1
|
Cheng B, Ma X, Zhou Y, Liu J, Fei X, Pan W, Peng X, Wang W, Chen J. Recent progress in the development of hypoxia-inducible factor 2α (HIF-2α) modulators: Inhibitors, agonists, and degraders (2009-2024). Eur J Med Chem 2024; 275:116645. [PMID: 38959730 DOI: 10.1016/j.ejmech.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Hypoxia-inducible factor 2α (HIF-2α) is a critical transcription factor that regulates cellular responses under hypoxic conditions. In situations of insufficient oxygen supply or patients with Von Hippel-Lindau (VHL) mutations, HIF-2α accumulates and forms a heterodimeric complex with aryl hydrocarbon receptor nuclear translocator (ARNT, or HIF-β). This complex further binds to coactivator p300 and interacts with hypoxia response elements (HREs) on the DNA of downstream target genes, regulating the transcription of a variety of genes (e.g. VEGFA, CCND1, CXCR4, SLC2A1, etc) involved in various processes like angiogenesis, mitochondrial metabolism, cell proliferation, and metastasis. Targeting HIF-2α holds great promise for effectively addressing solid tumors associated with aberrant oxygen-sensing pathways and hypoxia mechanisms, offering broad application prospects. In this review, we provide an overview of recent advancements (2009-2024) in HIF-2α modulators such as inhibitors, agonists, and degraders for cancer therapy. Additionally, we discuss in detail the challenges and future directions regarding HIF-2α modulators.
Collapse
Affiliation(s)
- Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Xianshi Ma
- Yangxin County People's Hospital of Hubei Province, Yangxin, Hubei, 435200, China
| | - Yingxing Zhou
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jin Liu
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xiaoting Fei
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China
| | - Wei Pan
- Cardiology Department, Geriatric Department, Foshan Women and Children Hospital, Foshan, Guangdong, 528000, China.
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Wei Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, 510280, China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Dicer-mediated miR-200b expression contributes to cell migratory/invasive abilities and cancer stem cells properties of breast cancer cells. Aging (Albany NY) 2022; 14:6520-6536. [PMID: 35951366 PMCID: PMC9467414 DOI: 10.18632/aging.204205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Distant metastasis is the leading cause of death in patients with breast cancer. Despite considerable treatment advances, the clinical outcomes of patients with metastatic breast cancer remain poor. CSCs can self-renew, enhancing cancer progression and metastasis. Dicer, a microRNA (miRNA) processing–related enzyme, is required for miRNA maturation. Imbalanced Dicer expression may be pivotal in cancer progression. However, whether and how Dicer affects the stemness of metastatic breast cancer cells remains unclear. Here, we hypothesized that Dicer regulates the migration, invasion, and stemness of breast cancer cells. We established highly invasive cell lines (MCF-7/I-3 and MDA-MB-231/I-3) and observed that Dicer expression was conspicuously lower in the highly invasive cells than in the parental cells. The silencing of Dicer significantly enhanced the cell migratory/invasive abilities and CSCs properties of the breast cancer cells. Conversely, the overexpression of Dicer in the highly invasive cells reduced their migration, invasion, and CSCs properties. Our bioinformatics analyses demonstrated that low Dicer levels were correlated with increased breast cancer risk. Suppression of Dicer inhibited miR-200b expression, whereas miR-200b suppression recovered Dicer knockdown–induced migration, invasion, and cancer stem cells (CSCs) properties of the breast cancer cells. Thus, our findings reveal that Dicer is a crucial regulator of the migration, invasion, and CSCs properties of breast cancer cells and is significantly associated with poor survival in patients with breast cancer.
Collapse
|
3
|
Huang CF, Hung TW, Yang SF, Tsai YL, Yang JT, Lin CL, Hsieh YH. Asiatic acid from centella asiatica exert anti-invasive ability in human renal cancer cells by modulation of ERK/p38MAPK-mediated MMP15 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154036. [PMID: 35316724 DOI: 10.1016/j.phymed.2022.154036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Asiatic acid (AA) is a naturally pentacyclic triterpenoids extracted from traditional medicine Centella asiatica l. that has demonstrated possesses potential health benefits and antitumor ability. However, the precise anticancer effects and mechanisms by which AA impact RCC cells remains unclear. METHODS Cell proliferation and cell cycle distribution were detected by MTT, colony formation assay and PI stain by flow cytometry, respectively. Cell mobility and invasiveness were determined by in vitro migration and invasion assay. The secretory MMP15 was detected by ELISA assay. Quantitative RT-PCR, siRNA, and immunoblot were used to determine gene expression/regulation and protein expression, respectively. Antimetastatic effect of AA were performed to lung nodule numbers in vivo metastasis mice model. MMP15, pERK1/2 and p-p38MAPK expressions were determined by immunohistochemistry. RESULTS Our findings indicated cell proliferation and cell cycle distribution of RCC cells were not significantly influenced by AA treatment. AA suppressed cell migration, invasion and significantly down-regulated mRNA and protein expression of MMP-15 (Matrix Metallopeptidase-15). Activation of ERK1/2 and p38MAPK were inhibited with AA, whereas combined AA with siRNA-ERK or siRNA-p38MAPK markedly reduced the metastatic effect and decreased MMP-15 expression in 786-O and A498 cells. Finally, AA significantly reduced the lung metastasis formation and metastasis-related proteins of human 786-O cells in vivo metastasis mice model. CONCLUSION AA inhibits the metastatic properties of RCC cells via inhibition of the p-ERK/p-p38MAPK axis and the subsequent down-regulation of MMP-15 in vitro and in vivo. Further study of AA as a potential anti-metastatic agent for RCC is warranted.
