1
|
Espírito Santo J, Ladeirinha A, Alarcão A, Strelet E, Reis M, Santos R, Carvalho L. Preoperative Locoregional Therapy May Relate with Stemness and Distinct Transitions Between Epithelial and Mesenchymal States in Hepatocellular Carcinoma. J Clin Exp Hepatol 2024; 14:101268. [PMID: 38076372 PMCID: PMC10709210 DOI: 10.1016/j.jceh.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/12/2023] [Indexed: 01/05/2025] Open
Abstract
Background/Objectives Locoregional therapy (LRT) might impel hepatocellular carcinoma (HCC) to exhibit different phenotypes by modulating tumoral cell adaptation. HCCs presurgically treated with LRT were studied, focusing on stemness and mesenchymal features. Methods Clinicopathological and immunohistochemical data (Ki67, p53, EpCAM, CK19, CK7, ASMA and vimentin expression) were considered in 89 HCC nodules (30 treated with LRT; 59 non-treated), comprising 46 liver transplanted/surgically resected patients. Results In LRT group, well and poorly differentiated tumors without fibrous encapsulation were predominant (P < 0.05) and peritumoral necroinflammation severity tended to be greater. Peritumoral Ki67 expression was higher (P < 0.05) and p53, EpCAM, CK19 and CK7 peritumoral expression was relevant after LRT, where ablated carcinomas displayed higher peritumoral CK19 expression (P < 0.05). Tumoral ASMA and vimentin expression was higher in non-LRT group (P < 0.05). In LRT group, an exclusive association between progenitor/cholangiocytic cell and mesenchymal markers expressed by tumoral cells was observed (P < 0.05): EpCAM tumoral expression associated with vimentin stromal expression; tumoral CK19 expression associated with stromal ASMA expression; tumoral CK7 expression associated with tumoral vimentin expression. Conclusion Peritumoral cellular proliferation and expression of progenitor/cholangiocytic cell markers seem to be more frequent after LRT, with a distinctive epithelial-mesenchymal interplay and plasticity in peritumoral and tumoral compartments.
Collapse
Affiliation(s)
- Joana Espírito Santo
- Coimbra Hospital and University Centre, Adult Liver Transplantation Unit, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Ana Ladeirinha
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Ana Alarcão
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Eugeniu Strelet
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II – Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Marco Reis
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II – Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Rui Santos
- Coimbra Hospital and University Centre, Internal Medicine Department, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
| | - Lina Carvalho
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Coimbra Hospital and University Centre, Pathology Department, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
| |
Collapse
|
2
|
Wu J, Chan YT, Lu Y, Wang N, Feng Y. The tumor microenvironment in the postsurgical liver: Mechanisms and potential targets of postoperative recurrence in human hepatocellular carcinoma. Med Res Rev 2023; 43:1946-1973. [PMID: 37102365 DOI: 10.1002/med.21967] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Surgery remains to be the mainstay of treatment for hepatocellular carcinoma (HCC). Nonetheless, its therapeutic efficacy is significantly impaired by postoperative recurrence, which occurs in more than half of cases as a result of intrahepatic metastasis or de novo tumorigenesis. For decades, most therapeutic strategies on inhibiting postoperative HCC recurrence have been focused on the residual tumor cells but satisfying therapeutic outcomes are barely observed in the clinic. In recent years, a better understanding of tumor biology allows us to shift our focus from tumor cells toward the postoperative tumor microenvironment (TME), which is gradually identified to play a pivotal role in tumor recurrence. In this review, we describe various surgical stress and surgical perturbation on postoperative TME. Besides, we discuss how such alternations in TME give rise to postoperative recurrence of HCC. Based on its clinical significance, we additionally highlight the potential of the postoperative TME as a target for postoperative adjuvant therapeutics.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Akashi T, Okumura T, Terabayashi K, Yoshino Y, Tanaka H, Yamazaki T, Numata Y, Fukuda T, Manabe T, Baba H, Miwa T, Watanabe T, Hirano K, Igarashi T, Sekine S, Hashimoto I, Shibuya K, Hojo S, Yoshioka I, Matsui K, Yamada A, Sasaki T, Fujii T. The use of an artificial intelligence algorithm for circulating tumor cell detection in patients with esophageal cancer. Oncol Lett 2023; 26:320. [PMID: 37332339 PMCID: PMC10272959 DOI: 10.3892/ol.2023.13906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Despite recent advances in multidisciplinary treatments of esophageal squamous cell carcinoma (ESCC), patients frequently suffer from distant metastasis after surgery. For numerous types of cancer, circulating tumor cells (CTCs) are considered predictors of distant metastasis, therapeutic response and prognosis. However, as more markers of cytopathological heterogeneity are discovered, the overall detection process for the expression of these markers in CTCs becomes increasingly complex and time consuming. In the present study, the use of a convolutional neural network (CNN)-based artificial intelligence (AI) for CTC detection was assessed using KYSE ESCC cell lines and blood samples from patients with ESCC. The AI algorithm distinguished KYSE cells from peripheral blood-derived mononuclear cells (PBMCs) from healthy volunteers, accompanied with epithelial cell adhesion molecule (EpCAM) and nuclear DAPI staining, with an accuracy of >99.8% when the AI was trained on the same KYSE cell line. In addition, AI trained on KYSE520 distinguished KYSE30 from PBMCs with an accuracy of 99.8%, despite the marked differences in EpCAM expression between the two KYSE cell lines. The average accuracy of distinguishing KYSE cells from PBMCs for the AI and four researchers was 100 and 91.8%, respectively (P=0.011). The average time to complete cell classification for 100 images by the AI and researchers was 0.74 and 630.4 sec, respectively (P=0.012). The average number of EpCAM-positive/DAPI-positive cells detected in blood samples by the AI was 44.5 over 10 patients with ESCC and 2.4 over 5 healthy volunteers (P=0.019). These results indicated that the CNN-based image processing algorithm for CTC detection provides a higher accuracy and shorter analysis time compared to humans, suggesting its applicability for clinical use in patients with ESCC. Moreover, the finding that AI accurately identified even EpCAM-negative KYSEs suggested that the AI algorithm may distinguish CTCs based on as yet unknown features, independent of known marker expression.
Collapse
Affiliation(s)
- Takahisa Akashi
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Kenji Terabayashi
- Department of Mechanical and Intellectual Systems Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Yuki Yoshino
- Department of Mechanical and Intellectual Systems Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Haruyoshi Tanaka
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Takeyoshi Yamazaki
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Yoshihisa Numata
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Takuma Fukuda
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Takahiro Manabe
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Hayato Baba
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Takeshi Miwa
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Toru Watanabe
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Katsuhisa Hirano
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Takamichi Igarashi
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Shinichi Sekine
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Isaya Hashimoto
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Kazuto Shibuya
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Shozo Hojo
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Isaku Yoshioka
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Koshi Matsui
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| | - Akane Yamada
- Department of Mechanical and Intellectual Systems Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Tohru Sasaki
- Department of Mechanical and Intellectual Systems Engineering, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Casagrande GMS, Silva MDO, Reis RM, Leal LF. Liquid Biopsy for Lung Cancer: Up-to-Date and Perspectives for Screening Programs. Int J Mol Sci 2023; 24:2505. [PMID: 36768828 PMCID: PMC9917347 DOI: 10.3390/ijms24032505] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/31/2023] Open
Abstract
Lung cancer is the deadliest cancer worldwide. Tissue biopsy is currently employed for the diagnosis and molecular stratification of lung cancer. Liquid biopsy is a minimally invasive approach to determine biomarkers from body fluids, such as blood, urine, sputum, and saliva. Tumor cells release cfDNA, ctDNA, exosomes, miRNAs, circRNAs, CTCs, and DNA methylated fragments, among others, which can be successfully used as biomarkers for diagnosis, prognosis, and prediction of treatment response. Predictive biomarkers are well-established for managing lung cancer, and liquid biopsy options have emerged in the last few years. Currently, detecting EGFR p.(Tyr790Met) mutation in plasma samples from lung cancer patients has been used for predicting response and monitoring tyrosine kinase inhibitors (TKi)-treated patients with lung cancer. In addition, many efforts continue to bring more sensitive technologies to improve the detection of clinically relevant biomarkers for lung cancer. Moreover, liquid biopsy can dramatically decrease the turnaround time for laboratory reports, accelerating the beginning of treatment and improving the overall survival of lung cancer patients. Herein, we summarized all available and emerging approaches of liquid biopsy-techniques, molecules, and sample type-for lung cancer.
