1
|
Yazdanian Z, Mobarra N, Fazel A, Fazeli MS, Ghasemi S, Danesteh S, Khoshrou A, Pakzad R, Raji S, Rafiee M, Akbar S. Ribonucleotide-diphosphate reductase subunit M2 (RRM2) expression and colorectal cancer invasiveness: a potential prognostic biomarker. Mol Biol Rep 2025; 52:447. [PMID: 40332681 DOI: 10.1007/s11033-025-10510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND By evaluating serum Ribonucleotide-diphosphate Reductase subunit M2 (RRM2) levels and mRNA tissue expression, we aimed to investigate the potential role of RRM2 as a prognostic biomarker in Colorectal Cancer (CRC) patients. METHODS This descriptive-analytic cohort study was conducted on 50 newly diagnosed CRC patients (stage II, III). Real-time PCR determined the mRNA tissue expression of RRM2. Fifty healthy individuals who came to the hospital of Golestan University of Medical Sciences and Tehran University of Medical Sciences for routine check-ups were considered the control group. Serum RRM2 protein was measured using an ELISA method in the patient group before, one month, and three months after the surgery, and in the control group just on the day of a routine check-up. The tumor metastasis node (TMN) classification system and occurrence of liver metastasis were evaluated in CRC patients. RESULTS The RRM2 gene expression ratio and 95% confidence interval (CI) of the cancerous tissue was 6.56 times higher than the normal tissue (p < 0.001). Blood Sugar level (BS) (p < 0.001) and platelet level (PLT [range 0.004-499 × 103 /mm3]; p = 0.010) were higher in the case group compared with the control group significantly, while Mean Corpuscular Volume (MCV) was significantly lower in the case group (p = 0.015). Overall, the mean serum of RRM2 protein levels in patients was remarkably diminished from before surgery until three months after surgery (p < 0.001). CONCLUSION Serum RRM2 level and mRNA expression were significantly higher among CRC patients which could be considered a biomarker regarding CRC progression.
Collapse
Affiliation(s)
- Zahra Yazdanian
- Department of Biochemistry, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naser Mobarra
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abdolreza Fazel
- Department of Surgery, Sayyad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Sadegh Fazeli
- Department of General Surgery, School of Medicine Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Ghasemi
- Department of Biochemistry, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Danesteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Pakzad
- Department of Epidemiology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Sara Raji
- Persian Cohort Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Rafiee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Akbar
- Department of Biochemistry, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
2
|
Hickey J, Harris RA, Meola SD, Jennings S, Moore PF, Vernau W, Harding K, Thamm DH, Schlein LJ. Mixed histiocytic sarcoma in a Bernese Mountain Dog. J Vet Diagn Invest 2025; 37:317-323. [PMID: 39866033 PMCID: PMC11773501 DOI: 10.1177/10406387241312308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
An 8-y-old, spayed female Bernese Mountain Dog was presented to a referral center for evaluation of right thoracic limb lameness and previously suspected Evans syndrome that had been poorly responsive to immunosuppressive therapy. Based on review of examination findings and laboratory data, Evans syndrome was deemed unlikely and hemophagocytic histiocytic sarcoma (HHS) was strongly suspected. On blood smear evaluation, atypical, histiocytic cells were noted, some of which exhibited siderophagia. Considering that circulating cells are not typically observed in dogs with HHS, additional diagnostic investigation was performed. Autopsy and histopathology revealed that the dog had a mixed form of HS (dendritic-cell origin HS in the lung, and HHS in the spleen, liver, and bone marrow), and immunocytochemical characterization of cultured cells derived from blood suggested that the cells were of dendritic HS origin, rather than HHS origin, as originally suspected. Whole-exome sequencing revealed genetic similarity between cell lines derived from lung tissue and blood, providing additional evidence of the relatedness of these 2 cell populations. Our case highlights the rare entity of mixed HS and typifies the inherent challenges in classifying rare, atypical, circulating neoplastic cells.
Collapse
Affiliation(s)
| | - R. Adam Harris
- Veterinary Diagnostic Laboratory–Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Peter F. Moore
- Department of Pathology, Microbiology and Immunology, University of California–Davis, Davis, CA, USA
| | - William Vernau
- Department of Pathology, Microbiology and Immunology, University of California–Davis, Davis, CA, USA
| | | | - Douglas H. Thamm
- Clinical Sciences Department, Colorado State University, Fort Collins, CO, USA
| | - Lisa J. Schlein
- Veterinary Diagnostic Laboratory–Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO, USA
- Zoetis Reference Laboratories, Florham Park, NJ, USA
| |
Collapse
|
3
|
Danishuddin, Haque MA, Khan S, Kim JJ, Ahmad K. Molecular Landscape of Bladder Cancer: Key Genes, Transcription Factors, and Drug Interactions. Int J Mol Sci 2024; 25:10997. [PMID: 39456780 PMCID: PMC11507096 DOI: 10.3390/ijms252010997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Bladder cancer is among the most prevalent tumors in the urinary system and is known for its high malignancy. Although traditional diagnostic and treatment methods are established, recent research has focused on understanding the molecular mechanisms underlying bladder cancer. The primary objective of this study is to identify novel diagnostic markers and discover more effective targeted therapies for bladder cancer. This study identified differentially expressed genes (DEGs) between bladder cancer tissues and adjacent normal tissues using data from The Cancer Genome Atlas (TCGA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to explore the functional roles of these genes. A protein-protein interaction (PPI) network was also constructed to identify and analyze hub genes within this network. Gene set variation analysis (GSVA) was conducted to investigate the involvement of these genes in various biological processes and pathways. Ten key genes were found to be significantly associated with bladder cancer: IL6, CCNA2, CCNB1, CDK1, PLK1, TOP2A, AURKA, AURKB, FOXM1, and CALML5. GSVA analyses revealed that these genes are involved in a variety of biological processes and signaling pathways, including coagulation, UV-response-down, apoptosis, Notch signaling, and Wnt/beta-catenin signaling. The diagnostic relevance of these genes was validated through ROC curve analysis. Additionally, potential therapeutic drug interactions with these key genes were identified. This study provides valuable insights into key genes and their roles in bladder cancer. The identified genes and their interactions with therapeutic drugs could serve as potential biomarkers, presenting new opportunities for enhancing the diagnosis and prognosis of bladder cancer.