Collapse
Affiliation(s)
- Chien-Feng Huang
- Department of Critical Care Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Tung-Wei Hung
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Lun Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Jen-Te Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Wang C, Lv Y, Sha Z, Zhang J, Wu J, Qi Y, Guo Z. Dicer Enhances Bevacizumab-Related Inhibition of Hepatocellular Carcinoma via Blocking the Vascular Endothelial Growth Factor Pathway. J Hepatocell Carcinoma 2022; 8:1643-1653. [PMID: 35004391 PMCID: PMC8721026 DOI: 10.2147/jhc.s327258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Vascular endothelial growth factor (VEGF) family members contribute greatly to the development and angiogenesis of hypervascular hepatocellular carcinoma (HCC). We have previously shown that Dicer inhibited HCC growth. In this study, we aimed to determine the relationship between Dicer and VEGF in HCC. Methods Gain-of-function studies were performed to determine the effect of different treatments on the proliferation, migration, and invasion of HCC cells. Expression of VEGF-A in xenograft tumor tissues was analysed using Western blotting, and that of CD31 using immunohistochemical analysis. Results We found that Dicer inhibited proliferation, migration and invasion of HCC cells by suppressing VEGF-A expression. Interestingly, VEGF-A165, which is the most prominent VEGF-A isoform, counteracted Dicer-induced inhibition of HCC cells. In addition, a monoclonal anti-VEGF antibody (bevacizumab) enhanced Dicer-induced inhibition of HCC in vitro and in vivo. Further, immunohistochemical analysis of CD31 indicated bevacizumab and Dicer synergized to reduce tumor microvessel density. Conclusion Our data demonstrated that Dicer enhanced bevacizumab-related inhibition of HCC cell via the VEGF pathway; therefore, Dicer in coordination with bevacizumab may provide another potential approach for HCC therapy.
Collapse
Affiliation(s)
- Cuiju Wang
- Department of Gynaecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yalei Lv
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Ziyue Sha
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yixin Qi
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
5
|
Zhao Y, Guo L, Tian J, Wang H. Downregulation of microRNA-185 expression in diabetic patients increases the expression of NOS2 and results in vascular injury. Exp Ther Med 2021; 22:1458. [PMID: 34737798 PMCID: PMC8561755 DOI: 10.3892/etm.2021.10893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/11/2021] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the regulatory effect and mechanism of microRNA (miR)-185 in diabetic angiopathy. The expression of miR-185 and nitric oxide synthase 2 (NOS2) in the blood from diabetic patients was examined by reverse transcription-quantitative PCR and enzyme-linked immunosorbent assay. After establishment of diabetic rats, the expression of miR-185 and NOS2 in vascular tissues and blood was also measured. Then, miR-185 was overexpressed in HMEC-1 cells and the expression of NOS2 was determined. Dual-luciferase reporter assay was used to identify the direct interaction between miR-185 and NOS2 mRNA. The expression of NOS2 was upregulated and the expression of miR-185 was downregulated in the blood from patients with diabetes. Vascular tissues and blood of diabetic rats showed similar trends compared with that of human. HMEC-1 cells with overexpression of miR-185 had decreased expression of NOS2. Dual-luciferase reporter assay demonstrated the direct binding between miR-185 and NOS2. The present study demonstrates that upregulation of NOS2 in diabetic patients is associated with the downregulation of miR-185, which participates in the progression of diabetes possibly through regulating NOS2 expression.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Liyan Guo
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Jiajia Tian
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Huafu Wang
- Department of Clinical Pharmacy, Lishui People's Hospital, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
6
|