Collapse
Affiliation(s)
| | - Marcela de Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331 Rua Antenor Duarte Vilela, Barretos 14784-400, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331 Rua Antenor Duarte Vilela, Barretos 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331 Rua Antenor Duarte Vilela, Barretos 14784-400, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos 14785-002, Brazil
| |
Collapse
|
5
|
Ren K, He J, Qiu Y, Xu Z, Wang X, Li J, Zang S, Yang Y, Li J, Long Y, Zhang Z, Li M, He Q. A neutrophil-mediated carrier regulates tumor stemness by inhibiting autophagy to prevent postoperative triple-negative breast cancer recurrence and metastasis. Acta Biomater 2022; 145:185-199. [PMID: 35447368 DOI: 10.1016/j.actbio.2022.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 04/09/2022] [Indexed: 02/05/2023]
Abstract
Recurrence and metastasis after resection are still the main challenges in clinical treatment of breast cancer. Residual tumor and cancer stem-like cells are the primary culprits of recurrence and metastasis. Recent research studies indicate that autophagy is a cytoprotective mechanism of tumors, which maintains the stemness of cancer cells and promotes tumor proliferation and metastasis. Here, we constructed a "Trojan horse" using neutrophils as the carrier (PH-RL@NEs) to prevent the recurrence and metastasis of postoperative breast cancer. Neutrophils, as a "Trojan horse," can quickly respond to postoperative inflammation and accurately deliver drugs to the residual tumor site. The inflammation-triggered "Trojan horse" was then opened to release the liposomes containing the chemotherapeutic drug paclitaxel (PTX) and the autophagy inhibitor hydroxychloroquine (HCQ). We found that HCQ could effectively inhibit tumor cell autophagy, interfere with tumor epithelial-mesenchymal transition, and reduce the tumor stem cell-like population. In the orthotopic 4T1 postoperative recurrence models, PTX and HCQ synergistically killed tumors and regulated the stemness of tumor cells, thereby significantly inhibiting tumor recurrence and metastasis. Our work proved that the inhibition of autophagy to reduce tumor stemness is feasible and effective, which opens up a new prospect for postoperative tumor treatment. STATEMENT OF SIGNIFICANCE: The present study aimed to solve the issues of postoperative recurrence and metastasis of breast cancer and low efficiency of drug administration after surgery. For this purpose, we constructed neutrophils containing hydroxychloroquine (HCQ) and paclitaxel (PTX) co-loaded liposomes (PH-RL@NEs), which for the first time regulated the stemness of tumor cells by inhibiting autophagy, thereby inhibiting postoperative recurrence and metastasis of breast cancer cells. The results showed that PH-RL@NEs enhanced the targeted drug delivery efficiency, with the help of postoperative inflammation chemotaxis of neutrophils. HCQ effectively inhibited autophagy of tumor cells and reduced tumor stem cell-like cells, thus improving the therapeutic effect in the 4T1 in situ postoperative recurrence model.
Collapse
Affiliation(s)
- Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Qiu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuya Zang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yiliang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Med-X Center for Materials, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Yan Q, Sun YS, An R, Liu F, Fang Q, Wang Z, Xu T, Chen L, Du J. Application and progress of the detection technologies in hepatocellular carcinoma. Genes Dis 2022. [PMID: 37492708 PMCID: PMC10363596 DOI: 10.1016/j.gendis.2022.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a very high incidence and fatality rate, and in most cases, it is already at an advanced stage when diagnosed. Therefore, early prevention and detection of HCC are two of the most effective strategies. However, the methods recommended in the practice guidelines for the detection of HCC cannot guarantee high sensitivity and specificity except for the liver biopsy, which is known as the "gold standard". In this review, we divided the detection of HCC into pre-treatment diagnosis and post-treatment monitoring, and found that in addition to the traditional imaging detection and liver biopsy, alpha fetoprotein (AFP), lens culinaris-agglutinin-reactive fraction of AFP (AFP-L3), protein induced by vitamin K absence or antagonist-II (PIVKA-II) and other biomarkers are excellent biomarkers for HCC, especially when they are combined together. Most notably, the emerging liquid biopsy shows great promise in detecting HCC. In addition, lactic dehydrogenase (LDH), suppressor of cytokine signaling (SOCS) and other relevant biomarkers may become promising biomarkers for HCC post-treatment monitoring. Through the detailed introduction of the diagnostic technology of HCC, we can have a detailed understanding of its development process and then obtain some enlightenment from the diagnosis, to improve the diagnostic rate of HCC and reduce its mortality.
Collapse
|
7
|
Correnti M, Cappon A, Pastore M, Piombanti B, Lori G, Oliveira DVPN, Munoz‐Garrido P, Lewinska M, Andersen JB, Coulouarn C, Sulpice L, Peraldo Neia C, Cavalloni G, Quarta S, Biasiolo A, Fassan M, Ramazzotti M, Parri M, Recalcati S, di Tommaso L, Campani C, Invernizzi P, Torzilli G, Marra F, Pontisso P, Raggi C. The protease-inhibitor SerpinB3 as a critical modulator of the stem-like subset in human cholangiocarcinoma. Liver Int 2022; 42:233-248. [PMID: 34478594 PMCID: PMC9290104 DOI: 10.1111/liv.15049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a form of primary liver cancer with limited therapeutic options. Recently, cancer stem cells (CSCs) have been proposed as a driving force of tumour initiation and dissemination, thus representing a crucial therapeutic target. The protease inhibitor SerpinB3 (SB3) has been identified in several malignancies including hepatocellular carcinoma. SB3 has been involved in the early events of hepatocarcinogenesis and is highly expressed in hepatic progenitor cells and in a mouse model of liver progenitor cell activation. However, only limited information on the possible role of SB3 in CCA stem-like compartment is available. METHODS Enrichment of CCA stem-like subset was performed by sphere culture (SPH) in CCA cell lines (CCLP1, HUCCT1, MTCHC01 and SG231). Quantitative RT-PCR and Western blotting were used to detect SB3 in both SPH and parental monolayer (MON) cells. Acquired CSC-like features were analysed using an endogenous and a paracrine in vitro model, with transfection of SB3 gene or addition of recombinant SB3 to cell medium respectively. SB3 tumorigenic role was explored in an in vivo mouse model of CCA by subcutaneous injection of SB3-transfected MON (MONSB3+ ) cells in immune-deficient NOD-SCID/IL2Rgnull (NSG) mice. SB3 expression in human CCA sections was investigated by immunohistochemistry. Overall survival (OS) and time to recurrence (TTR) analyses were carried out from a transcriptome database of 104 CCA patients. RESULTS SB3, barely detected in parental MON cells, was overexpressed in the same CCA cells grown as 3D SPH. Notably, MONSB3+ showed significant overexpression of genes associated with stemness (CD24, CD44, CD133), pluripotency (c-MYC, NOTCH1, STAT3, YAP, NANOG, BMI1, KLF4, OCT4, SOX2), epithelial mesenchymal transition (β-catenin, SLUG) and extracellular matrix remodelling (MMP1, MMP7, MMP9, ADAM9, ADAM10, ADAM17, ITGB3). SB3-overexpressing cells showed superior spherogenic capacity and invasion ability compared to control. Importantly, MONSB3+ exhibited activation of MAP kinases (ERK1/2, p38, JNK) as well as phosphorylation of NFκB (p65) in addition to up-regulation of the proto-oncogene β-catenin. All these effects were reversed after transient silencing of SB3. According to the in vitro finding, MONSB3+ cells retained high tumorigenic potential in NSG mice. SB3 overexpression was observed in human CCA tissues and analysis of OS as well as TTR indicated a worse prognosis in SB3+ CCA patients. CONCLUSION These findings indicate a SB3 role in mediating malignant phenotype of CCA and identify a new therapeutic target.