Collapse
Affiliation(s)
- Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.A.H.)
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.A.H.)
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.A.H.)
| | - Khurshid Ahmad
- Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
4
|
Mobeen SA, Saxena P, Jain AK, Deval R, Riazunnisa K, Pradhan D. Integrated bioinformatics approach to unwind key genes and pathways involved in colorectal cancer. J Cancer Res Ther 2023; 19:1766-1774. [PMID: 38376276 DOI: 10.4103/jcrt.jcrt_620_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/13/2021] [Indexed: 02/21/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the fifth leading cause of death in India. Until now, the exact pathogenesis concerning CRC signaling pathways is largely unknown; however, the diseased condition is believed to deteriorate with lifestyle, aging, and inherited genetic disorders. Hence, the identification of hub genes and therapeutic targets is of great importance for disease monitoring. OBJECTIVE Identification of hub genes and targets for identification of candidate hub genes for CRC diagnosis and monitoring. MATERIALS AND METHODS The present study applied gene expression analysis by integrating two profile datasets (GSE20916 and GSE33113) from NCBI-GEO database to elucidate the potential key candidate genes and pathways in CRC. Differentially expressed genes (DEGs) between CRC (195 CRC tissues) and healthy control (46 normal mucosal tissue) were sorted using GEO2R tool. Further, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed using Cluster Profiler in Rv. 3.6.1. Moreover, protein-protein interactions (PPI), module detection, and hub gene identification were accomplished and visualized through the Search Tool for the Retrieval of Interacting Genes, Molecular Complex Detection (MCODE) plug-in of Cytoscape v3.8.0. Further hub genes were imported into ToppGene webserver for pathway analysis and prognostic expression analysis was conducted using Gene Expression Profiling Interactive Analysis webserver. RESULTS A total of 2221 DEGs, including 1286 up-regulated and 935down-regulated genes mainly enriched in signaling pathways of NOD-like receptor, FoxO, AMPK signalling and leishmaniasis. Three key modules were detected from PPI network using MCODE. Besides, top 20 high prioritized hub genes were selected. Further, prognostic expression analysis revealed ten of the hub genes, namely IL1B, CD44, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, MMP9, CREB1, STAT1, vascular endothelial growth factor (VEGFA), CDC5 L, Ataxia-telangiectasia mutated (ATM + and CDH1 to be differently expressed in normal and cancer patients. CONCLUSION The present study proposed five novel therapeutic targets, i.e., ATM, GAPDH, CREB1, VEGFA, and CDH1 genes that might provide new insights into molecular oncogenesis of CRC.
Collapse
Affiliation(s)
- Syeda Anjum Mobeen
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Andhra Pradesh, India
| | - Pallavi Saxena
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Khateef Riazunnisa
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Andhra Pradesh, India
| | | |
Collapse
|
5
|
Barrena N, Valcárcel LV, Olaverri-Mendizabal D, Apaolaza I, Planes FJ. Synthetic lethality in large-scale integrated metabolic and regulatory network models of human cells. NPJ Syst Biol Appl 2023; 9:32. [PMID: 37454223 DOI: 10.1038/s41540-023-00296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Synthetic lethality (SL) is a promising concept in cancer research. A wide array of computational tools has been developed to predict and exploit synthetic lethality for the identification of tumour-specific vulnerabilities. Previously, we introduced the concept of genetic Minimal Cut Sets (gMCSs), a theoretical approach to SL developed for genome-scale metabolic networks. The major challenge in our gMCS framework is to go beyond metabolic networks and extend existing algorithms to more complex protein-protein interactions. In this article, we take a step further and incorporate linear regulatory pathways into our gMCS approach. Extensive algorithmic modifications to compute gMCSs in integrated metabolic and regulatory models are presented in detail. Our extended approach is applied to calculate gMCSs in integrated models of human cells. In particular, we integrate the most recent genome-scale metabolic network, Human1, with 3 different regulatory network databases: Omnipath, Dorothea and TRRUST. Based on the computed gMCSs and transcriptomic data, we discovered new essential genes and their associated synthetic lethal for different cancer cell lines. The performance of the different integrated models is assessed with available large-scale in-vitro gene silencing data. Finally, we discuss the most relevant gene essentiality predictions based on published literature in cancer research.
Collapse
Affiliation(s)
- Naroa Barrena
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Luis V Valcárcel
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
- University of Navarra, Biomedical Engineering Center, Campus Universitario, 31009, Pamplona, Navarra, Spain
- University of Navarra, Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Campus Universitario, 31080, Pamplona, Spain
| | - Danel Olaverri-Mendizabal
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Iñigo Apaolaza
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
- University of Navarra, Biomedical Engineering Center, Campus Universitario, 31009, Pamplona, Navarra, Spain
- University of Navarra, Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Campus Universitario, 31080, Pamplona, Spain
| | - Francisco J Planes
- University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.
- University of Navarra, Biomedical Engineering Center, Campus Universitario, 31009, Pamplona, Navarra, Spain.