Braun H, Hauke M, Ripperger A, Ihling C, Fuszard M, Eckenstaler R, Benndorf RA. Impact of DICER1 and DROSHA on the Angiogenic Capacity of Human Endothelial Cells. Int J Mol Sci 2021; 22:ijms22189855. [PMID: 34576018 PMCID: PMC8471234 DOI: 10.3390/ijms22189855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
RNAi-mediated knockdown of DICER1 and DROSHA, enzymes critically involved in miRNA biogenesis, has been postulated to affect the homeostasis and the angiogenic capacity of human endothelial cells. To re-evaluate this issue, we reduced the expression of DICER1 or DROSHA by RNAi-mediated knockdown and subsequently investigated the effect of these interventions on the angiogenic capacity of human umbilical vein endothelial cells (HUVEC) in vitro (proliferation, migration, tube formation, endothelial cell spheroid sprouting) and in a HUVEC xenograft assay in immune incompetent NSGTM mice in vivo. In contrast to previous reports, neither knockdown of DICER1 nor knockdown of DROSHA profoundly affected migration or tube formation of HUVEC or the angiogenic capacity of HUVEC in vivo. Furthermore, knockdown of DICER1 and the combined knockdown of DICER1 and DROSHA tended to increase VEGF-induced BrdU incorporation and induced angiogenic sprouting from HUVEC spheroids. Consistent with these observations, global proteomic analyses showed that knockdown of DICER1 or DROSHA only moderately altered HUVEC protein expression profiles but additively reduced, for example, expression of the angiogenesis inhibitor thrombospondin-1. In conclusion, global reduction of miRNA biogenesis by knockdown of DICER1 or DROSHA does not inhibit the angiogenic capacity of HUVEC. Further studies are therefore needed to elucidate the influence of these enzymes in the context of human endothelial cell-related angiogenesis.
Collapse
Affiliation(s)
- Heike Braun
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
| | - Michael Hauke
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
| | - Anne Ripperger
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Center, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Matthew Fuszard
- Core Facility—Proteomics Mass Spectrometry, Charles Tanford Centre, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Robert Eckenstaler
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
| | - Ralf A. Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (H.B.); (M.H.); (A.R.); (R.E.)
- Correspondence: ; Tel.: +49-345-55-25150
| |
Collapse
|
7
|
Kim H, Shim BY, Lee SJ, Lee JY, Lee HJ, Kim IH. Loss of Von Hippel-Lindau ( VHL) Tumor Suppressor Gene Function: VHL-HIF Pathway and Advances in Treatments for Metastatic Renal Cell Carcinoma (RCC). Int J Mol Sci 2021; 22:9795. [PMID: 34575959 PMCID: PMC8470481 DOI: 10.3390/ijms22189795] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignancy of the kidney originating from the tubular epithelium. Inactivation of the von Hippel-Lindau tumor-suppressor gene (VHL) is found in most clear cell renal cell carcinomas (ccRCCs). The VHL-HIF-VEGF/VEGFR pathway, which involves the von Hippel-Lindau tumor suppressor protein (VHL), hypoxia-inducible factor (HIF), vascular endothelial growth factor (VEGF), and its receptor (VEGFR), is a well-studied therapeutic target for metastatic ccRCC. Therefore, over the past decade, anti-angiogenic agents targeting VEGFR have served as the standard treatment for metastatic RCC. Recently, based on the immunomodulatory effect of anti-VEGFR therapy, anti-angiogenic agents and immune checkpoint inhibitor combination strategies have also emerged as therapeutic strategies. These advances were made possible by the improved understanding of the VHL-HIF pathway. In this review, we summarize the historical evolution of ccRCC treatments, with a focus on the involvement of the VHL-HIF pathway.
Collapse
Affiliation(s)
- Hyunho Kim
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent’s Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon 16247, Korea; (H.K.); (B.Y.S.)
| | - Byoung Yong Shim
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent’s Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon 16247, Korea; (H.K.); (B.Y.S.)