Collapse
Affiliation(s)
- Margherita Correnti
- Center for Autoimmune Liver DiseasesHumanitas Clinical and Research CenterRozzanoItaly,Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Andrea Cappon
- Animal Care‐Polo Vallisneri University of PaduaPaduaItaly
| | - Mirella Pastore
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Benedetta Piombanti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giulia Lori
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | | | | | - Monika Lewinska
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Jesper B. Andersen
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Cédric Coulouarn
- CHU RennesService de Chirurgie Hépatobiliaire et DigestiveInsermUniv RennesCOSS (Chemistry, Oncogenesis Stress Signaling)UMR_S 1242Centre de Lutte contre le Cancer Eugène MarquisRennesFrance
| | - Laurent Sulpice
- CHU RennesService de Chirurgie Hépatobiliaire et DigestiveINSERM 1241Université de RennesRennesFrance
| | | | - Giuliana Cavalloni
- Division of Medical OncologyCandiolo Cancer InstituteFPO‐IRCCSCandiolo, TorinoItaly
| | - Santina Quarta
- Department of Medicine‐DIMEDUniversity of PaduaPaduaItaly
| | | | - Matteo Fassan
- Department of Medicine‐DIMEDUniversity of PaduaPaduaItaly
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Stefania Recalcati
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Luca di Tommaso
- Department of PathologyHumanitas Clinical and Research CenterRozzanoItaly,Department of Biomedical SciencesHumanitas UniversityRozzanoItaly
| | - Claudia Campani
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly,European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | - Guido Torzilli
- Department of Hepatobiliary and General SurgeryHumanitas UniversityHumanitas Clinical and Research CenterIRCCS, RozzanoMilanItaly
| | - Fabio Marra
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | | | - Chiara Raggi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
8
|
Ramos-Medina R, López-Tarruella S, del Monte-Millán M, Massarrah T, Martín M. Technical Challenges for CTC Implementation in Breast Cancer. Cancers (Basel) 2021; 13:4619. [PMID: 34572846 PMCID: PMC8466817 DOI: 10.3390/cancers13184619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
Breast cancer is the most common neoplasm in women worldwide. Tissue biopsy, currently the gold standard to obtain tumor molecular information, is invasive and might be affected by tumor heterogeneity rendering it incapable to portray the complete dynamic picture by the absence of specific genetic changes during the evolution of the disease. In contrast, liquid biopsy can provide unique opportunities for real-time monitoring of disease progression, treatment response and for studying tumor heterogeneity combining the information of DNA that tumors spread in the blood (circulating tumor DNA) with CTCs analysis. In this review, we analyze the technical and biological challenges for isolation and characterization of circulating tumor cells from breast cancer patients. Circulating tumor cell (CTC) enumeration value is included in numerous clinical studies due to the prognostic's role of these cells. Despite this, there are so many questions pending to answer. How to manage lymphocytes background, how to distinguish the CTCs subtypes or how to work with frozen samples, are some of the issues that will discuss in this review. Based on our experience, we try to address these issues and other technical limitations that should be solved to optimize the standardization of protocols, sample extraction procedures, circulating-tumor material isolation (CTCs vs. ctDNA) and the very diverse methodologies employed, aiming to consolidate the use of CTCs in the clinic. Furthermore, we think that new approaches focusing on isolation CTCs in other body fluids such as cerebrospinal or ascitic fluid are necessary to increase the opportunities of circulating tumor cells in the practice clinic as well as to study the promising role of CTC clusters and their prognostic value in metastatic breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Miguel Martín
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), Hospital General Universitario Gregorio Marañón, CIBERONC, Universidad Complutense, 28007 Madrid, Spain; (R.R.-M.); (S.L.-T.); (M.d.M.-M.); (T.M.)
| |
Collapse
|
9
|
Raggi C, Taddei ML, Sacco E, Navari N, Correnti M, Piombanti B, Pastore M, Campani C, Pranzini E, Iorio J, Lori G, Lottini T, Peano C, Cibella J, Lewinska M, Andersen JB, di Tommaso L, Viganò L, Di Maira G, Madiai S, Ramazzotti M, Orlandi I, Arcangeli A, Chiarugi P, Marra F. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. J Hepatol 2021; 74:1373-1385. [PMID: 33484774 DOI: 10.1016/j.jhep.2020.12.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Little is known about the metabolic regulation of cancer stem cells (CSCs) in cholangiocarcinoma (CCA). We analyzed whether mitochondrial-dependent metabolism and related signaling pathways contribute to stemness in CCA. METHODS The stem-like subset was enriched by sphere culture (SPH) in human intrahepatic CCA cells (HUCCT1 and CCLP1) and compared to cells cultured in monolayer. Extracellular flux analysis was examined by Seahorse technology and high-resolution respirometry. In patients with CCA, expression of factors related to mitochondrial metabolism was analyzed for possible correlation with clinical parameters. RESULTS Metabolic analyses revealed a more efficient respiratory phenotype in CCA-SPH than in monolayers, due to mitochondrial oxidative phosphorylation. CCA-SPH showed high mitochondrial membrane potential and elevated mitochondrial mass, and over-expressed peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α, a master regulator of mitochondrial biogenesis. Targeting mitochondrial complex I in CCA-SPH using metformin, or PGC-1α silencing or pharmacologic inhibition (SR-18292), impaired spherogenicity and expression of markers related to the CSC phenotype, pluripotency, and epithelial-mesenchymal transition. In mice with tumor xenografts generated by injection of CCA-SPH, administration of metformin or SR-18292 significantly reduced tumor growth and determined a phenotype more similar to tumors originated from cells grown in monolayer. In patients with CCA, expression of PGC-1α correlated with expression of mitochondrial complex II and of stem-like genes. Patients with higher PGC-1α expression by immunostaining had lower overall and progression-free survival, increased angioinvasion and faster recurrence. In GSEA analysis, patients with CCA and high levels of mitochondrial complex II had shorter overall survival and time to recurrence. CONCLUSIONS The CCA stem-subset has a more efficient respiratory phenotype and depends on mitochondrial oxidative metabolism and PGC-1α to maintain CSC features. LAY SUMMARY The growth of many cancers is sustained by a specific type of cells with more embryonic characteristics, termed 'cancer stem cells'. These cells have been described in cholangiocarcinoma, a type of liver cancer with poor prognosis and limited therapeutic approaches. We demonstrate that cancer stem cells in cholangiocarcinoma have different metabolic features, and use mitochondria, an organelle located within the cells, as the major source of energy. We also identify PGC-1α, a molecule which regulates the biology of mitochondria, as a possible new target to be explored for developing new treatments for cholangiocarcinoma.
