1
|
Johnson ML, Patel MR, Aljumaily R, Jones SF, Burris Iii HA, Spigel DR. A Phase Ib Dose-Escalation Study of LCL161 Plus Oral Topotecan for Patients With Relapsed/Refractory Small Cell Lung Cancer and Select Gynecologic Malignancies. Oncologist 2023:7147832. [PMID: 37129455 DOI: 10.1093/oncolo/oyad029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND This was an open-label, multicenter, single-arm phase Ib dose-escalation study of oral LCL161 administered in combination with oral topotecan in patients with relapsed/refractory small cell lung cancer (SCLC) and select gynecological cancers. METHODS Cohorts of 3-6 patients initiated treatment with LCL161 and topotecan in escalating doses. LCL161 was administered orally on days 1, 8, and 15 of each 21-day cycle; topotecan was administered orally for the first 5 days of each 21-day cycle. RESULTS A total of 35 patients were enrolled in 6 cohorts; 30 patients were female; 4 patients had SCLC and 19 patients had ovarian cancer. Median prior lines of therapy were 3 (1-10). Median duration of treatment was 7.1 weeks (0.1-174). The most frequent grade 3/4 treatment-related adverse events were thrombocytopenia (51.43%) and anemia (31.43%). ORR was 9.7%; 58% of patients had SD. The study was stopped early before the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) were determined. CONCLUSION The addition of LCL161 to oral topotecan caused more myelosuppression when dosed together than what was associated with either drug alone. Moreover, the drug combination did not improve outcomes. The study was terminated early (ClinicalTrials.gov Identifier: NCT02649673).
Collapse
Affiliation(s)
- Melissa L Johnson
- Sarah Cannon Research Institute, Nashville, TN, USA
- Tennessee Oncology, Nashville, TN, USA
| | - Manish R Patel
- Sarah Cannon Research Institute, Nashville, TN, USA
- Florida Cancer Specialists, Sarasota, FL, USA
| | - Raid Aljumaily
- Sarah Cannon Research Institute, Nashville, TN, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Howard A Burris Iii
- Sarah Cannon Research Institute, Nashville, TN, USA
- Tennessee Oncology, Nashville, TN, USA
| | - David R Spigel
- Sarah Cannon Research Institute, Nashville, TN, USA
- Tennessee Oncology, Nashville, TN, USA
| |
Collapse
|
2
|
Fitzgerald MC, O’Halloran PJ, Connolly NMC, Murphy BM. Targeting the apoptosis pathway to treat tumours of the paediatric nervous system. Cell Death Dis 2022; 13:460. [PMID: 35568716 PMCID: PMC9107479 DOI: 10.1038/s41419-022-04900-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
New, more effective therapeutics are required for the treatment of paediatric cancers. Current treatment protocols of cytotoxic treatments including chemotherapy trigger cancer-cell death by engaging the apoptosis pathway, and chemotherapy efficacy is frequently impeded by apoptosis dysregulation. Apoptosis dysregulation, through genetic or epigenetic mechanisms, is a feature of many cancer types, and contributes to reduced treatment response, disease progression and ultimately treatment resistance. Novel approaches are required to overcome dysregulated apoptosis signalling, increase the efficacy of cancer treatment and improve patient outcomes. Here, we provide an insight into current knowledge of how the apoptosis pathway is dysregulated in paediatric nervous system tumours, with a focus on TRAIL receptors, the BCL-2 proteins and the IAP family, and highlight preclinical evidence demonstrating that pharmacological manipulation of the apoptosis pathway can restore apoptosis signalling and sensitise cancer cells to treatment. Finally, we discuss the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Marie-Claire Fitzgerald
- grid.4912.e0000 0004 0488 7120Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland ,grid.417322.10000 0004 0516 3853National Children’s Research Centre at Children’s Health Ireland at Crumlin, Dublin, D12 N512 Ireland
| | - Philip J. O’Halloran
- grid.417322.10000 0004 0516 3853National Children’s Research Centre at Children’s Health Ireland at Crumlin, Dublin, D12 N512 Ireland ,grid.415490.d0000 0001 2177 007XDepartment of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Niamh M. C. Connolly
- grid.4912.e0000 0004 0488 7120Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland ,grid.4912.e0000 0004 0488 7120Centre for Systems Medicine, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland
| | - Brona M. Murphy
- grid.4912.e0000 0004 0488 7120Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland ,grid.417322.10000 0004 0516 3853National Children’s Research Centre at Children’s Health Ireland at Crumlin, Dublin, D12 N512 Ireland ,grid.4912.e0000 0004 0488 7120Centre for Systems Medicine, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77 Ireland
| |
Collapse
|
3
|
Synthetic Heterocyclic Derivatives as Kinase Inhibitors Tested for the Treatment of Neuroblastoma. Molecules 2021; 26:molecules26237069. [PMID: 34885651 PMCID: PMC8658969 DOI: 10.3390/molecules26237069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Collapse
|
4
|
An Updated Review of Smac Mimetics, LCL161, Birinapant, and GDC-0152 in Cancer Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010335] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) are suggested as therapeutic targets for cancer treatment. Smac/DIABLO is a natural IAP antagonist in cells; therefore, Smac mimetics have been developed for cancer treatment in the past decade. In this article, we review the anti-cancer potency and novel molecular targets of LCL161, birinapant, and GDC-0152. Preclinical studies demonstrated that Smac mimetics not only induce apoptosis but also arrest cell cycle, induce necroptosis, and induce immune storm in vitro and in vivo. The safety and tolerance of Smac mimetics are evaluated in phase 1 and phase 2 clinical trials. In addition, the combination of Smac mimetics and chemotherapeutic compounds was reported to improve anti-cancer effects. Interestingly, the novel anti-cancer molecular mechanism of action of Smac mimetics was reported in recent studies, suggesting that many unknown functions of Smac mimetics still need to be revealed. Exploring these currently unknown signaling pathways is important to provide hints for the modification and combination therapy of further compounds.