| | - Seung-Ju Lee
- Department of Urology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon 16247, Korea;
| | - Ji Youl Lee
- Department of Urology Cancer Center, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea;
| | - Hyo-Jin Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Korea;
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| |
Collapse
|
8
|
Cardoso JV, Medeiros R, Dias F, Costa IA, Ferrari R, Berardo PT, Perini JA. DROSHA rs10719 and DICER1 rs3742330 polymorphisms in endometriosis and different diseases: Case-control and review studies. Exp Mol Pathol 2021; 119:104616. [PMID: 33535080 DOI: 10.1016/j.yexmp.2021.104616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE DROSHA and DICER1 enzymes participate in the main stages of microRNA synthesis. Polymorphisms can influence mRNAs stability and genes expression, and hence affect the binding of miRNAs. Thus, the present study evaluated the association of DROSHA and DICER1 polymorphisms in the development of endometriosis and other diseases. METHODS A total of 240 endometriosis cases and 242 controls were genotyped for the DROSHA rs10719 G > A and DICER1 rs3742330 A > G polymorphisms using the TaqMan system. The association between polymorphisms and endometriosis was estimated by binary logistic regression. A literature review was also performed including all published articles (PubMed database) until December 2020, regarding the association of the studied polymorphisms and different diseases. RESULTS DICER1 rs3742330GG was only found in endometriosis cases (2.1%) and deep infiltrative endometriosis (DIE) (2.5%). The DICER1 rs3742330GG genotype was significantly associated with endometriosis (P < 0.05), suggesting a tendency to present an increased risk for disease. DROSHA rs10719A and DICER1 rs3742330G allele frequencies varied among populations (6%-79% and 10.2%-55.1%, respectively). In the Brazilian population, the frequencies of these alleles were 42.3% and 7.3%, respectively. Both polymorphisms were risk factors for nonsyndromic orofacial clefts, tuberculosis, stroke ischemia and mortality after stroke, recurrent idiopathic pregnancy loss, and some types of cancer. Moreover, the DICER1 rs3742330 polymorphism was a protective factor for precancerous cervical lesions, different types of cancer and tuberculosis. CONCLUSIONS The results suggest that only the DICER1 rs3742330 A > G polymorphism may be associated with susceptibility to endometriosis. The frequencies of both polymorphisms were significantly different among populations, and there were discrepancies in the risk associations with the development of diseases.
Collapse
Affiliation(s)
- Jéssica Vilarinho Cardoso
- Laboratório de Pesquisa de Ciências Farmacêuticas, Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-guaduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Rui Medeiros
- Grupo de Oncologia Molecular -CI, Instituto Português de Oncologia, Porto, Portugal
| | - Francisca Dias
- Grupo de Oncologia Molecular -CI, Instituto Português de Oncologia, Porto, Portugal
| | - Isabelle Alves Costa
- Laboratório de Pesquisa de Ciências Farmacêuticas, Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil
| | - Renato Ferrari
- Instituto de Ginecologia, Hospital Moncorvo Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Plinio Tostes Berardo
- Departamento de Ginecologia, Faculdade de Medicina, Universidade Estácio de Sá, Rio de Janeiro, RJ, Brazil; Serviço de Ginecologia, Hospital Federal dos Servidores do Estado, Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Laboratório de Pesquisa de Ciências Farmacêuticas, Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-guaduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 Signaling and its Inhibition in Modulating Tumor Invasion: Experimental Evidence in Different Metastatic Cancer Models. Int J Mol Sci 2020; 21:E1388. [PMID: 32085654 PMCID: PMC7073125 DOI: 10.3390/ijms21041388] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family members, VEGF-A, placenta growth factor (PlGF), and to a lesser extent VEGF-B, play an essential role in tumor-associated angiogenesis, tissue infiltration, and metastasis formation. Although VEGF-A can activate both VEGFR-1 and VEGFR-2 membrane receptors, PlGF and VEGF-B exclusively interact with VEGFR-1. Differently from VEGFR-2, which is involved both in physiological and pathological angiogenesis, in the adult VEGFR-1 is required only for pathological angiogenesis. Besides this role in tumor endothelium, ligand-mediated stimulation of VEGFR-1 expressed in tumor cells may directly induce cell chemotaxis and extracellular matrix invasion. Furthermore, VEGFR-1 activation in myeloid progenitors and tumor-associated macrophages favors cancer immune escape through the release of immunosuppressive cytokines. These properties have prompted a number of preclinical and clinical studies to analyze VEGFR-1 involvement in the metastatic process. The aim of the present review is to highlight the contribution of VEGFs/VEGFR-1 signaling in the progression of different tumor types and to provide an overview of the therapeutic approaches targeting VEGFR-1 currently under investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Maria Grazia Atzori
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, “Istituto Dermopatico dell’Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico”, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.C.); (M.G.A.)
