAD2 to nascent chromatin was increased in hdac2 cells over the wild type, and ATAD2 depletion reduced the levels of nascent chromatin-associated, acetylated H4 in wild-type and hdac2 cells. We propose that overexpressed ATAD2 shifts the balance of H4 acetylation by protecting this mark from removal and that HDAC2 but not HDAC1 can effectively compete with ATAD2 for the target acetyls. ATAD2 depletion also reduced global RNA synthesis and nascent DNA-associated RNA. A moderate dependence on ATAD2 for replication fork progression was noted only for hdac2 cells overexpressing the protein.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- University of Washington, Department of Pathology, Seattle, Washington, USA
| | | | - Maria N Pavlova
- University of Washington, Department of Pathology, Seattle, Washington, USA
| | | | - Michael MacCoss
- University of Washington, Department of Genome Sciences, Seattle, Washington, USA
| | - Julia M Sidorova
- University of Washington, Department of Pathology, Seattle, Washington, USA
| |
Collapse
|
46
|
Abo1 is required for the H3K9me2 to H3K9me3 transition in heterochromatin. Sci Rep 2020; 10:6055. [PMID: 32269268 PMCID: PMC7142091 DOI: 10.1038/s41598-020-63209-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/26/2020] [Indexed: 01/24/2023] Open
Abstract
Heterochromatin regulation is critical for genomic stability. Different H3K9 methylation states have been discovered, with distinct roles in heterochromatin formation and silencing. However, how the transition from H3K9me2 to H3K9me3 is controlled is still unclear. Here, we investigate the role of the conserved bromodomain AAA-ATPase, Abo1, involved in maintaining global nucleosome organisation in fission yeast. We identified several key factors involved in heterochromatin silencing that interact genetically with Abo1: histone deacetylase Clr3, H3K9 methyltransferase Clr4, and HP1 homolog Swi6. Cells lacking Abo1 cultivated at 30 °C exhibit an imbalance of H3K9me2 and H3K9me3 in heterochromatin. In abo1∆ cells, the centromeric constitutive heterochromatin has increased H3K9me2 but decreased H3K9me3 levels compared to wild-type. In contrast, facultative heterochromatin regions exhibit reduced H3K9me2 and H3K9me3 levels in abo1∆. Genome-wide analysis showed that abo1∆ cells have silencing defects in both the centromeres and subtelomeres, but not in a subset of heterochromatin islands in our condition. Thus, our work uncovers a role of Abo1 in stabilising directly or indirectly Clr4 recruitment to allow the H3K9me2 to H3K9me3 transition in heterochromatin.
Collapse
|
47
|
Abstract
Bromodomain AAA+ ATPases (ATPases associated with diverse cellular activities) are emerging as oncogenic proteins and compelling targets for anticancer therapies. However, structural and biochemical insight into these machines is missing. A recent study by Cho et al. reports the first cryo-EM structure of a bromodomain AAA+ ATPase and provides first insights into the functions of this putative histone chaperone.
Collapse
Affiliation(s)
- Magdalena Murawska
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Andreas G Ladurner
- Biomedical Center, Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
48
|
The ATAD2/ANCCA homolog Yta7 cooperates with Scm3 HJURP to deposit Cse4 CENP-A at the centromere in yeast. Proc Natl Acad Sci U S A 2020; 117:5386-5393. [PMID: 32079723 DOI: 10.1073/pnas.1917814117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The AAA+ ATPase and bromodomain factor ATAD2/ANCCA is overexpressed in many types of cancer, but how it contributes to tumorigenesis is not understood. Here, we report that the Saccharomyces cerevisiae homolog Yta7ATAD2 is a deposition factor for the centromeric histone H3 variant Cse4CENP-A at the centromere in yeast. Yta7ATAD2 regulates the levels of centromeric Cse4CENP-A in that yta7∆ causes reduced Cse4CENP-A deposition, whereas YTA7 overexpression causes increased Cse4CENP-A deposition. Yta7ATAD2 coimmunoprecipitates with Cse4CENP-A and is associated with the centromere, arguing for a direct role of Yta7ATAD2 in Cse4CENP-A deposition. Furthermore, increasing centromeric Cse4CENP-A levels by YTA7 overexpression requires the activity of Scm3HJURP, the centromeric nucleosome assembly factor. Importantly, Yta7ATAD2 interacts in vivo with Scm3HJURP, indicating that Yta7ATAD2 is a cochaperone for Scm3HJURP The absence of Yta7 causes defects in growth and chromosome segregation with mutations in components of the inner kinetochore (CTF19/CCAN, Mif2CENP-C, Cbf1). Since Yta7ATAD2 is an AAA+ ATPase and potential hexameric unfoldase, our results suggest that it may unfold the Cse4CENP-A histone and hand it over to Scm3HJURP for subsequent deposition in the centromeric nucleosome. Furthermore, our findings suggest that ATAD2 overexpression may enhance malignant transformation in humans by misregulating centromeric CENP-A levels, thus leading to defects in kinetochore assembly and chromosome segregation.
Collapse
|
49
|
Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy. Molecules 2020; 25:molecules25030578. [PMID: 32013155 PMCID: PMC7037402 DOI: 10.3390/molecules25030578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modifications (or epigenetic tags) on DNA and histones not only alter the chromatin structure, but also provide a recognition platform for subsequent protein recruitment and enable them to acquire executive instructions to carry out specific intracellular biological processes. In cells, different epigenetic-tags on DNA and histones are often recognized by the specific domains in proteins (readers), such as bromodomain (BRD), chromodomain (CHD), plant homeodomain (PHD), Tudor domain, Pro-Trp-Trp-Pro (PWWP) domain and malignant brain tumor (MBT) domain. Recent accumulating data reveal that abnormal intracellular histone modifications (histone marks) caused by tumors can be modulated by small molecule-mediated changes in the activity of the above domains, suggesting that small molecules targeting histone-mark reader domains may be the trend of new anticancer drug development. Here, we summarize the protein domains involved in histone-mark recognition, and introduce recent research findings about small molecules targeting histone-mark readers in cancer therapy.
Collapse
|
50
|
Hat1 acetylates histone H4 and modulates the transcriptional program in Drosophila embryogenesis. Sci Rep 2019; 9:17973. [PMID: 31784689 PMCID: PMC6884459 DOI: 10.1038/s41598-019-54497-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/13/2019] [Indexed: 01/23/2023] Open
Abstract
Post-translational modifications of histone proteins play a pivotal role in DNA packaging and regulation of genome functions. Histone acetyltransferase 1 (Hat1) proteins are conserved enzymes that modify histones by acetylating lysine residues. Hat1 is implicated in chromatin assembly and DNA repair but its role in cell functions is not clearly elucidated. We report the generation and characterization of a Hat1 loss-of-function mutant in Drosophila. Hat1 mutants are viable and fertile with a mild sub-lethal phenotype showing that Hat1 is not essential in fruit flies. Lack of Hat1 results in the near complete loss of histone H4 lysine (K) 5 and K12 acetylation in embryos, indicating that Hat1 is the main acetyltransferase specific for these marks in this developmental stage. We found that Hat1 function and the presence of these acetyl marks are not required for the nuclear transport of histone H4 as histone variant His4r retained its nuclear localization both in Hat1 mutants and in His4r-K5R-K12R double point mutants. RNA-seq analysis of embryos indicate that in Hat1 mutants over 2000 genes are dysregulated and the observed transcriptional changes imply a delay in the developmental program of gene expression.
Collapse
|