Collapse
|
5
|
Nejabat M, Eisvand F, Soltani F, Alibolandi M, Mohammad Taghdisi S, Abnous K, Hadizadeh F, Ramezani M. Combination therapy using Smac peptide and doxorubicin-encapsulated MUC 1-targeted polymeric nanoparticles to sensitize cancer cells to chemotherapy: An in vitro and in vivo study. Int J Pharm 2020; 587:119650. [PMID: 32679263 DOI: 10.1016/j.ijpharm.2020.119650] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Targeting inhibitors of apoptosis proteins (IAPs) family comprising high level expression in many cancer cells, could sensitize tumor cells to conventional chemotherapies. In the present study, we designed both doxorubicin and SmacN6 (an antagonist of the IAPs) encapsulated polymeric nanoparticles (NPs) and investigated their synergistic effect of combination therapy in vitro and in vivo. According to the results, NPs-SmacN6 significantly enhanced the cytotoxicity effect of NPs-DOX and reduced its IC50 in MCF-7, 4T1 and C26 cancer cells. Western blot analysis confirmed mechanism of cell apoptosis via caspase activation through intrinsic and also extrinsic pathways. Moreover, 5TR1 aptamer-modified NPs could effectively deliver DOXor SmacN6 to C26 cancer cells (MUC1 positive) in comparison with the non-targeted one (p < 0.001). However, they could not be efficiently internalized into CHO cells (MUC1 negative), showing less cytotoxicity in this cell line. In vivo experiments in BALB/c mice bearing C26 tumor indicated that Apt-NPs-DOX in combination with Apt-NPs-SmacN6 had significant tumor growth inhibition in comparison with mice receiving either free DOX or Apt-NPs-DOX with p < 0.0001 and p < 0.05, respectively. Our results revealed that combination therapy of DOX and SmacN6 via Apt-modified nanoparticles can lead to improvement of therapeutic index of DOX in MUC1 positive cancer cells.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soltani
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zhan J, Song H, Wang N, Guo C, Shen N, Hua R, Shi Y, Angel C, Gu X, Xie Y, Lai W, Peng X, Yang G. Molecular and Functional Characterization of Inhibitor of Apoptosis Proteins (IAP, BIRP) in Echinococcus granulosus. Front Microbiol 2020; 11:729. [PMID: 32390980 PMCID: PMC7188921 DOI: 10.3389/fmicb.2020.00729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The larval stage of Echinococcus granulosus sensu lato, resulting in cystic echinococcosis, a parasitic zoonosis, causes huge economic losses to the livestock industry and poses a threat to public health. Inhibitor of apoptosis proteins (IAPs) is a class of endogenous anti-apoptotic family, which plays a significant functional role in the regulation of organism’s development. Herein, to explore potential functions of IAPs in E. granulosus, two members of IAPs from E. granulosus (Eg-IAP and Eg-BIRP) were cloned, expressed, and molecularly characterized. Eg-IAP and Eg-BIRP encoded putative 331 and 168 residue proteins, respectively. Bioinformatic analysis showed that both proteins contained a type II BIR domain-the essential functional domain of IAPs. Fluorescence immunohistochemistry revealed that both proteins were ubiquitously localized in all life-cycle stages of E. granulosus. Our fluorescent quantitative PCR (RT-qPCR) results revealed relatively higher transcription levels of two Eg-IAPs in protoscoleces (PSCs) compared to the 18-day strobilated worms. We further used different concentrations of LCL161, a Smac-mimetic pan-IAPs inhibitor, to induce the apoptosis in PSCs in vitro, and revealed that the survival rate of PSCs and transcription levels of both genes were negatively correlated with the concentration of LCL161. While the results of light microscopy, transmission electron microscopy (TEM), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay also showed a higher apoptotic rate in PSCs with the increasing concentrations of LCL161. Taken together, our findings provide the reasonable evidence that both Eg-IAP and Eg-BIRP have potential implication in critical anti-apoptotic roles during the development of E. granulosus.