| |
Collapse
|
10
|
Wright CB, Uehara H, Kim Y, Yasuma T, Yasuma R, Hirahara S, Makin RD, Apicella I, Pereira F, Nagasaka Y, Narendran S, Fukuda S, Albuquerque R, Fowler BJ, Bastos-Carvalho A, Georgel P, Hatada I, Chang B, Kerur N, Ambati BK, Ambati J, Gelfand BD. Chronic Dicer1 deficiency promotes atrophic and neovascular outer retinal pathologies in mice. Proc Natl Acad Sci U S A 2020; 117:2579-2587. [PMID: 31964819 PMCID: PMC7007521 DOI: 10.1073/pnas.1909761117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Degeneration of the retinal pigmented epithelium (RPE) and aberrant blood vessel growth in the eye are advanced-stage processes in blinding diseases such as age-related macular degeneration (AMD), which affect hundreds of millions of people worldwide. Loss of the RNase DICER1, an essential factor in micro-RNA biogenesis, is implicated in RPE atrophy. However, the functional implications of DICER1 loss in choroidal and retinal neovascularization are unknown. Here, we report that two independent hypomorphic mouse strains, as well as a separate model of postnatal RPE-specific DICER1 ablation, all presented with spontaneous RPE degeneration and choroidal and retinal neovascularization. DICER1 hypomorphic mice lacking critical inflammasome components or the innate immune adaptor MyD88 developed less severe RPE atrophy and pathological neovascularization. DICER1 abundance was also reduced in retinas of the JR5558 mouse model of spontaneous choroidal neovascularization. Finally, adenoassociated vector-mediated gene delivery of a truncated DICER1 variant (OptiDicer) reduced spontaneous choroidal neovascularization in JR5558 mice. Collectively, these findings significantly expand the repertoire of DICER1 in preserving retinal homeostasis by preventing both RPE degeneration and pathological neovascularization.
Collapse
Affiliation(s)
- Charles B Wright
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Hironori Uehara
- Department of Ophthalmology, Loma Linda University, Loma Linda, CA 92350
| | - Younghee Kim
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Tetsuhiro Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Reo Yasuma
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Ryan D Makin
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Aravind Medical Research Foundation, Aravind Eye Care System, Madurai, Tamil Nadu 625020, India
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Romulo Albuquerque
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Ana Bastos-Carvalho
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40506
| | - Philippe Georgel
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, 67085 Strasbourg, France
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | | | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA 22903;
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA 22904
| |
Collapse
|
11
|
Transforming growth factor-β1 enhances proliferative and metastatic potential by up-regulating lymphoid enhancer-binding factor 1/integrin αMβ2 in human renal cell carcinoma. Mol Cell Biochem 2019; 465:165-174. [PMID: 31848806 DOI: 10.1007/s11010-019-03676-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Renal cell carcinoma (RCC) is a kind of malignant tumor with high recurrence, and it is urgent to find molecular markers for diagnosis and prognosis of RCC. Our study investigated the expression and function of integrin αMβ2 in RCC cells, aiming to understand the role of integrin αMβ2 in RCC and develop new therapeutic target for RCC. Overexpression and knockdown of lymphoid enhancer-binding factor 1 (LEF1) were performed using vector containing full-length cDNA and via siRNA technology, respectively. The expressions of mRNA and protein were detected by RT-PCR and Western blot, respectively. Proliferation of RCC cell was analyzed using WST-1 assay, and metastasis of RCC cell was evaluated using the transwell system. Our results demonstrated that LEF1 and integrin αMβ2 were up-regulated in RCC cells via TGF-β1-dependent mechanism, and LEF1 together with β-catenin directly increased integrin αMβ2 level. On the other hand, TGF-β1-induced proliferation, migration and invasion were suppressed by function-blocking antibody against integrin αMβ2 in RCC cells. In addition, integrin αMβ2 is crucial for LEF1 mediated cell invasion by regulating MMP-2, MMP-9 and calpain-2 secretion in RCC cells. LEF1/integrin αMβ2 expression was regulated by TGF-β1, and LEF1/integrin αMβ2 was involved in TGF-β1's improvement effects on the proliferation and metastasis of RCC. Blocking integrin αMβ2 activity could be a therapeutic option for patients with advanced RCC.