Collapse
Affiliation(s)
- Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Sacco
- SYSBIO, Centre of Systems Biology, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Benedetta Piombanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Campani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy; Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Italy
| | - Javier Cibella
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Monika Lewinska
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Luca di Tommaso
- Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Department of Hepatobiliary Surgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giovanni Di Maira
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Madiai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Ivan Orlandi
- SYSBIO, Centre of Systems Biology, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Excellence Center for Research, Transfer and High Education DenoTHE, Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Excellence Center for Research, Transfer and High Education DenoTHE, Florence, Italy.
| |
Collapse
|
10
|
Alvarado-Estrada K, Marenco-Hillembrand L, Maharjan S, Mainardi VL, Zhang YS, Zarco N, Schiapparelli P, Guerrero-Cazares H, Sarabia-Estrada R, Quinones-Hinojosa A, Chaichana KL. Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Sci Rep 2021; 11:2800. [PMID: 33531664 PMCID: PMC7854722 DOI: 10.1038/s41598-021-82634-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death and disease worldwide. However, while the survival for patients with primary cancers is improving, the ability to prevent metastatic cancer has not. Once patients develop metastases, their prognosis is dismal. A critical step in metastasis is the transit of cancer cells in the circulatory system. In this hostile microenvironment, variations in pressure and flow can change cellular behavior. However, the effects that circulation has on cancer cells and the metastatic process remain unclear. To further understand this process, we engineered a closed-loop fluidic system to analyze molecular changes induced by variations in flow rate and pressure on primary tumor-derived lung adenocarcinoma cells. We found that cancer cells overexpress epithelial-to-mesenchymal transition markers TWIST1 and SNAI2, as well as stem-like marker CD44 (but not CD133, SOX2 and/or NANOG). Moreover, these cells display a fourfold increased percentage of side population cells and have an increased propensity for migration. In vivo, surviving circulatory cells lead to decreased survival in rodents. These results suggest that cancer cells that express a specific circulatory transition phenotype and are enriched in side population cells are able to survive prolonged circulatory stress and lead to increased metastatic disease and shorter survival.
Collapse
Affiliation(s)
- Keila Alvarado-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Valerio Luca Mainardi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Politecnico Di Milano, Milan, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cazares
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rachel Sarabia-Estrada
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
11
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1425] [Impact Index Per Article: 285.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
12
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
13
|
Fanelli GN, Naccarato AG, Scatena C. Recent Advances in Cancer Plasticity: Cellular Mechanisms, Surveillance Strategies, and Therapeutic Optimization. Front Oncol 2020; 10:569. [PMID: 32391266 PMCID: PMC7188928 DOI: 10.3389/fonc.2020.00569] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The processes of recurrence and metastasis, through which cancer relapses locally or spreads to distant sites in the body, accounts for more than 90% of cancer-related deaths. At present there are very few treatment options for patients at this stage of their disease. The main obstacle to successfully treat advanced cancer is the cells' ability to change in ways that make them resistant to treatment. Understanding the cellular mechanisms that mediate this cancer cell plasticity may lead to improved patient survival. Epigenetic reprogramming, together with tumor microenvironment, drives such dynamic mechanisms favoring tumor heterogeneity, and cancer cell plasticity. In addition, the development of new approaches that can report on cancer plasticity in their native environment have profound implications for studying cancer biology and monitoring tumor progression. We herein provide an overview of recent advancements in understanding the mechanisms regulating cell plasticity and current strategies for their monitoring and therapy management.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Zhao H, Xie Z, Tang G, Wei S, Chen G. Knockdown of terminal differentiation induced ncRNA (TINCR) suppresses proliferation and invasion in hepatocellular carcinoma by targeting the miR-218-5p/DEAD-box helicase 5 (DDX5) axis. J Cell Physiol 2020; 235:6990-7002. [PMID: 31994189 DOI: 10.1002/jcp.29595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Terminal differentiation induced ncRNA (TINCR), a newly identified lncRNA, has been found to be associated with different human cancers including hepatocellular carcinoma (HCC). However, little is known regarding the pathological mechanisms of TINCR in HCC progression. In this study, we confirmed that TINCR expression was upregulated in HCC tumors and cell lines, and high TINCR expression was associated with larger tumor size, advanced tumor node metastasis stage, and poor prognosis. Functionally, knockdown of TINCR facilitated apoptosis and suppressed viability, colony formation and invasion in Huh7 and Hep3B cells. Mechanically, TINCR functioned as competing endogenous RNA (ceRNA) to regulate DEAD-box helicase 5 (DDX5) expression through sponging miR-218-5p. Moreover, the miR-218-5p expression was downregulated and DDX5 expression was upregulated in HCC tumors. The silencing of miR-218-5p or ectopic expression of DDX5 abated the tumor-suppressive effect of TINCR knockdown in vitro. Furthermore, si-TINCR-induced inactivation of AKT signaling was rescued by suppression of miR-218-5p or overexpression of DDX5. Also, the silencing of TINCR resulted in tumor growth inhibition in vivo. In summary, knockdown of TINCR suppressed HCC progression presumably by inactivation of AKT signaling through targeting the miR-218-5p/DDX5 axis, suggesting a novel TINCR/miR-218-5p/DDX5 pathway and therapy target for HCC.
Collapse
Affiliation(s)
- Huibo Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhantao Xie
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Gaofeng Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Sidong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guoyong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
15
|
Kapeleris J, Zou H, Qi Y, Gu Y, Li J, Schoning J, Monteiro MJ, Gu W. Cancer stemness contributes to cluster formation of colon cancer cells and high metastatic potentials. Clin Exp Pharmacol Physiol 2020; 47:838-847. [PMID: 31883392 DOI: 10.1111/1440-1681.13247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The ability of cancer cells to form clusters is a characteristic feature in the development of metastatic tumours with drug resistance. Several studies demonstrated that clusters of circulating tumour cells (CTCs) have a greater metastatic potential to establish new tumours at secondary sites than single CTCs. However, the mechanism of cluster formation is not well understood. In this study, we investigated whether cancer stemness would contribute to cluster formation. We used a tumour sphere culture method to enrich cancer stem cells (CSCs) from colon cancer cells and found that during the second generation of sphere culture, clusters (between 3 and 5 cells) formed within the first 24 hours, whereas the rest remained as single cells. The clusters were analysed for stemness and metastatic potential, including gene expressions for cancer stemness (CD133 and Lgr5), epithelial-mesenchymal transition (E-cadherin and TGF-β 1-3) and hypoxia-induced factors (HIF-1α and HIF-2α). The results showed that the clusters expressed higher levels of these genes and colon CSC surface markers (including CD24, CD44 and CD133) than the single cells. Among these markers, CD24 seemed the major contributor linking the cells into the clusters. These clusters also showed a stronger ability to both form colonies and migrate. Our data collectively suggest that colon cancer stemness contributes to cluster formation and that clustered cells exhibit a great metastatic potential. Our study thus provides a method to study the CTC clusters and derive insight into oncogenesis and metastasis.
Collapse
Affiliation(s)
- Joanna Kapeleris
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Hong Zou
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi University, Xinjiang, China
| | - Yan Qi
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia.,Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi University, Xinjiang, China
| | - Yushu Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Jingyun Li
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Jennifer Schoning
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Calamak S, Ermis M, Sun H, Islam S, Sikora M, Nguyen M, Hasirci V, Steinmetz LM, Demirci U. A Circulating Bioreactor Reprograms Cancer Cells Toward a More Mesenchymal Niche. ACTA ACUST UNITED AC 2020; 4:e1900139. [PMID: 32293132 DOI: 10.1002/adbi.201900139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/15/2019] [Indexed: 11/08/2022]
Abstract
Cancer is a complex and heterogeneous disease, and cancer cells dynamically interact with the mechanical microenvironment such as hydrostatic pressure, fluid shear, and interstitial flow. These factors play an essential role in cell fate and circulating tumor cell heterogeneity, and can influence the cellular phenotype. In this study, a peristaltic continuous flow reactor is designed and applied to HCT-116 colorectal carcinoma cells to mimic the fluid dynamics of circulation. With this intervention, a CD44/CD24-cell subpopulation emerges, and 100 genes are significantly regulated. The expression of cells at 4 h in the flow reactor is very similar to TGF-ß treatment, which is an inducer of epithelial-mesenchymal transition. ATF3 and SERPINE1 are significantly upregulated in these groups, suggesting that the mesenchymal transition is induced through this signaling pathway. This flow reactor model is satisfactory on its own to reprogram colorectal cancer cells toward a more mesenchymal niche mimicking circulation of the blood.