- University of Navarra, Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Campus Universitario, 31080, Pamplona, Spain.
| |
Collapse
|
6
|
Arancibia-Opazo S, Contreras-Riquelme JS, Sánchez M, Cisternas-Olmedo M, Vidal RL, Martin AJM, Sáez MA. Transcriptional and Histone Acetylation Changes Associated with CRE Elements Expose Key Factors Governing the Regulatory Circuit in the Early Stage of Huntington's Disease Models. Int J Mol Sci 2023; 24:10848. [PMID: 37446028 DOI: 10.3390/ijms241310848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Huntington's disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of several genes. However, mutant Htt causes depletion of CBP, which in turn induces altered histone acetylation patterns and transcriptional deregulation. Here, we have studied a differential expression analysis and H3K27ac variation in 4- and 6-week-old R6/2 mice as a model of juvenile HD. The analysis of differential gene expression and acetylation levels were integrated into Gene Regulatory Networks revealing key regulators involved in the altered transcription cascade. Our results show changes in acetylation and gene expression levels that are related to impaired neuronal development, and key regulators clearly defined in 6-week-old mice are proposed to drive the downstream regulatory cascade in HD. Here, we describe the first approach to determine the relationship among epigenetic changes in the early stages of HD. We determined the existence of changes in pre-symptomatic stages of HD as a starting point for early onset indicators of the progression of this disease.
Collapse
Affiliation(s)
- Sandra Arancibia-Opazo
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago 8580745, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Universidad San Sebastián, Santiago 8580704, Chile
| | - J Sebastián Contreras-Riquelme
- Plant Genome Regulation Lab, Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Mario Sánchez
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Marisol Cisternas-Olmedo
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380455, Chile
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile
| | - René L Vidal
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380455, Chile
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Universidad San Sebastián, Santiago 8580704, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 7500000, Chile
| | - Mauricio A Sáez
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Centro de Oncología de Precisión, Facultad de Medicina Universidad Mayor, Santiago 7560908, Chile
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile
| |
Collapse
|
7
|
Soghli N, Yousefi H, Naderi T, Fallah A, Moshksar A, Darbeheshti F, Vittori C, Delavar MR, Zare A, Rad HS, Kazemi A, Bitaraf A, Hussen BM, Taheri M, Jamali E. NRF2 signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer. Pathol Res Pract 2023; 243:154341. [PMID: 36739754 DOI: 10.1016/j.prp.2023.154341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Breast cancer is the most frequently diagnosed malignant tumor in women and a major public health concern. NRF2 axis is a cellular protector signaling pathway protecting both normal and cancer cells from oxidative damage. NRF2 is a transcription factor that binds to the gene promoters containing antioxidant response element-like sequences. In this report, differential expression of NRF2 signaling pathway elements, as well as the correlation of NRF2 pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade, tumor stage, and methylation status, has been investigated in breast cancer using METABRIC and TCGA datasets. In the current report, our findings revealed the deregulation of several NRF2 signaling elements in breast cancer patients. Moreover, there were negative correlations between the methylation of NRF2 genes and mRNA expression. The expression of NRF2 genes significantly varied between different breast cancer subtypes. In conclusion, substantial deregulation of NRF2 signaling components suggests an important role of these genes in breast cancer. Because of the clear associations between mRNA expression and methylation status, DNA methylation could be one of the mechanisms that regulate the NRF2 pathway in breast cancer. Differential expression of Hippo genes among various breast cancer molecular subtypes suggests that NRF2 signaling may function differently in different subtypes of breast cancer. Our data also highlights an interesting link between NRF2 components' transcription and tumor grade/stage in breast cancer.
Collapse
Affiliation(s)
- Negin Soghli
- Babol University of Medical Sciences, Faculty of Dentistry, Babol, Iran
| | - Hassan Yousefi
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA; Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tohid Naderi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Fallah
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moshksar
- University of Texas Medical Branch (UTMB), Interventional Radiology, Galveston, TX, USA
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Cecilia Vittori
- Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Sadeghi Rad
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Abtin Kazemi
- Fasa University of Medical Sciences, School of Medicine, Fasa, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Russell-Goldman E, Hanna J. MAML2 Gene Rearrangement Occurs in Nearly All Hidradenomas: A Reappraisal in a Series of 20 Cases. Am J Dermatopathol 2022; 44:806-811. [PMID: 35925563 DOI: 10.1097/dad.0000000000002276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Hidradenoma is a benign cutaneous adnexal neoplasm that occurs across a wide age range and at a variety of anatomic sites. Its most characteristic morphologic feature is the presence of diverse cell types including squamoid, clear, plasmacytoid, and mucinous cells. Hidradenoma is morphologically and molecularly similar to mucoepidermoid carcinoma, and both tumors are characterized by recurrent CRTC1-MAML2 cytogenetic translocations. Previous studies have suggested that approximately half of hidradenomas possess this translocation. This finding raised the question of whether translocation-negative hidradenomas might have an alternate molecular basis. Here, we sought to reevaluate the frequency of MAML2 translocation in hidradenoma in a series of 20 cases. We find that 90% show evidence of MAML2 translocation, suggesting that this genetic event is a nearly invariant feature of hidradenoma. These results inform our molecular understanding of this tumor and may be useful in challenging cases to distinguish hidradenoma from its histologic mimics.