Collapse
|
12
|
Yu Y, Yu Q, Zhang X. Allosteric inhibition of HIF-2α as a novel therapy for clear cell renal cell carcinoma. Drug Discov Today 2019; 24:2332-2340. [DOI: 10.1016/j.drudis.2019.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023]
|
13
|
Huang J, Wang X, Wen G, Ren Y. miRNA‑205‑5p functions as a tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells. Oncol Rep 2019; 42:1677-1688. [PMID: 31545453 PMCID: PMC6775807 DOI: 10.3892/or.2019.7307] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of various types of cancers. Dysregulation of miR-205-5p has been reported in various types of human cancer. However, little is known concerning the role of miR-205-5p in renal cell carcinoma (RCC). The pr~esent study was designed to investigate the role of miR-205-5p in RCC. The expression of miR-205-5p was measured in clear cell renal cell carcinoma (ccRCC) tissues and cell lines using RT-qPCR. RCC cell lines were transfected with miR-205-5p mimics. CCK-8 assays, wound healing assays, Matrigel invasion assays and nucleosome ELISAs were used to assess the effects of miR-205-5p on cell growth, migration, invasion and apoptosis, respectively. Western blotting was employed to detect changes in protein levels. Bioinformatic analyses and luciferase reporter assays were performed to identify the potential targets of miR-205-5p. Mouse xenograft models were used to verify the effect of miR-205-5p in vivo. The expression of miR-205-5p was found to be downregulated in 25 RCC tissues compared to that noted in the adjacent normal tissues. Decreased expression of miR-205-5p was associated with poor clinical outcomes. Based on the results of the in vitro experiments, overexpression of miR-205-5p reduced RCC cell proliferation, invasion and migration. Overexpression of miR-205-5p also promoted apoptosis and inhibited the EMT in RCC cells. Moreover, the PI3K/Akt signaling pathway was found to be negatively regulated by miR-205-5p. Bioinformatic analyses and luciferase reporter assays revealed that miR-205-5p directly targeted the 3′-UTR of vascular endothelial growth factor A (VEGFA). Furthermore, miR-205-5p negatively regulated the expression of VEGFA in ccRCC cell lines. In ccRCC tissues, miR-205-5p expression was inversely correlated with VEGFA expression. Moreover, overexpression of miR-205-5p inhibited RCC growth in vivo in a mouse xenograft model. Overall, miR-205-5p functions as a tumor suppressor in RCC by targeting VEGFA and the PI3K/Akt signaling pathway, providing a potential therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Jianjun Huang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xue Wang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Guobing Wen
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yu Ren
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
14
|
Zeng JH, Lu W, Liang L, Chen G, Lan HH, Liang XY, Zhu X. Prognosis of clear cell renal cell carcinoma (ccRCC) based on a six-lncRNA-based risk score: an investigation based on RNA-sequencing data. J Transl Med 2019; 17:281. [PMID: 31443717 PMCID: PMC6708203 DOI: 10.1186/s12967-019-2032-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background The scientific understanding of long non-coding RNAs (lncRNAs) has improved in recent decades. Nevertheless, there has been little research into the role that lncRNAs play in clear cell renal cell carcinoma (ccRCC). More lncRNAs are assumed to influence the progression of ccRCC via their own molecular mechanisms. Methods This study investigated the prognostic significance of differentially expressed lncRNAs by mining high-throughput lncRNA-sequencing data from The Cancer Genome Atlas (TCGA) containing 13,198 lncRNAs from 539 patients. Differentially expressed lncRNAs were assessed using the R packages edgeR and DESeq. The prognostic significance of lncRNAs was measured using univariate Cox proportional hazards regression. ccRCC patients were then categorized into high- and low-score cohorts based on the cumulative distribution curve inflection point the of risk score, which was generated by the multivariate Cox regression model. Samples from the TCGA dataset were divided into training and validation subsets to verify the prognostic risk model. Bioinformatics methods, gene set enrichment analysis, and protein–protein interaction networks, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were subsequently used. Results It was found that the risk score based on 6 novel lncRNAs (CTA-384D8.35, CTD-2263F21.1, LINC01510, RP11-352G9.1, RP11-395B7.2, RP11-426C22.4) exhibited superior prognostic value for ccRCC. Moreover, we categorized the cases into two groups (high-risk and low-risk), and also examined related pathways and genetic differences between them. Kaplan–Meier curves indicated that the median survival time of patients in the high-risk group was 73.5 months, much shorter than that of the low-risk group (112.6 months; P < 0.05). Furthermore, the risk score predicted the 5-year survival of all 539 ccRCC patients (AUC at 5 years, 0.683; concordance index [C-index], 0.853; 95% CI 0.817–0.889). The training set and validation set also showed similar performance (AUC at 5 years, 0.649 and 0.681, respectively; C-index, 0.822 and 0.891; 95% CI 0.774–0.870 and 0.844–0.938). Conclusions The results of this study can be applied to analyzing various prognostic factors, leading to new possibilities for clinical diagnosis and prognosis of ccRCC.
Collapse
Affiliation(s)
- Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Lu
- Department of Pathology, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui-Hua Lan
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiu-Yun Liang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xu Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
15
|
CUL1 promotes breast cancer metastasis through regulating EZH2-induced the autocrine expression of the cytokines CXCL8 and IL11. Cell Death Dis 2018; 10:2. [PMID: 30578411 PMCID: PMC6315038 DOI: 10.1038/s41419-018-1258-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/24/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
CUL1 is an essential component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex. Our previous study has showed that CUL1 is positively associated with poor overall and disease-specific survival of breast cancer patients. Here, we further explored its roles in breast cancer metastasis. Our data showed that CUL1 significantly promoted breast cancer cell migration, invasion, tube formation in vitro, as well as angiogenesis and metastasis in vivo. In mechanism, the human gene expression profiling was used to determine global transcriptional changes in MDA-MB-231 cells, and we identified autocrine expression of the cytokines CXCL8 and IL11 as the target genes of CUL1 in breast cancer cell migration, invasion, metastasis, and angiogenesis. CUL1 regulated EZH2 expression to promote the production of cytokines, and finally significantly aggravating the breast cancer cell metastasis and angiogenesis through the PI3K-AKT-mTOR signaling pathway. Combined with the previous report about CUL1, we proposed that CUL1 may serve as a promising therapeutic target for breast cancer metastasis.