Collapse
Affiliation(s)
- Semih Calamak
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Menekse Ermis
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.,BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
| | - Han Sun
- Department of Genetics and Stanford Genome Technology Center, School of Medicine Stanford University, Palo Alto, CA, 94305, USA
| | - Saiful Islam
- Department of Genetics and Stanford Genome Technology Center, School of Medicine Stanford University, Palo Alto, CA, 94305, USA
| | - Michael Sikora
- Department of Genetics and Stanford Genome Technology Center, School of Medicine Stanford University, Palo Alto, CA, 94305, USA
| | - Michelle Nguyen
- Department of Genetics and Stanford Genome Technology Center, School of Medicine Stanford University, Palo Alto, CA, 94305, USA
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey.,Department of Medical Engineering, School of Engineering, Acıbadem University, Istanbul, 34752, Turkey
| | - Lars M Steinmetz
- Department of Genetics and Stanford Genome Technology Center, School of Medicine Stanford University, Palo Alto, CA, 94305, USA.,European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Utkan Demirci
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.,Electrical Engineering Department by Courtesy, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Stelcer E, Konkol M, Głȩboka A, Suchorska WM. Liquid Biopsy in Oligometastatic Prostate Cancer-A Biologist's Point of View. Front Oncol 2019; 9:775. [PMID: 31475117 PMCID: PMC6702517 DOI: 10.3389/fonc.2019.00775] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the main cause of cancer-related mortality in males and the diagnosis, treatment, and care of these patients places a great burden on healthcare systems globally. Clinically, PCa is highly heterogeneous, ranging from indolent tumors to highly aggressive disease. In many cases treatment-generally either radiotherapy (RT) or surgery-can be curative. Several key genetic and demographic factors such as age, family history, genetic susceptibility, and race are associated with a high incidence of PCa. While our understanding of PCa, which is mainly based on the tools of molecular biology-has improved dramatically in recent years, efforts to better understand this complex disease have led to the identification of a new type of PCa-oligometastatic PCa. Oligometastatic disease should be considered an individual, heterogeneous entity with distinct metastatic phenotypes and, consequently, wide prognostic variability. In general, patients with oligometastatic disease typically present less biologically aggressive tumors whose metastatic potential is more limited and which are slow-growing. These patients are good candidates for more aggressive treatment approaches. The main aim of the presented review was to evaluate the utility of liquid biopsy for diagnostic purposes in PCa and for use in monitoring disease progression and treatment response, particularly in patients with oligometastatic PCa. Liquid biopsies offer a rapid, non-invasive approach whose use t is expected to play an important role in routine clinical practice to benefit patients. However, more research is needed to resolve the many existing discrepancies with regard to the definition and isolation method for specific biomarkers, as well as the need to determine the most appropriate markers. Consequently, the current priority in this field is to standardize liquid biopsy-based techniques. This review will help to improve understanding of the biology of PCa, particularly the recently defined condition known as "oligometastatic PCa". The presented review of the body of evidence suggests that additional research in molecular biology may help to establish novel treatments for oligometastatic PCa. In the near future, the treatment of PCa will require an interdisciplinary approach involving active cooperation among clinicians, physicians, and biologists.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Konkol
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiation Oncology Department, Greater Poland Cancer Centre, Poznan, Poland
| | | | - Wiktoria Maria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
18
|
Maly V, Maly O, Kolostova K, Bobek V. Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer. In Vivo 2019; 33:1027-1037. [PMID: 31280190 PMCID: PMC6689346 DOI: 10.21873/invivo.11571] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTCs), detached from the primary tumor or metastases and shed in the patient's bloodstream, represent a relatively easily obtainable sample of the cancer tissue that can indicate the actual state of cancer, and their evaluation can be repeated many times during the course of treatment. As part of liquid biopsy, evaluation of CTCs provides a lot of clinically relevant information, which reflects the actual, real-time conditions of the disease. CTCs can be used in cancer diagnosis or screening, real-time long-term disease monitoring and even therapy guidance. Their analysis can include their number, morphology, and biological features by using immunocytochemistry and all "-omic" technologies. This review describes methods of CTC isolation and potential clinical utilization in lung cancer.
Collapse
Affiliation(s)
- Vilem Maly
- Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Thoracic Surgery, Krajska Zdravotni a.s. Hospital, Usti nad Labem, Czech Republic
| | - Ondrej Maly
- Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Katarina Kolostova
- Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Vladimir Bobek
- Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Thoracic Surgery, Krajska Zdravotni a.s. Hospital, Usti nad Labem, Czech Republic
- Department of Thoracic Surgery, Lower Silesian Oncology Centre, Wroclaw, Poland
- 3rd Department of Surgery, University Hospital FN Motol and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
19
|
Recalcati S, Correnti M, Gammella E, Raggi C, Invernizzi P, Cairo G. Iron Metabolism in Liver Cancer Stem Cells. Front Oncol 2019; 9:149. [PMID: 30941302 PMCID: PMC6433741 DOI: 10.3389/fonc.2019.00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSC) which have been identified in several tumors, including liver cancer, represent a particular subpopulation of tumor cells characterized by properties similar to those of adult stem cells. Importantly, CSC are resistant to standard therapies, thereby leading to metastatic dissemination and tumor relapse. Given the increasing evidence that iron homeostasis is deregulated in cancer, here we describe the iron homeostasis alterations in cancer cells, particularly in liver CSC. We also discuss two paradoxically opposite iron manipulation-strategies for tumor therapy based either on iron chelation or iron overload-mediated oxidant production leading to ferroptosis. A better understanding of iron metabolism modifications occurring in hepatic tumors and particularly in liver CSC cells may offer new therapeutic options for this cancer, which is characterized by increasing incidence and unfavorable prognosis.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Chiara Raggi
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Department of Medicine and Surgery, Center for Autoimmune Liver Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Chen YH, Pulikkathodi AK, Ma YD, Wang YL, Lee GB. A microfluidic platform integrated with field-effect transistors for enumeration of circulating tumor cells. LAB ON A CHIP 2019; 19:618-625. [PMID: 30644487 DOI: 10.1039/c8lc01072b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Circulating tumor cells (CTCs) are one of the promising cancer biomarkers whose concentrations are measured not only in the initial diagnostic stages, but also as treatment progresses. However, the existing methods for CTC detection are relatively time-consuming and labor-intensive. In this study, a new microfluidic platform integrated with field-effect transistors (FETs) and chambers for the trapping of CTCs was developed. This novel design could not only trap CTCs from whole blood samples, but also enumerate them via FET sensing of CTC-specific aptamer-CTC complexes. The FET output signal was experimentally found to increase with the increasing number of captured CTCs. More importantly, the enumeration of spiked CTCs in blood samples could be achieved in accordance with the signals measured on the FET devices. We therefore believe that this automated system could be a useful tool for enumeration of CTCs.