Collapse
Affiliation(s)
- Eleanor Russell-Goldman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | |
Collapse
|
9
|
Jafarzadeh A, Noori M, Sarrafzadeh S, Tamehri Zadeh SS, Nemati M, Chatrabnous N, Jafarzadeh S, Hamblin MR, Jafari Najaf Abadi MH, Mirzaei H. MicroRNA-383: A tumor suppressor miRNA in human cancer. Front Cell Dev Biol 2022; 10:955486. [PMID: 36313570 PMCID: PMC9608775 DOI: 10.3389/fcell.2022.955486] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Downregulated expression of anti-tumor miR-383 has been found in many kinds of cancer. MiR-383 family members can directly target the 3'-untranslated region (3'-UTR) of the mRNA of some pro-tumor genes to attenuate several cancer-related processes, including cell proliferation, invasion, migration, angiogenesis, immunosuppression, epithelial-mesenchymal transition, glycolysis, chemoresistance, and the development of cancer stem cells, whilst promoting apoptosis. Functionally, miR-383 operates as a tumor inhibitor miRNA in many types of cancer, including breast cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, colorectal cancer, esophageal cancer, lung cancer, head and neck cancer, glioma, medulloblastoma, melanoma, prostate cancer, cervical cancer, oral squamous cell carcinoma, thyroid cancer, and B-cell lymphoma. Both pro-tumor and anti-tumor effects have been attributed to miR-383 in ovarian cancer. However, only the pro-tumor effects of miR-383 were reported in cholangiocarcinoma. The restoration of miR-383 expression could be considered a possible treatment for cancer. This review discusses the anti-tumor effects of miR-383 in human cancers, emphasizing their downstream target genes and potential treatment approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Majid Noori
- Golestan Hospital Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mohammad Hassan Jafari Najaf Abadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| |
Collapse
|
10
|
Khan K, Zafar S, Hafeez A, Badshah Y, Shahid K, Mahmood Ashraf N, Shabbir M. PRKCE non-coding variants influence on transcription as well as translation of its gene. RNA Biol 2022; 19:1115-1129. [PMID: 36299231 PMCID: PMC9621080 DOI: 10.1080/15476286.2022.2139110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 10/31/2022] Open
Abstract
Untranslated regions of the gene play a crucial role in gene expression regulation at mRNA and protein levels. Mutations at UTRs impact expression by altering transcription factor binding, transcriptional/translational efficacy, miRNA-mediated gene regulation, mRNA secondary structure, ribosomal translocation, and stability. PKCε, a serine/threonine kinase, is aberrantly expressed in numerous diseases such as cardiovascular disorders, neurological disorders, and cancers; its probable cause is unknown. Therefore, in the current study, the influence of PRKCE 5'-and 3'UTR variants was explored for their potential impact on its transcription and translation through several bioinformatics approaches. UTR variants data was obtained through different databases and initially evaluated for their regulatory function. Variants with regulatory function were then studied for their effect on PRKCE binding with transcription factors (TF) and miRNAs, as well as their impact on mRNA secondary structure. Study outcomes indicated the regulatory function of 73 5'UTR and 17 3'UTR variants out of 376. 5'UTR variants introduced AP1 binding sites and promoted the PRKCE transcription. Four 3'UTR variants introduced a circular secondary structure, increasing PRKCE translational efficacy. A region in 5'UTR position 45,651,564 to 45,651,644 was found where variants readily influenced the miRNA-PRKCE mRNA binding. The study further highlighted a PKCε-regulated feedback loop mechanism that induces the activity of TFs, promoting its gene transcription. The study provides foundations for experimentation to understand these variants' role in diseases. These variants can also serve as the genetic markers for different diseases' diagnoses after validation at the cell and population levels.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sameen Zafar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Amna Hafeez
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Kanza Shahid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
11
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
12
|
Unveiling the tumour-regulatory roles of miR-1275 in cancer. Pathol Res Pract 2021; 230:153745. [PMID: 34953353 DOI: 10.1016/j.prp.2021.153745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The rapid development of small RNA and molecular biology research in the past 20 years has enabled scientists to discover many new miRNAs that are proven to play essential roles in regulating the development of different cancer types. Among these miRNAs, miR-1275 is one of the well-studied miRNAs that has been described to act as a tumour-promoting or tumour-suppressing miRNA in various cancer types. Even though miR-1275 has been widely reported in different original research articles on its roles in modulating the progression of different cancer types, however, there is scarce an in-depth review that could constructively summarize the findings from different studies on the regulatory roles of miR-1275 in different cancer types. To fill up this literature gap, therefore, this review was aimed to provide an overview and summary of the roles of miR-1275 in modulating the development of different cancers and to unravel the mechanism of how miR-1275 regulates cancer progression. Based on the findings summarized from various sources, it was found that miR-1275 plays a vital role in regulating various cellular signaling pathways like the PI3K/AKT, ERK/JNK, MAPK, and Wnt signaling pathways, and the dysregulation of this miRNA has been shown to contribute to the development of multiple cancer types such as cancers of the liver, breast, lung, gastrointestinal tract and genitourinary tract. Therefore, miR-1275 has great potential to be employed as a biomarker to diagnose cancer and to predict the prognosis of cancer patients. In addition, by inhibiting the expression of its unique downstream targets that are involved in regulating the mentioned cellular pathways, this miRNA could also be utilized as a novel therapeutic agent to halt cancer development.