Collapse
|
16
|
Sui H, Wang K, Xie R, Li X, Li K, Bai Y, Wang X, Bai B, Chen D, Li J, Shen B. NDV-D90 suppresses growth of gastric cancer and cancer-related vascularization. Oncotarget 2018; 8:34516-34524. [PMID: 28388537 PMCID: PMC5470987 DOI: 10.18632/oncotarget.16563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/15/2017] [Indexed: 01/14/2023] Open
Abstract
Recent reports suggest promises on using oncolytic Newcastle disease viruses (NDV) to treat different cancers, while the effects of a NDV-D90 strain on gastric cancer remain unknown. Here we showed that NDV-D90 induced gastric cancer cell apoptosis in a dose-dependent manner in 3 gastric cancer cell lines BGC-823, SGC-7901 and MKN-28. Pronounced reduction in cell invasion was detected in NDV-D90-treated BGC-823 and SGC-7901 cells, but not in MKN-28 cells. The increases in cell apoptosis and reduction in cell growth in NDV-D90-treated gastric cancer cells seemingly resulted from augmentation of p38 signaling and suppression of ERK1/2 and Akt signaling. In vivo, orthotopic injection of NDV-D90 impaired tumor growth and induced intratumoral necrosis. Tumor cells that had been pre-treated with NDV-D90 showed defect in development of implanted tumor. Moreover, NDV-D90 appeared to reduce gastric tumor vascularization, possibly through suppression of vascular endothelial growth factor A and Matrix Metallopeptidase 2. Together, our data suggest that NDV-D90 may have potential anti-cancer effects on gastric cancer.
Collapse
Affiliation(s)
- Hong Sui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Kaibing Wang
- Department of Intervention, The Second Hospital Affiliated Harbin Medical University, Harbin 150086, China
| | - Rui Xie
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xi Li
- Division of Swine Disease, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Medicine, Harbin 150069, China
| | - Kunpeng Li
- Division of Swine Disease, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Medicine, Harbin 150069, China
| | - Yuxian Bai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xishan Wang
- Department of Abdominal Surgery, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bin Bai
- Department of Intervention, The Second Hospital Affiliated Harbin Medical University, Harbin 150086, China
| | - Dan Chen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Jiazhuang Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Baozhong Shen
- Department of Radiology, The Fourth Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
17
|
Chan YC, Chan MH, Chen CW, Liu RS, Hsiao M, Tsai DP. Near-Infrared-Activated Fluorescence Resonance Energy Transfer-Based Nanocomposite to Sense MMP2-Overexpressing Oral Cancer Cells. ACS OMEGA 2018; 3:1627-1634. [PMID: 30023811 PMCID: PMC6045330 DOI: 10.1021/acsomega.7b01494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/26/2018] [Indexed: 05/04/2023]
Abstract
The matrix metalloproteinases (MMPs) are well-known mediators that are activated in tumor progression. MMP2 is a kind of gelatinase in extracellular matrix remodeling and cancer metastasis processes. MMP2 secretion increased in many types of cancer diseases, and its abnormal expression is associated with a poor prognosis. We fabricated a nanocomposite that sensed MMP2 expression by a red and blue light change. This nanocomposite consisted of an upconversion nanoparticle (UCNP), MMP2-sensitive peptide, and CuInS2/ZnS quantum dot (CIS/ZnS QD). An UCNP is composed of NaYF4:Tm/Yb@NaYF4:Nd/Yb, which has multiple emissions at UV/blue-visible wavelengths under 808 nm laser excitation. The conjugated CIS/ZnS QD showed the red-visible fluorescence though the FRET process. The two fluorophores were connected by a MMP2-sensitive peptide to form a novel MMP2 biosensor, named UCNP@p-QD. UCNP@p-QD was highly biocompatible according to cell viability assay. The FRET-based biosensor was employed in the MMP2 determination in vitro and in vivo. Furthermore, it was administrated into the tumor-bearing mouse to check MMP2 expression. UCNP@p-QD could be a promising tool for biological study and biomedical application. In this study, we demonstrated that the CIS/ZnS QD improved the upconversion intensity through a near-infrared-induced FRET process. This nanocomposite has the advantage of light penetration, excellent biocompatibility, and high sensitivity to sense MMP2. The near-infrared-induced composites are a potential inspiration for use in biomedical applications.