Collapse
Affiliation(s)
- Yi-Hong Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013.
| | | | | | | | | |
Collapse
|
21
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
22
|
Neves M, Azevedo R, Lima L, Oliveira MI, Peixoto A, Ferreira D, Soares J, Fernandes E, Gaiteiro C, Palmeira C, Cotton S, Mereiter S, Campos D, Afonso LP, Ribeiro R, Fraga A, Tavares A, Mansinho H, Monteiro E, Videira PA, Freitas PP, Reis CA, Santos LL, Dieguez L, Ferreira JA. Exploring sialyl-Tn expression in microfluidic-isolated circulating tumour cells: A novel biomarker and an analytical tool for precision oncology applications. N Biotechnol 2018; 49:77-87. [PMID: 30273682 DOI: 10.1016/j.nbt.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Circulating tumour cells (CTCs) originating from a primary tumour, lymph nodes and distant metastases hold great potential for liquid biopsies by providing a molecular fingerprint for disease dissemination and its temporal evolution through the course of disease management. CTC enumeration, classically defined on the basis of surface expression of Epithelial Cell Adhesion Molecule (EpCAM) and absence of the pan-leukocyte marker CD45, has been shown to correlate with clinical outcome. However, existing approaches introduce bias into the subsets of captured CTCs, which may exclude biologically and clinically relevant subpopulations. Here we explore the overexpression of the membrane protein O-glycan sialyl-Tn (STn) antigen in advanced bladder and colorectal tumours, but not in blood cells, to propose a novel CTC isolation technology. Using a size-based microfluidic device, we show that the majority (>90%) of CTCs isolated from the blood of patients with metastatic bladder and colorectal cancers express the STn antigen, supporting a link with metastasis. STn+ CTC counts were significantly higher than EpCAM-based detection in colorectal cancer, providing a more efficient cell-surface biomarker for CTC isolation. Exploring this concept, we constructed a glycan affinity-based microfluidic device for selective isolation of STn+ CTCs and propose an enzyme-based strategy for the recovery of viable cancer cells for downstream investigations. Finally, clinically relevant cancer biomarkers (transcripts and mutations) in bladder and colorectal tumours, were identified in cells isolated by microfluidics, confirming their malignant origin and highlighting the potential of this technology in the context of precision oncology.
Collapse
Affiliation(s)
- Manuel Neves
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Rita Azevedo
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Luís Lima
- Portuguese Institute of Oncology, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Marta I Oliveira
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Andreia Peixoto
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | | | - Janine Soares
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Elisabete Fernandes
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Cristiana Gaiteiro
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | | | - Sofia Cotton
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Stefan Mereiter
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Diana Campos
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | | | - Ricardo Ribeiro
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Avelino Fraga
- Hospital Centre- Hospital of Santo António of Porto, Portugal
| | - Ana Tavares
- Portuguese Institute of Oncology, Porto, Portugal
| | - Hélder Mansinho
- Hemato-Oncology Clinic, Hospital Garcia de Orta, EPE, Almada, Portugal; Gupo de Investigação do Cancro Digestivo-GICD, Portugal
| | | | - Paula A Videira
- Glycoimmunology Group, UCIBIO, Departamento Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; INESC - Microsistemas e Nanotecnologias, Lisboa, Lisbon, Portugal
| | - Celso A Reis
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; Faculty of Medicine, University of Porto, Portugal
| | - Lúcio Lara Santos
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; UFP: School of Health Sciences, Fernando Pessoa University of Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - Lorena Dieguez
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - José Alexandre Ferreira
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal.
| |
Collapse
|
23
|
Ji D, Jiang C, Zhang L, Liang N, Jiang T, Yang B, Liang H. LncRNA CRNDE promotes hepatocellular carcinoma cell proliferation, invasion, and migration through regulating miR-203/ BCAT1 axis. J Cell Physiol 2018; 234:6548-6560. [PMID: 30230527 DOI: 10.1002/jcp.27396] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the impact of long noncodingRNA (lncRNA) colorectal neoplasia differentially expressed (CRNDE) on hepatocellular cancer (HCC) cell propagation, invasion, and migration by mediating miR-203/ BCAT1 axis. METHODS Microarray analysis was based on 25 pairs of HCC cancerous tissues and adjacent tissues. The expression levels of CRNDE, miR-203, and BCAT1 in HCC tissues were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The liver cell line L-02 and HCC cell lines HepG2 and Huh-7 were utilized to assess the regulatory effects of CRNDE and miR-203 on HCC progression in vitro. Western blot was used to qualify BCAT1 protein expression level. Cell proliferation and apoptosis were evaluated using CCK-8 and flow cytometry analysis, whereas cell invasion and migration assay were performed by the Transwell assay. The relationship among CRNDE, miR-203, and BCAT1 was validated by dual luciferase assay. Tumor Xenograft study was established to verify the pathological effect of CRNDE on HCC development in vivo. RESULTS The expression levels of the CRNDE and BCAT1 were upregulated in HCC tissues and cells, whereas miR-203 was downregulated in HCC. Knockdown of CRNDE or miR-203 overexpression would inhibit HCC cell propagation and metastasis, and induced cell apoptosis. Moreover, miR-203 was negatively correlated with CRNDE, the same as miR-203 with BCAT1. Dual luciferase assay showed that miR-203 was an inhibitory target of CRNDE, and BCAT1 was directly targeted by miR-203 as well. CONCLUSION LncRNA CRNDE could enhance HCC tumorgenesis by sponging miR-203 and mediating BCAT1. LncRNA CRNDE might facilitate HCC cell propagation, invasiveness, and migration through regulating miR-203/ BCAT1 axis.
Collapse
Affiliation(s)
- Degang Ji
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Na Liang
- Office of Surgical Nursing, Changchun Medical College, Changchun, Jilin, China
| | - Tiechao Jiang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Bin Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Haiying Liang
- Department of Blood transfusion, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
24
|
Kim S, Cho CY, Lee D, Song DG, Kim HJ, Jung JW, Kim JE, Park D, Lee H, Um H, Park J, Choi Y, Kim Y, Nam SH, Lee JW. CD133-induced TM4SF5 expression promotes sphere growth via recruitment and blocking of protein tyrosine phosphatase receptor type F (PTPRF). Cancer Lett 2018; 438:219-231. [PMID: 30217560 DOI: 10.1016/j.canlet.2018.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/23/2023]
Abstract
CD133 is a surface marker of liver cancer stem cells. Transmembrane 4 L six family member 5 (TM4SF5) promotes sphere growth and circulation. However, it is unknown how CD133 and TM4SF5 cross-talk with each other for cancer stem cell properties. Here, we investigated the significance of inter-relationships between CD133, TM4SF5, CD44, and protein tyrosine phosphatase receptor type F (PTPRF) in a three-dimensional (3D) sphere growth system. We found that CD133 upregulated TM4SF5 and CD44, whereas TM4SF5 and CD44 did not affect CD133 expression. Signaling activity following CD133 phosphorylation caused TM4SF5 expression and sphere growth. TM4SF5 bound to CD133 and promoted c-Src activity for CD133 phosphorylation as a positive feedback loop, leading to CD133-mediated sphere growth that was inhibited by TM4SF5 inhibition or suppression. TM4SF5 also bound PTPRF and promoted paxillin phosphorylation. Decreased sphere growth upon CD133 suppression was recovered by TM4SF5 expression and partially by PTPRF suppression. TM4SF5 inhibition enhanced PTPRF levels and abolished PTPRF suppression-mediated sphere growth. Altogether, CD133-induced TM4SF5 expression and function were important for liver cancer sphere growth and may be a promising target to block metastasis.