Collapse
|
13
|
Bardhan A, Banerjee A, Basu K, Pal DK, Ghosh A. PRNCR1: a long non-coding RNA with a pivotal oncogenic role in cancer. Hum Genet 2021; 141:15-29. [PMID: 34727260 PMCID: PMC8561087 DOI: 10.1007/s00439-021-02396-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been gaining importance in the field of cancer research in recent years. PRNCR1 (prostate cancer-associated non-coding RNA1) is a 12.7 kb, intron-less lncRNA found to play an oncogenic role in malignancy of diverse organs including prostate, breast, lung, oral cavity, colon and rectum. Single-nucleotide polymorphisms (SNPs) of PRNCR1 locus have been found to be associated with cancer susceptibility in different populations. In this review, an attempt has been made for the first time to summarize all sorts of available data on PRNCR1 to date from relevant databases (GeneCard, LncExpDB, Ensembl genome browser, and PubMed). As functional roles of PRNCR1, miRNA (microRNA) sponging was mostly highlighted in the pathogenesis of different cancer; in addition, an association of the lncRNA with chromatin-modifying complex to enhance androgen receptor-mediated gene transcription was reported in prostate cancer. Diagnostic and prognostic importance of PRNCR1 was found in some malignancies suggesting potency of the lncRNA to serve as a clinical biomarker. For PRNCR1 SNPs, although cancer susceptibility of the risk alleles/genotypes was reported in different populations, majorities of the findings were not replicated and underlying molecular mechanisms remained unexplored. Therapeutic implication of PRNCR1 was not studied well and future research may come up in this direction for intervening novel strategies to fight against cancer.
Collapse
Affiliation(s)
- Abhishek Bardhan
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Anwesha Banerjee
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Keya Basu
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | | | - Amlan Ghosh
- Genetics of Non-Communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
14
|
Watson MJ, Berger PL, Banerjee K, Frank SB, Tang L, Ganguly SS, Hostetter G, Winn M, Miranti CK. Aberrant CREB1 activation in prostate cancer disrupts normal prostate luminal cell differentiation. Oncogene 2021; 40:3260-3272. [PMID: 33846571 PMCID: PMC10760404 DOI: 10.1038/s41388-021-01772-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The molecular mechanisms of luminal cell differentiation are not understood well enough to determine how differentiation goes awry during oncogenesis. Using RNA-Seq analysis, we discovered that CREB1 plays a central role in maintaining new luminal cell survival and that oncogenesis dramatically changes the CREB1-induced transcriptome. CREB1 is active in luminal cells, but not basal cells. We identified ING4 and its E3 ligase, JFK, as CREB1 transcriptional targets in luminal cells. During luminal cell differentiation, transient induction of ING4 expression is followed by a peak in CREB1 activity, while JFK increases concomitantly with CREB1 activation. Transient expression of ING4 is required for luminal cell induction; however, failure to properly down-regulate ING4 leads to luminal cell death. Consequently, blocking CREB1 increased ING4 expression, suppressed JFK, and led to luminal cell death. Thus, CREB1 is responsible for the suppression of ING4 required for luminal cell survival and maintenance. Oncogenic transformation by suppressing PTEN resulted in constitutive activation of CREB1. However, the tumor cells could no longer fully differentiate into luminal cells, failed to express ING4, and displayed a unique CREB1 transcriptome. Blocking CREB1 in tumorigenic cells suppressed tumor growth in vivo, rescued ING4 expression, and restored luminal cell formation, but ultimately induced luminal cell death. IHC of primary prostate tumors demonstrated a strong correlation between loss of ING4 and loss of PTEN. This is the first study to define a molecular mechanism whereby oncogenic loss of PTEN, leading to aberrant CREB1 activation, suppresses ING4 expression causing disruption of luminal cell differentiation.
Collapse
Affiliation(s)
- M J Watson
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - P L Berger
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - K Banerjee
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - S B Frank
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - L Tang
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - S S Ganguly
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - G Hostetter
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - M Winn
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - C K Miranti
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
15
|
Sikorska A, Stachowiak M, Flisikowska T, Stachecka J, Flisikowski K, Switonski M. Polymorphisms of CSF1R and WISP1 genes are associated with severity of familial adenomatous polyposis in APC 1311 pigs. Gene 2020; 759:144988. [PMID: 32717306 DOI: 10.1016/j.gene.2020.144988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Hereditary familial adenomatous polyposis (FAP) in humans significantly increases the risk of development of colorectal cancer (CRC). Germline mutations in the APC (adenomatous polyposis coli) gene are responsible for FAP. Despite having the same causative mutation, the severity of the disease differs from patient to patient. The porcine FAP model carrying a truncating APC1311 mutation, orthologous to the dominant human mutation that leads to severe form of the disease (APC1309), mirrors the severity of polyposis. Earlier RNAseq studies have revealed the differential expression of WISP1 and CSF1R in samples derived from low-grade (LG-IEN) and more advanced high-grade (HG-IEN) colon polyps of APC1311/+ pigs. The grade of dysplasia was correlated with the severity of polyposis in APC1311/+ pigs characterized by a low (LP) and high (HP) numbers of polyps. The goal of this work was to find DNA variants that regulate the expression of CSF1R and WISP1 in LP and HP pigs. In total, 32 and 36 polymorphisms in CSF1R and WISP1 were found, respectively. Of these, the genotype frequency of four silent SNPs in the coding region of WISP1 differed significantly between LP and HP lines. In silico analysis revealed an elevated minimum free energy (MFE) for three of these SNPs, suggesting their role in mRNA structure stability. Furthermore, four polymorphisms in the promoter region of CSF1R, cosegregating as a common haplotype, were associated with polyp number in APC1311/+ pigs. A secreted alkaline phosphatase (SEAP) assay showed, however, that these variants have no direct effect on the activity of the CSF1R promoter. Concluding, our study identified polymorphisms in CSF1R and WISP1 that are potentially associated with the severity of polyposis in APC1311/+ pigs.
Collapse
Affiliation(s)
- Agata Sikorska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technical University of Munich, Liesel-Beckmannstr. 1, 85354 Freising, Germany
| | - Joanna Stachecka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, Liesel-Beckmannstr. 1, 85354 Freising, Germany.