Collapse
Affiliation(s)
| | - Ming-Hsien Chan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chieh-Wei Chen
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ru-Shi Liu
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department
of Mechanical Engineering and Graduate Institute of Manufacturing
Technology, National Taipei University of
Technology, Taipei 106, Taiwan
- Department
of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Michael Hsiao
- Genomics
Research Center, Academia Sinica, Taipei, Taiwan
- Department
of Biochemistry, College of Medicine, Kaohsiung
Medical University, Kaohsiung, Taiwan
| | - Din Ping Tsai
- Research
Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
- Department
of Physics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
18
|
Guo M, Li X, Zhang L, Liu D, Du W, Yin D, Lyu N, Zhao G, Guo C, Tang D. Accurate quantification of 5-Methylcytosine, 5-Hydroxymethylcytosine, 5-Formylcytosine, and 5-Carboxylcytosine in genomic DNA from breast cancer by chemical derivatization coupled with ultra performance liquid chromatography- electrospray quadrupole time of flight mass spectrometry analysis. Oncotarget 2017; 8:91248-91257. [PMID: 29207640 PMCID: PMC5710920 DOI: 10.18632/oncotarget.20093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
The DNA demethylation pathway has been discovered to play a significant role in DNA epigenetics. This pathway removes the methyl group from cytosine, which is involved in the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC) by ten-eleven translocation (TET) proteins. Then, 5-hmC can be iteratively oxidized to generate 5-formylcytosine (5-foC) and 5-carboxylcytosine (5-caC). However, 5-hmC, 5-foC, and 5-caC are hardly detected due to their low content. In this study, we have developed a LC-HRMS method coupled with derivatization to accurately and simultaneously quantify 5-mC levels, along with its oxidation products in genomic DNA. Derivatization was carried out using 4-dimethylamino benzoic anhydride, which has been shown to improve separation and enhance the detection sensitivity. Finally, we successfully applied this method towards the quantification of 5-mC, 5-hmC, 5-foC, and 5-caC in genomic DNA isolated from both human breast cancer tissue and tumor-adjacent normal tissue. We show that 5-foC and 5-caC are increased in tumor tissue. In addition, the levels of 5-mC, 5-hmC, 5-foC, and 5-caC measured in tumor tissue versus tumor-adjacent tissue were found to be distinct among different classifications. This suggests that cytosine modifiers could be used as potential biomarkers for determining the stage of development of breast cancer, as well as prognosis.
Collapse
Affiliation(s)
- Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Xiao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Liyan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Dantong Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Wencheng Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Dengyang Yin
- Jingjiang People’s Hospital, Jingjiang, Jiangsu 214500, China
| | - Nan Lyu
- Xuzhou Central Hospital, Xuzhou, Jiangsu 221004, China
| | - Guangyu Zhao
- Jingjiang People’s Hospital, Jingjiang, Jiangsu 214500, China
| | - Cheng Guo
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
19
|
Ye K, Li Y, Zhao W, Wu N, Liu N, Li R, Chen L, He M, Lu B, Wang X, Hu R. Knockdown of Tubulin Polymerization Promoting Protein Family Member 3 inhibits cell proliferation and invasion in human colorectal cancer. J Cancer 2017; 8:1750-1758. [PMID: 28819371 PMCID: PMC5556637 DOI: 10.7150/jca.18943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Tubulin Polymerization Promoting Protein Family Member 3 (TPPP3), a member of the TPPP protein family, has been reported to play important roles in initiation and progression of human cancers. However, the expression and underlying function of TPPP3 in colorectal cancer (CRC) have not yet been fully clarified. In this study, the mRNA and protein levels of TPPP3 in 96 clinical CRC specimens were determined by RT-PCR and immunohistochemistry. The relation between TPPP3 expression and clinicopathologic characteristics and overall survival (OS) were evaluated. Further experiments showed that knockdown of TPPP3 inhibited cell proliferation, migration and invasion and induced cell apoptosis in vitro. In addition, TPPP3 silencing resulted in a decrease of angiogenesis and S phase fraction. Thus, our results suggested that TPPP3 played an important role in CRC progress and might serve as novel therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Kuanping Ye
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yintao Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, P.R. China.,School of Medicine, Shandong University, Jinan, P.R. China
| | - Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Nan Wu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Naijia Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Rumei Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Lili Chen
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Min He
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xuanchun Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Renming Hu
- Department of Endocrinology and Metabolism, Institute of Endocrinology and Diabetology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|