Collapse
Affiliation(s)
- Jiafei Zhan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan Shi
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Christiana Angel
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
The SMAC mimetic LCL-161 displays antitumor activity in preclinical models of rituximab-resistant B-cell lymphoma. Blood Adv 2019; 2:3516-3525. [PMID: 30530779 DOI: 10.1182/bloodadvances.2018018168] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Clinical observations suggest the existence of shared resistance pathways between rituximab and chemotherapy agents. To explore the mechanisms of rituximab resistance, our group created rituximab-resistant cell lines (RRCLs), which display altered expression of several inhibitor of apoptosis (IAP) family proteins. Here, we provide evidence to support pharmacologically targeting IAPs in lymphoma with LCL-161, a small molecule mimetic of the second mitochondria-derived activator of caspases (SMAC). The antitumor effect of LCL-161 was determined using luminescent adenosine triphosphate assays, flow cytometry, SCID mouse xenografts, and ex vivo patient biopsy sample studies. In vitro exposure to LCL-161 also resulted in a dose-dependent decrease in IAP levels, along with synergistic enhancement of the antitumor effect of cytotoxic chemotherapy, in rituximab-sensitive cell lines and RRCLs. In addition, LCL-161 increased the cytotoxic effect of the proteasome inhibitor carfilzomib in ex vivo lymphoma patient samples. The combination of LCL-161 with the chemotherapy regimen rituximab, gemcitabine, and vinorelbine (RGV) improved in vivo survival compared with RGV alone in severe combined immunodeficient mice implanted with RRCLs but not in animals implanted with rituximab-sensitive cell lines. In summary, LCL-161 exhibits synergistic antitumor activity in both in vitro and in vivo models of resistant lymphoma. Our data support further preclinical investigation of LCL-161 as a novel antilymphoma agent.
Collapse
|
8
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
9
|
Coyle R, Slattery K, Ennis L, O'sullivan M, Zisterer D. The XIAP inhibitor embelin sensitises malignant rhabdoid tumour cells to TRAIL treatment via enhanced activation of the extrinsic apoptotic pathway. Int J Oncol 2019; 55:191-202. [DOI: 10.3892/ijo.2019.4804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/13/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rachel Coyle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin�2, Ireland
| | - Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Leanne Ennis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Maureen O'sullivan
- The National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Frommann K, Appl B, Hundsdoerfer P, Reinshagen K, Eschenburg G. Vincristine resistance in relapsed neuroblastoma can be efficiently overcome by Smac mimetic LCL161 treatment. J Pediatr Surg 2018; 53:2059-2064. [PMID: 29455885 DOI: 10.1016/j.jpedsurg.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE In spite of good initial therapy response neuroblastomas often spread to distant organs or relapse after periods of remission. Dysregulation of apoptosis, a hallmark of cancer, is often effected by elevated levels of antiapoptotic signals leading to resistance against chemotherapeutic drugs. Inhibitors of apoptosis proteins (IAPs) are crucial cellular apoptosis regulators. Targeting IAPs with Smac mimetics has been demonstrated as a promising strategy for treatment of neuroblastoma and other tumors. METHODS In paired neuroblastoma cell lines, obtained from the same patient at time of diagnosis (CHLA-15) and postchemotherapy during progressive disease (CHLA-20), expression of crucial IAPs was determined. Furthermore, effects of vincristine on viability, cytotoxicity, apoptosis induction and caspase-3/7 activation were determined. RESULTS Cellular IAP-1 (cIAP-1) and X-linked IAP (XIAP) expression was increased in cell line CHLA-20. Moreover, biological effects of vincristine were significantly lower in these cells. Treatment of cells with Smac mimetic LCL161 increased the effects of vincristine in CHLA-15 cells and more importantly was able to overcome vincristine resistance in CHLA-20 cells. CONCLUSIONS These findings demonstrate the potential of Smac mimetics for the development of novel therapeutic approaches for the treatment of relapsed/resistant neuroblastoma.