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland.
| |
Collapse
|
16
|
Kit OI, Trifanov VS, Petrusenko NA, Gvaldin DY, Kutilin DS, Timoshkina NN. Identification of new candidate genes and signalling pathways associated with the development of neuroendocrine pancreatic tumours based on next generation sequencing data. Mol Biol Rep 2020; 47:4233-4243. [PMID: 32451928 DOI: 10.1007/s11033-020-05534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Despite advances in classification, treatment, and imaging, neuroendocrine tumours remain a clinically complex subject. In this work, we studied the genetic profile of well-differentiated pancreatic neuroendocrine tumours (PanNETs) in a cohort of Caucasian patients and analysed the signalling pathways and candidate genes potentially associated with the development of this oncological disease. Twenty-four formalin-fixed paraffin-embedded (FFPE) samples of well-differentiated PanNETs were subjected to massive parallel sequencing using the targeted gene panel (409 genes) of the Illumina NextSeq 550 platform (San Diego, USA). In 24 patients, 119 variants were identified in 54 genes. The median mutation rate per patient was 5 (2.8-7). The detected genetic changes were dominated by missense mutations (67%) and nonsense mutations (29%). 18% of the mutations were activating, 35% of the variants led to a loss of function of the encoded protein, and 52% were not classified. Twenty-six variants were described as new. Functionally significant changes in the tertiary structure and activity of the protein molecules in an in silico assay were predicted for 5 new genetic variants. The 5 highest priority candidate genes were selected: CREB1, TCF12, PRKAR1A, BCL11A, and BUB1B. Genes carrying the identified mutations participate in signalling pathways known to be involved in PanNETs; in addition, 38% of the cases showed genetic changes in the regulation of the SMAD2/3 signalling pathway. Well-differentiated PanNETs in a Russian cohort demonstrate various molecular genetic features, including new genetic variations and potential driver genes. The highlighted molecular genetic changes in the SMAD2/3 signalling pathway suggest new prospects for targeted therapy.
Collapse
Affiliation(s)
- Oleg I Kit
- Department of Abdominal Oncology No. 1, Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - Vladimir S Trifanov
- Department of Abdominal Oncology No. 1, Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - Nataliya A Petrusenko
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| | - Dmitry Y Gvaldin
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037.
| | - Denis S Kutilin
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| | - Nataliya N Timoshkina
- Laboratory of Molecular Oncology, Rostov Research Institute of Oncology, 14 line, 6, Rostov-on-Don, Russia, 344037
| |
Collapse
|
17
|
Determination of novel biomarkers and pathways shared by colorectal cancer and endometrial cancer via comprehensive bioinformatics analysis. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Zhu Z, Jin Z, Deng Y, Wei L, Yuan X, Zhang M, Sun D. Co-expression Network Analysis Identifies Four Hub Genes Associated With Prognosis in Soft Tissue Sarcoma. Front Genet 2019; 10:37. [PMID: 30778371 PMCID: PMC6369179 DOI: 10.3389/fgene.2019.00037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Soft tissue sarcomas (STS) are heterogeneous tumors derived from mesenchymal cells that differentiate into soft tissues. The prognosis of patients who present with an STS is influenced by the regulation of a complex gene network. Methods: Weighted gene co-expression network analysis (WGCNA) was performed to identify gene modules associated with STS (Samples = 156). Results: Among the 11 modules identified, the black and blue modules were highly correlated with STS. However, using preservation analysis, the black module demonstrated low preservation, therefore the blue module was chosen as the module of interest. Furthermore, a total of 20 network hub genes were identified in the blue module, 12 of which were also hub nodes in the protein-protein interaction network of the module genes. Following additional verification, 4 of 12 genes (RRM2, BUB1B, CENPF, and KIF20A) demonstrated poorer overall survival and disease-free survival rate in the test datasets. In addition, gene set enrichment analysis (GSEA) demonstrated that samples with a high level of blue module eigengene (ME) were enriched in cell cycle and metabolism associated signaling pathways. Conclusion: In summary, co-expression network analysis identified four hub genes associated with prognosis for STS, which may diminish the prognosis by influencing cell cycle and metabolism associated signaling pathways.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuyou Deng
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Lai Wei
- College of Computer and Control Engineering, Nankai University, Tianjin, China
| | - Xiaowei Yuan
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Mei Zhang
- College of Chemistry, Jilin University, Changchun, China
| | - Dahui Sun
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Xiong Y, Gu Y, Wang F, Li L, Zhu M, Wang N, Mi H, Qiu X. LINC01857 as an oncogene regulates CREB1 activation by interacting with CREBBP in breast cancer. J Cell Physiol 2019; 234:14031-14039. [PMID: 30628071 DOI: 10.1002/jcp.28090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022]
Abstract
Breast cancer is a one of the most malignant threats among women worldwide. However, the mechanism underlying breast cancer development remains unclear. Long noncoding RNAs (lncRNAs) have been reported to participate in breast cancer. Whether lncRNA LINC01857 is involved in breast cancer requires investigation. In this study, we found that LINC01857 was highly expressed in breast cancer tissues and cells (p < 0.05). High LINC01857 expression predicted poor prognosis in breast cancer patients. Functionally, LINC01857 silencing impaired proliferation and enhanced apoptosis of breast cancer cells ( p < 0.05). Decreased LINC01857 inhibited breast cancer cells migration and invasion ability ( p < 0.05). In terms of mechanism, LINC01857 promoted H3K27Ac deposition on CREB1 promoter and initiated its transcription by recruiting CREBBP. Overexpression of CREB1 reversed the biological behavior of breast cancer cells induced by LINC01857 silencing ( p < 0.05). Taken together, our findings demonstrated that LINC01857 promoted breast cancer development by promoting H3K27Ac and CREB1 transcription via enhancing CREBBP enrichment in the CREB1 promoter region.