Collapse
Affiliation(s)
- Somi Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Yun Cho
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Doohyung Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Geun Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Gangwon-do, 25451, Republic of Korea
| | - Hye-Jin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Woo Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dasomi Park
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Um
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsoo Park
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonjeong Choi
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoomin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Hee Nam
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
25
|
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10:1758835918794630. [PMID: 30181785 PMCID: PMC6116068 DOI: 10.1177/1758835918794630] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, the concept of precision medicine has dramatically renewed
the field of medical oncology; the introduction of patient-tailored therapies
has significantly improved all measurable outcomes. Liquid biopsy is a
revolutionary technique that is opening previously unexpected perspectives. It
consists of the detection and isolation of circulating tumor cells, circulating
tumor DNA and exosomes, as a source of genomic and proteomic information in
patients with cancer. Many technical hurdles have been resolved thanks to newly
developed techniques and next-generation sequencing analyses, allowing a broad
application of liquid biopsy in a wide range of settings. Initially correlated
to prognosis, liquid biopsy data are now being studied for cancer diagnosis,
hopefully including screenings, and most importantly for the prediction of
response or resistance to given treatments. In particular, the identification of
specific mutations in target genes can aid in therapeutic decisions, both in the
appropriateness of treatment and in the advanced identification of secondary
resistance, aiming to early diagnose disease progression. Still application is
far from reality but ongoing research is leading the way to a new era in
oncology. This review summarizes the main techniques and applications of liquid
biopsy in cancer.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Domenica Lovero
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Pellè
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Davide Quaresmini
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
26
|
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W, Liang T. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget 2018; 9:26900-26933. [PMID: 29928492 PMCID: PMC6003564 DOI: 10.18632/oncotarget.24809] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
Collapse
Affiliation(s)
- Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rajesh Kumar Yadav
- Department of Pharmacology, Gandaki Medical College, Tribhuwan University, Institute of Medicine, Pokhara 33700, Nepal
| | - Alina Singh
- Department of Surgery, Bir Hospital, National Academy of Medical Science, Kanti Path, Kathmandu 44600, Nepal
| | - Guogang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
27
|
Alamir H, Alomari M, Salwati AAA, Saka M, Bangash M, Baeesa S, Alghamdi F, Carracedo A, Schulten HJ, Chaudhary A, Abuzenadah A, Hussein D. In situ characterization of stem cells-like biomarkers in meningiomas. Cancer Cell Int 2018; 18:77. [PMID: 29849507 PMCID: PMC5970464 DOI: 10.1186/s12935-018-0571-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Meningioma cancer stem cells (MCSCs) contribute to tumor aggressiveness and drug resistance. Successful therapies developed for inoperable, recurrent, or metastatic tumors must target these cells and restrict their contribution to tumor progression. Unfortunately, the identity of MCSCs remains elusive, and MSCSs’ in situ spatial distribution, heterogeneity, and relationship with tumor grade, remain unclear. Methods Seven tumors classified as grade II or grade III, including one case of metastatic grade III, and eight grade I meningioma tumors, were analyzed for combinations of ten stem cell (SC)-related markers using immunofluorescence of consecutive sections. The correlation of expression for all markers were investigated. Three dimensional spatial distribution of markers were qualitatively analyzed using a grid, designed as a repository of information for positive staining. All statistical analyses were completed using Statistical Analysis Software Package. Results The patterns of expression for SC-related markers were determined in the context of two dimensional distribution and cellular features. All markers could be detected in all tumors, however, Frizzled 9 and GFAP had differential expression in grade II/III compared with grade I meningioma tissues. Correlation analysis showed significant relationships between the expression of GFAP and CD133 as well as SSEA4 and Vimentin. Data from three dimensional analysis showed a complex distribution of SC markers, with increased gene hetero-expression being associated with grade II/III tumors. Sub regions that showed multiple co-staining of markers including CD133, Frizzled 9, GFAP, Vimentin, and SSEA4, but not necessarily the proliferation marker Ki67, were highly associated with grade II/III meningiomas. Conclusion The distribution and level of expression of CSCs markers in meningiomas are variable and show hetero-expression patterns that have a complex spatial nature, particularly in grade II/III meningiomas. Thus, results strongly support the notion of heterogeneous populations of CSCs, even in grade I meningiomas, and call for the use of multiple markers for the accurate identification of individual CSC subgroups. Such identification will lead to practical clinical diagnostic protocols that can quantitate CSCs, predict tumor recurrence, assist in guiding treatment selection for inoperable tumors, and improve follow up of therapy. Electronic supplementary material The online version of this article (10.1186/s12935-018-0571-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanin Alamir
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mona Alomari
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Abdulla Ahmed A Salwati
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Mohamad Saka
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- 3Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- 3Division of Neurosurgery, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- 4Pathology Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Angel Carracedo
- 5Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.,6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- 6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adeel Chaudhary
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,6Center of Excellence in Genomic Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,7Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- 1Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia.,7Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Deema Hussein
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box. 80216, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
28
|
Kim HY, Park JW. Current immunotherapeutic strategies in hepatocellular carcinoma: recent advances and future directions. Therap Adv Gastroenterol 2017; 10:805-814. [PMID: 29051790 PMCID: PMC5638179 DOI: 10.1177/1756283x17722061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/20/2017] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and serious health problem with high mortality. Treatment for HCC remains largely unsatisfactory owing to its high recurrence rates and frequent accompanying cirrhosis. In addition, the unique immune environment of the liver promotes tolerance, which, in conjunction with immune evasion by the disease, makes HCC a less promising target for conventional immunotherapy. However, recent advances in the immunotherapy have led to novel approaches to overcome these obstacles by manipulating and enhancing tumor-specific immune responses against HCC by using various modalities, such as cancer vaccines and immune checkpoint blockade. These treatments have shown both safety and promising outcomes in patients with HCC of various etiologies and tumor stages. Furthermore, combined strategies have been assessed to achieve optimal outcomes, by using immunotherapies with or without conventional treatments. This review briefly covers the background, recent advances, current issues, and future perspectives on immunotherapy in the field of HCC treatment.
Collapse
Affiliation(s)
- Hwi Young Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | | |
Collapse
|
29
|
Huang Y, Huang Y, Liu D, Wang T, Bai G. Flt-1-positive cells are cancer-stem like cells in colorectal carcinoma. Oncotarget 2017; 8:76375-76384. [PMID: 29100318 PMCID: PMC5652712 DOI: 10.18632/oncotarget.19403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/10/2017] [Indexed: 01/27/2023] Open
Abstract
Recent evidence demonstrates an essential role of cancer stem cells (CSCs) in cancer initiation, progression, migration, metastasis as well as chemo-resistance. Nevertheless, identification of CSCs in different cancers has not been succeeded, since such CSCs are typically lack of a specific and unique marker. Therefore, the current strategy is basically using one or several markers to enrich CSCs, or to isolate CSC-like cells. Here, we showed that in clinically obtained colorectal carcinoma (CRC) specimens, Flt-1, the type 1 receptor for vascular endothelial growth factor A, was significantly upregulated. Moreover, more distal metastasis and poorer patient survival were detected in Flt-1high CRC, compared to Flt1low subjects. Two CRC cell lines were then labeled with both luciferase and red fluorescent protein (RFP) reporters. We found that in both lines, compared to Flt-1- CRC cells, Flt-1+ CRC cells generated significantly more tumor spheres in culture, appeared to be more resistant to fluorouracil-induced apoptosis, were more detectable in the circulation after subcutaneous transplantation, and had a higher chances to generate tumor after serial adoptive transplantation. Thus, we conclude that Flt-1 may be used as a surface marker to enrich CSC in CRC. Selective elimination of Flt-1+ CRC cells may improve the therapeutic outcome.
Collapse
Affiliation(s)
- Ye Huang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yinpeng Huang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Di Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Tianyi Wang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Guang Bai
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
30
|
Berardocco M, Radeghieri A, Busatto S, Gallorini M, Raggi C, Gissi C, D'Agnano I, Bergese P, Felsani A, Berardi AC. RNA-seq reveals distinctive RNA profiles of small extracellular vesicles from different human liver cancer cell lines. Oncotarget 2017; 8:82920-82939. [PMID: 29137313 PMCID: PMC5669939 DOI: 10.18632/oncotarget.20503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/29/2017] [Indexed: 12/20/2022] Open
Abstract
Liver cancer (LC) is one of the most common cancers and represents the third highest cause of cancer-related deaths worldwide. Extracellular vesicle (EVs) cargoes, which are selectively enriched in RNA, offer great promise for the diagnosis, prognosis and treatment of LC. Our study analyzed the RNA cargoes of EVs derived from 4 liver-cancer cell lines: HuH7, Hep3B, HepG2 (hepato-cellular carcinoma) and HuH6 (hepatoblastoma), generating two different sets of sequencing libraries for each. One library was size-selected for small RNAs and the other targeted the whole transcriptome. Here are reported genome wide data of the expression level of coding and non-coding transcripts, microRNAs, isomiRs and snoRNAs providing the first comprehensive overview of the extracellular-vesicle RNA cargo released from LC cell lines. The EV-RNA expression profiles of the four liver cancer cell lines share a similar background, but cell-specific features clearly emerge showing the marked heterogeneity of the EV-cargo among the individual cell lines, evident both for the coding and non-coding RNA species.