Collapse
Affiliation(s)
- Kristin Frommann
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Georg Eschenburg
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
11
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
12
|
Johnsen JI, Dyberg C, Fransson S, Wickström M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol Res 2018; 131:164-176. [PMID: 29466695 DOI: 10.1016/j.phrs.2018.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranical tumor of childhood and the most deadly tumor of infancy. It is characterized by early age onset and high frequencies of metastatic disease but also the capacity to spontaneously regress. Despite intensive therapy, the survival for patients with high-risk neuroblastoma and those with recurrent or relapsed disease is low. Hence, there is an urgent need to develop new therapies for these patient groups. The molecular pathogenesis based on high-throughput omics technologies of neuroblastoma is beginning to be resolved which have given the opportunity to develop personalized therapies for high-risk patients. Here we discuss the potential of developing targeted therapies against aberrantly expressed molecules detected in sub-populations of neuroblastoma patients and how these selected targets can be drugged in order to overcome treatment resistance, improve survival and quality of life for these patients and also the possibilities to transfer preclinical research into clinical testing.
Collapse
Affiliation(s)
- John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden.
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Susanne Fransson
- Department of Pathology and Genetics, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Langemann D, Trochimiuk M, Appl B, Hundsdoerfer P, Reinshagen K, Eschenburg G. Sensitization of neuroblastoma for vincristine-induced apoptosis by Smac mimetic LCL161 is attended by G2 cell cycle arrest but is independent of NFκB, RIP1 and TNF-α. Oncotarget 2017; 8:87763-87772. [PMID: 29152118 PMCID: PMC5675670 DOI: 10.18632/oncotarget.21193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/14/2017] [Indexed: 12/29/2022] Open
Abstract
We demonstrated sensitization for chemotherapy by Smac mimetic (SM) LCL161, a potent antagonist of inhibitor of apoptosis proteins (IAP), in neuroblastoma (NB). Vinca alkaloids, particularly vincristine (VCR), displayed the strongest impact on inhibition of proliferation and apoptosis induction in combination with LCL161. The underlying signaling pathways remain elusive, though. LCL161 induces a quick degradation of cellular IAP 1 (cIAP-1). Combination of LCL161 with VCR had only marginal effects on X-linked IAP (XIAP) protein expression. Cell death is accompanied by activation of intrinsic (caspase-9 and MMP) and extrinsic (caspase-8) pathways of apoptosis, repression of migratory potential and cell cycle arrest in G2 phase. LCL161-induced cIAP degradation leads to activation of non-canonical and blockade of canonical NF-κB pathways but not induction of apoptosis. Surprisingly NF-κB and TNF-α signaling is negligible for VCR- and VCR/LCL161-induced apoptosis since chemical inhibition of NF-κB using BAY-7085 and PBS-1086, as well as application of TNF-α blocking antibody Humira (adalimumab) has no relevant effect on cell death. Recently formation of a TNF-α-independent complex (ripoptosome) consisting of RIP1, FADD and caspase-8 following IAP inhibition by SM has been described. However, targeting of RIP1 by Necrostatin was not sufficient to influence apoptosis induced by VCR/LCL161.
Collapse
Affiliation(s)
- Doerte Langemann
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Eschenburg
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
IAP antagonists induce anti-tumor immunity in multiple myeloma. Nat Med 2016; 22:1411-1420. [PMID: 27841872 DOI: 10.1038/nm.4229] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/12/2016] [Indexed: 02/08/2023]
Abstract
The cellular inhibitors of apoptosis (cIAP) 1 and 2 are amplified in about 3% of cancers and have been identified in multiple malignancies as being potential therapeutic targets as a result of their role in the evasion of apoptosis. Consequently, small-molecule IAP antagonists, such as LCL161, have entered clinical trials for their ability to induce tumor necrosis factor (TNF)-mediated apoptosis of cancer cells. However, cIAP1 and cIAP2 are recurrently homozygously deleted in multiple myeloma (MM), resulting in constitutive activation of the noncanonical nuclear factor (NF)-κB pathway. To our surprise, we observed robust in vivo anti-myeloma activity of LCL161 in a transgenic myeloma mouse model and in patients with relapsed-refractory MM, where the addition of cyclophosphamide resulted in a median progression-free-survival of 10 months. This effect was not a result of direct induction of tumor cell death, but rather of upregulation of tumor-cell-autonomous type I interferon (IFN) signaling and a strong inflammatory response that resulted in the activation of macrophages and dendritic cells, leading to phagocytosis of tumor cells. Treatment of a MM mouse model with LCL161 established long-term anti-tumor protection and induced regression in a fraction of the mice. Notably, combination of LCL161 with the immune-checkpoint inhibitor anti-PD1 was curative in all of the treated mice.
Collapse
|