Collapse
Affiliation(s)
- Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hailong Mi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Romero-Garmendia I, Garcia-Etxebarria K, Hernandez-Vargas H, Santin I, Jauregi-Miguel A, Plaza-Izurieta L, Cros MP, Legarda M, Irastorza I, Herceg Z, Fernandez-Jimenez N, Bilbao JR. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease. Genes (Basel) 2018; 9:E245. [PMID: 29748492 PMCID: PMC5977185 DOI: 10.3390/genes9050245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.
Collapse
Affiliation(s)
- Irati Romero-Garmendia
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
| | - Koldo Garcia-Etxebarria
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
| | - Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Izortze Santin
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain.
| | - Amaia Jauregi-Miguel
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
| | - Leticia Plaza-Izurieta
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
| | - Marie-Pierre Cros
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Maria Legarda
- Pediatric Gastroenterology Unit, Cruces University Hospital, University of the Basque Country-(UPV/EHU) and Biocruces Health Research Institute, 48903 Barakaldo, Spain.
| | - Iñaki Irastorza
- Pediatric Gastroenterology Unit, Cruces University Hospital, University of the Basque Country-(UPV/EHU) and Biocruces Health Research Institute, 48903 Barakaldo, Spain.
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Nora Fernandez-Jimenez
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, France.
| | - Jose Ramon Bilbao
- University of the Basque Country (UPV-EHU) and Biocruces Health Research Institute, 48940 Leioa, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
21
|
Gu H, Fang Z, Cai X, Song R, Lin M, Ye J, Ding X, Ke Q, Chen H, Gong C, Ye M. Highly expressed histone deacetylase 5 promotes the growth of hepatocellular carcinoma cells by inhibiting the TAp63-maspin pathway. Am J Cancer Res 2018; 8:462-475. [PMID: 29637001 PMCID: PMC5883096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023] Open
Abstract
Aberrant expression of histone deacetylases (HDACs) has been detected in a variety of cancers, which disrupts the balance between cell proliferation and apoptosis in favor of continuous growth. A previous study demonstrated that HDAC5 contributes to the proliferation of hepatocellular carcinoma (HCC) cells, but a clear understanding of the mechanism has not yet been provided. In the present work, we found that the levels of HDAC5 were significantly higher in HCC tissues and cells than in adjacent tissues and normal hepatic cells. In addition, knockdown of HDAC5 attenuated the proliferation of Hep3B and HepG2 cells. Through profiling the expressions of proliferation and apoptosis-related genes in Hep3B cells following HDAC5 knockdown, p63 and maspin were found obviously up-regulated in HDAC5-deprived cells compared with the control. Further investigations confirmed that HDAC5 knockdown induced TAp63 expression in HCC cells, accompanied with increased H3K9 acetylation at the TAp63 promoter. Overexpression of TAp63 led to proliferation inhibition by inducing cell cycle arrest. Additionally, TAp63 that was required for the maspin upregulation resulted from HDAC5 knockdown. Phenotype experiments showed that interrupting either TAp63 or maspin recovered the proliferative and tumorigenic capabilities of HCC cells with HDAC5 knockdown. Clinical analysis showed that HDAC5 was negatively correlated with TAp63 and maspin in HCC tissues. In addition, a high level of HDAC5 as well as a low level of TAp63 or maspin predicted poor survival in HCC patients. Taken together, this study proposes the existence of an aberrant HDAC5-TAp63-maspin pathway conferring HCC progression through proliferation induction, which suggests novel intervention targets for the disease.
Collapse
Affiliation(s)
- Hongqian Gu
- Department of General Surgery, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Zejun Fang
- Central Laboratory, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Xiang Cai
- Department of General Surgery, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Rui Song
- Department of Pathology, The Second Affiliated Hospital Zhejiang University School of MedicineHangzhou, China
| | - Min Lin
- Central Laboratory, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Jiangwei Ye
- Department of General Surgery, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Xiaokun Ding
- Department of General Surgery, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Qinjian Ke
- Central Laboratory, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Haihong Chen
- Central Laboratory, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Chaoju Gong
- Xuzhou Key Laboratory of Ophthalmology, The First People’s Hospital of XuzhouXuzhou 221002, China
| | - Ming Ye
- Department of General Surgery, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| |
Collapse
|
22
|
Fang Z, Gong C, Yu S, Zhou W, Hassan W, Li H, Wang X, Hu Y, Gu K, Chen X, Hong B, Bao Y, Chen X, Zhang X, Liu H. NFYB-induced high expression of E2F1 contributes to oxaliplatin resistance in colorectal cancer via the enhancement of CHK1 signaling. Cancer Lett 2017; 415:58-72. [PMID: 29203250 DOI: 10.1016/j.canlet.2017.11.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022]
Abstract
As a third-generation platinum drug, oxaliplatin has been widely applied in colorectal cancer (CRC); however, acquired resistance to oxaliplatin has become a major obstacle. In the present study, we found that the nuclear transcription factor Y subunit beta (NFYB) and E2F transcription factor 1 (E2F1) expression levels were significantly higher in oxaliplatin-resistant DLD1 and RKO CRC (OR-CRC) cells than in non-resistant cells. Additionally, highly expressed NFYB transactivated the E2F1 gene, which is important to maintain oxaliplatin resistance in OR-CRC cells. And Sirt1-dependent deacetylation suppresses the proapoptotic activity of E2F1 in OR-CRC cells. Through profiling the transcriptome of OR-CRC cells following E2F1 knockdown, CHK1 was identified as a target of E2F1. Deprivation of CHK1 sensitized OR-CRC cells to oxaliplatin. In vitro and in vivo phenotype experiments confirmed that an intact NFYB-E2F1-CHK1 axis was required to suppress oxaliplatin-induced apoptosis and maintain the tumorigenicity in OR-CRC cells. Knockdown of E2F1 in OR-CRC cells also decreased the expression of Pol κ, which was essential for CHK1 activation. Consistently, a high level of NFYB, E2F1, or CHK1 predicted poor survival in CRC patients, especially with oxaliplatin treatment. Collectively, the NFYB-E2F1 pathway displays a crucial role in the chemoresistance of OR-CRC by inducing the expression and activation of CHK1, providing a possible therapeutic target for oxaliplatin resistance in CRC.