Collapse
Affiliation(s)
- Martina Berardocco
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Clarissa Gissi
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Igea D'Agnano
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Italy.,Genomnia Srl, Bresso, Italy
| | - Anna C Berardi
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| |
Collapse
|
31
|
LncSHRG promotes hepatocellular carcinoma progression by activating HES6. Oncotarget 2017; 8:70630-70641. [PMID: 29050307 PMCID: PMC5642582 DOI: 10.18632/oncotarget.19906] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma, one of the most common cancers, leads to mass mortality worldwide currently. However, the underlying mechanism of its oncogenesis remains to be elucidated. Here we identified that a long noncoding RNA, lncSHRG, was greatly upregulated in human hepatocellular carcinoma samples. We found that lncSHRG was essential for liver cancer cell proliferation and tumor propagation in mice. In mechanism, lncSHRG recruits SATB1 to bind to HES6 promoter and initiates HES6 expression. HES6, which is highly expressed in hepatocellular carcinoma, promotes tumor cell proliferation. High expression level of HES6 is positively correlated with clinical severity and poor prognosis of people with hepatocellular carcinoma. Altogether, our research provides a new insight on the mechanism of hepatocellular carcinoma progression.
Collapse
|
32
|
Shao C, Chen J, Chen J, Shi J, Huang L, Qiu Y. Histological classification of microvascular invasion to predict prognosis in intrahepatic cholangiocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7674-7681. [PMID: 31966613 PMCID: PMC6965212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/01/2017] [Indexed: 06/10/2023]
Abstract
Similar to hepatocellular carcinoma, microvascular invasion (MVI) is also one of the most significant prognostic factors of intrahepatic cholangiocarcinoma (ICC). However, there has not been any literature that had mentioned the histologic classification of microvascular invasion in intrahepatic cholangiocarcinoma. We evaluated the significance of MVI classification in this study and analyzed the prognosis based on MVI classification. We herein enrolled 108 patients who were diagnosed with ICC and then underwent surgical exploration from February 2005 to August 2015 at our hospital. We examined them with microvascular invasion (n=43) for four features: the number of invaded microvascular, the maximum number of invading carcinoma cells, the farthest distance from the tumor, and vessel with muscular wall. Thus, Patients were classified into low MVI and High MVI groups according to them. Of the total 108 patients, 65 patients told no detectable MVI, whereas 30 (27.8%) had low MVI, and 13 (12.0%) had high MVI. The median follow-up period lasted 15 months. In the analysis of overall survival, high MVI group showed significantly less positive outcomes than the patients without MVI and the low MVI group, and so did the low MVI group and the patients without MVI. Furthermore, high MVI and low MVI were independent factors for overall survival in ICC patients. We put forward a novel histologic evaluation of ICC which can preferably predict the risk of survival of patients with MVI after curative resection.
Collapse
Affiliation(s)
- Cong Shao
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjing, China
| | - Jun Chen
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjing, China
| | - Jin Chen
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjing, China
| | - Jiong Shi
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjing, China
| | - Luoshun Huang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjing, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjing, China
| |
Collapse
|
33
|
Liu JX, Zhang ZC, Shao ZW, Pu FF, Wang BC, Zhang YK, Zeng XL, Guo XD, Yang SH, He TC. TRAIL-R1 as a novel surface marker for circulating giant cell tumor of bone. Oncotarget 2017; 8:50724-50730. [PMID: 28881598 PMCID: PMC5584197 DOI: 10.18632/oncotarget.17042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
Giant cell tumor of bone (GCT), which frequently occurs in the patients’ spine, is relatively prevalent in Chinese population. A group of GCT invades into vessels and appears to be circulating tumor cells (CTCs) responsible for the distal metastasis of the primary tumor. So far the cell surface markers of GCT have not been determined. In the current study, we aimed to identify a novel CTC marker with higher specificity in GCT. TRAIL-R1+ cells were purified from GCT cell lines. The TRAIL-R1+ cells were compared with total GCT cells for tumor sphere formation, chemo-resistance, tumor formation in nude mice, and frequency of developing distal metastases. We found that TRAIL-R1+ GCT cells appeared to be highly enriched for CTCs in GCT. Compared to total GCT cells, TRAIL-R1+ GCT cells generated significantly more tumor spheres in culture, were higher chemo-resistant, and had a higher frequency of being detected in the circulation after subcutaneous transplantation as well as development of distal metastases. Thus, we conclude that TRAIL-R1+ may be a novel CTC marker in GCT. Selective elimination of TRAIL-R1+ GCT cells may improve the current GCT therapy.
Collapse
Affiliation(s)
- Jian-Xiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Cai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeng-Wu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei-Fei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bai-Chuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-Kun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xian-Lin Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Dong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shu-Hua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago 60637, IL, USA
| |
Collapse
|
34
|
Liu K, Hao M, Ouyang Y, Zheng J, Chen D. CD133 + cancer stem cells promoted by VEGF accelerate the recurrence of hepatocellular carcinoma. Sci Rep 2017; 7:41499. [PMID: 28134312 PMCID: PMC5278354 DOI: 10.1038/srep41499] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
The role of cancer stem cells (CSCs) in inducing the recurrence of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA) remains unclear. Here, we found that a dramatic increase in plasma vascular endothelial growth factor (VEGF) and an induction of local CD133+ CSCs are associated with early HCC recurrence, suggesting that VEGF expression and tumour stemness contribute to the relapse. In vitro studies demonstrated that VEGF, via activation of VEGFR2, increased the number of CD133+ CSCs and enhanced their capacity for self-renewal by inducing the expression of Nanog. In vivo studies further demonstrated that VEGF-treated CD133+ CSCs formed tumours larger than those developing from unstimulated cells and VEGF pre-treatment increased the tumorigenic cell frequency of primary HCC cells dependently on the presence of Nanog and VEGFR2. In HCC tissue derived from patients with early recurrence, almost all CD133+ cells were Nanog and p-VEGFR2 positive, suggesting that activation of VEGFR2 is critical for RFA-induced tumour stemness in HCC. In summary, RFA-induced VEGF promotes tumour stemness and accelerates tumourigenesis in HCC in a manner dependent on Nanog and VEGFR2, which is valuable for the prediction of HCC recurrence after RFA and the development of novel therapeutics.
Collapse
Affiliation(s)
- Kai Liu
- Capital Medical University affiliated Beijing You An Hospital, Beijing, 100069, China.,Beijing Institute of Hepatology, Beijing, 100069, China
| | - Meijun Hao
- Capital Medical University affiliated Beijing You An Hospital, Beijing, 100069, China
| | - Yabo Ouyang
- Capital Medical University affiliated Beijing You An Hospital, Beijing, 100069, China.,Beijing Institute of Hepatology, Beijing, 100069, China
| | - Jiasheng Zheng
- Capital Medical University affiliated Beijing You An Hospital, Beijing, 100069, China
| | - Dexi Chen
- Capital Medical University affiliated Beijing You An Hospital, Beijing, 100069, China.,Beijing Institute of Hepatology, Beijing, 100069, China.,Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province, 266003, China
| |
Collapse
|