Collapse
Affiliation(s)
- Zejun Fang
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmenwan Branch of the First Affiliated Hospital, Zhejiang University, Sanmen, 317100, China; Zhejiang Normal University - Jinhua People's Hospital Joint Center for Biomedical Research, Jinhua, 321004, China.
| | - Chaoju Gong
- Xuzhou Key Laboratory of Ophthalmology, The First People's Hospital of Xuzhou, Xuzhou, 221002, China
| | - Songshan Yu
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmenwan Branch of the First Affiliated Hospital, Zhejiang University, Sanmen, 317100, China
| | - Weihua Zhou
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmenwan Branch of the First Affiliated Hospital, Zhejiang University, Sanmen, 317100, China
| | - Waseem Hassan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 60000, Pakistan; Department of Pharmacy, The University of Lahore, Lahore, 40100, Pakistan
| | - Hongzhang Li
- Department of Gastroenterology, Sanmen People's Hospital of Zhejiang, Sanmen, 317100, China
| | - Xue Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanyan Hu
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmenwan Branch of the First Affiliated Hospital, Zhejiang University, Sanmen, 317100, China
| | - Kaipeng Gu
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmenwan Branch of the First Affiliated Hospital, Zhejiang University, Sanmen, 317100, China
| | - Xixi Chen
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmenwan Branch of the First Affiliated Hospital, Zhejiang University, Sanmen, 317100, China
| | - Bing Hong
- Pharmaceutical Preparation Section, Sanmen People's Hospital of Zhejiang, Sanmen, 317100, China
| | - Yuyan Bao
- Pharmaceutical Preparation Section, Sanmen People's Hospital of Zhejiang, Sanmen, 317100, China
| | - Xiang Chen
- Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmenwan Branch of the First Affiliated Hospital, Zhejiang University, Sanmen, 317100, China
| | - Xiaomin Zhang
- Pharmaceutical Preparation Section, Sanmen People's Hospital of Zhejiang, Sanmen, 317100, China.
| | - Hong Liu
- Zhejiang Normal University - Jinhua People's Hospital Joint Center for Biomedical Research, Jinhua, 321004, China; The Affiliated Hospital of Jinhua Polytechnic College, Jinhua, 321000, China.
| |
Collapse
|
23
|
Ye M, Fang Z, Gu H, Song R, Ye J, Li H, Wu Z, Zhou S, Li P, Cai X, Ding X, Yu S. Histone deacetylase 5 promotes the migration and invasion of hepatocellular carcinoma via increasing the transcription of hypoxia-inducible factor-1α under hypoxia condition. Tumour Biol 2017; 39:1010428317705034. [PMID: 28653891 DOI: 10.1177/1010428317705034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypoxia plays a critical role in the progression and metastasis of hepatocellular carcinoma by activating the key transcription factor, hypoxia-inducible factor-1. This study aims to identify the novel mechanisms underlying the dysregulation of hypoxia-inducible factor-1α in hepatocellular carcinoma. We found that histone deacetylase 5, a highly expressed histone deacetylase in hepatocellular carcinoma, strengthened the migration and invasion of hepatocellular carcinoma cells under hypoxia but not normoxia condition. Furthermore, histone deacetylase 5 induced the transcription of hypoxia-inducible factor-1α by silencing homeodomain-interacting protein kinase-2 expression, which was also dependent on hypoxia. And then knockdown of hypoxia-inducible factor-1α decreased the expressions of mesenchymal markers, N-cadherin, and Vimentin, as well as matrix metalloproteinases, MMP7 and MMP9; however, the epithelial marker, E-cadherin, increased. Phenotype experiments showed that the migration and invasion of hepatocellular carcinoma cells were impaired by knockdown of histone deacetylase 5 or hypoxia-inducible factor-1α but rescued when eliminating homeodomain-interacting protein kinase-2 in hepatocellular carcinoma cells, which suggested the critical role of histone deacetylase 5-homeodomain-interacting protein kinase-2-hypoxia-inducible factor-1α pathway in hypoxia-induced metastasis. Finally, clinical analysis confirmed the positive correlation between histone deacetylase 5 and hypoxia-inducible factor-1α in hepatocellular carcinoma specimens and a relatively poor prognosis for the patients with high levels of histone deacetylase 5 and hypoxia-inducible factor-1α. Taken together, our findings demonstrated a novel mechanism underlying the crosstalk between histone deacetylase 5 and hypoxia-inducible factor-1 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ming Ye
- 1 Department of General Surgery, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Zejun Fang
- 2 Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Hongqian Gu
- 1 Department of General Surgery, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Rui Song
- 3 Department of Pathology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangwei Ye
- 1 Department of General Surgery, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Hongzhang Li
- 4 Department of Gastroenterology, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Zhiguang Wu
- 1 Department of General Surgery, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Shenghui Zhou
- 1 Department of General Surgery, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Peng Li
- 1 Department of General Surgery, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Xiang Cai
- 1 Department of General Surgery, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Xiaokun Ding
- 1 Department of General Surgery, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Songshan Yu
- 2 Central Laboratory, Sanmen People's Hospital of Zhejiang, Sanmen, China
| |
Collapse
|