1
|
Bai Z, Zhou D, Tao K, Lin F, Wang H, Sun H, Liu R, Li Z. The Role of MicroRNA-206 in the Regulation of Diabetic Wound Healing via Hypoxia-Inducible Factor 1-Alpha. Biochem Genet 2025; 63:393-410. [PMID: 38446322 PMCID: PMC11832568 DOI: 10.1007/s10528-024-10759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Successful wound healing in diabetic patients is hindered by dysregulated miRNA expression. This study aimed to investigate the abnormal expression of miRNAs in diabetic wound healing and the potential therapeutic role of modulating the miR-206/HIF-1α pathway. MicroRNA assays were used to identify differentially expressed miRNAs in diabetic wound sites and adjacent areas. In vitro models and a rat diabetic model were established to evaluate the effects of miR-206 on HIF-1α regulation and wound healing. The study revealed differential expression of miR-206 in diabetic wound tissues, its interaction with HIF-1α, and the inhibitory effect of miR-206 on cell growth under high glucose conditions. Modulating the miR-206/HIF-1α pathway using miR-206 antagomir promoted HIF-1α, CD34, and VEGF expression, ultimately enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Zeming Bai
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Dapeng Zhou
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China.
| | - Kai Tao
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China.
| | - Feng Lin
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Hongyi Wang
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Haiwei Sun
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Ruidi Liu
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Zhe Li
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| |
Collapse
|
2
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Pauzaite T, Wit N, Seear RV, Nathan JA. Deubiquitinating enzyme mutagenesis screens identify a USP43-dependent HIF-1 transcriptional response. EMBO J 2024; 43:3677-3709. [PMID: 39009674 PMCID: PMC11377827 DOI: 10.1038/s44318-024-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The ubiquitination and proteasome-mediated degradation of Hypoxia Inducible Factors (HIFs) is central to metazoan oxygen-sensing, but the involvement of deubiquitinating enzymes (DUBs) in HIF signalling is less clear. Here, using a bespoke DUBs sgRNA library we conduct CRISPR/Cas9 mutagenesis screens to determine how DUBs are involved in HIF signalling. Alongside defining DUBs involved in HIF activation or suppression, we identify USP43 as a DUB required for efficient activation of a HIF response. USP43 is hypoxia regulated and selectively associates with the HIF-1α isoform, and while USP43 does not alter HIF-1α stability, it facilitates HIF-1 nuclear accumulation and binding to its target genes. Mechanistically, USP43 associates with 14-3-3 proteins in a hypoxia and phosphorylation dependent manner to increase the nuclear pool of HIF-1. Together, our results highlight the multifunctionality of DUBs, illustrating that they can provide important signalling functions alongside their catalytic roles.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Rachel V Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom.
| |
Collapse
|
4
|
Hayashi H, Izumiya Y, Ishida T, Arima Y, Hayashi O, Yoshiyama M, Tsujita K, Fukuda D. Exosomal miR206 Secreted From Growing Muscle Promotes Angiogenic Response in Endothelial Cells. Circ J 2024; 88:425-433. [PMID: 38008429 DOI: 10.1253/circj.cj-23-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
BACKGROUND Resistance exercise is beneficial in patients with lower extremity arterial disease. Muscle-derived exosomes contain many types of signaling molecules, including microRNAs (miRNAs). Here, we tested the hypothesis that exosomal miRNAs secreted by growing muscles promote an angiogenic response in endothelial cells (ECs). METHODS AND RESULTS Skeletal muscle-specific conditional Akt1 transgenic (Akt1-TG) mice, in which skeletal muscle growth can be induced were used as a model of resistance training. Remarkable skeletal muscle growth was observed in mice 2 weeks after gene activation. The protein amount in exosomes secreted by growing muscles did not differ between Akt1-TG and control mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway frequency analysis of 4,665 target genes, identified using an miRNA array miRNAs, revealed a significant increase in Akt and its downstream signaling pathway genes. Among the upregulated miRNAs, miR1, miR133, and miR206 were significantly upregulated in the serum of Akt1-TG mice. miR206 was also increased in insulin-like growth factor (IGF)-1-stimulated hypertrophied myotubes. Exogenous supplementation of exosomal miR206 to human umbilical vein ECs promoted angiogenesis, as assessed using the spheroid assay, and increased the expression of angiogenesis-related transcripts. CONCLUSIONS Exosomal miR206 is upregulated in the blood of Akt1-TG mice and in IGF-stimulated cultured myotubes. Exogenous supplementation of miR206 promoted an angiogenic response in ECs. Our data suggest that miR206 secreted from growing muscles acts on ECs and promotes angiogenesis.
Collapse
Affiliation(s)
- Hiroya Hayashi
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Toshifumi Ishida
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Yuichiro Arima
- Laboratory of Developmental Cardiology, International Research Center for Medical Sciences, Kumamoto University
| | - Ou Hayashi
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Minoru Yoshiyama
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| |
Collapse
|
5
|
Córdoba-Lanús E, Domínguez de-Barros A, Oliva A, Mayato D, Gonzalvo F, Remírez-Sanz A, Zulueta JJ, Celli B, Casanova C. Circulating miR-206 and miR-1246 as Markers in the Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:12437. [PMID: 37569812 PMCID: PMC10418760 DOI: 10.3390/ijms241512437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer (LC) is the most common cause of cancer death, with 75% of cases being diagnosed in late stages. This study aimed to determine potential miRNAs as biomarkers for the early detection of LC in chronic obstructive pulmonary disease (COPD) cases. Ninety-nine patients were included, with registered clinical and lung function parameters followed for 6 years. miRNAs were determined in 16 serum samples from COPD patients (four with LC and four controls) by next generation sequencing (NGS) at LC diagnosis and 3 years before. The validation by qPCR was performed in 33 COPD-LC patients and 66 controls at the two time points. Over 170 miRNAs (≥10 TPM) were identified; among these, miR-224-5p, miR-206, miR-194-5p, and miR-1246 were significantly dysregulated (p < 0.001) in COPD-LC 3 years before LC diagnosis when compared to the controls. The validation showed that miR-1246 and miR-206 were differentially expressed in COPD patients who developed LC three years before (p = 0.035 and p = 0.028, respectively). The in silico enrichment analysis showed miR-1246 and miR-206 to be linked to gene mediators in various signaling pathways related to cancer. Our study demonstrated that miR-1246 and miR-206 have potential value as non-invasive biomarkers of early LC detection in COPD patients who could benefit from screening programs.
Collapse
Affiliation(s)
- Elizabeth Córdoba-Lanús
- Department of Internal Medicine, Dermatology and Psychiatry, Universidad de La Laguna, 38071 San Cristóbal de La Laguna, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 San Cristóbal de La Laguna, Spain; (A.D.d.-B.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angélica Domínguez de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 San Cristóbal de La Laguna, Spain; (A.D.d.-B.); (A.O.)
| | - Alexis Oliva
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 San Cristóbal de La Laguna, Spain; (A.D.d.-B.); (A.O.)
- Department of Pharmaceutical Technology, Universidad de La Laguna, 38206 Santa Cruz de Tenerife, Spain
| | - Delia Mayato
- Pulmonary Department-Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
| | - Francisca Gonzalvo
- Pulmonary Department-Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
| | - Ana Remírez-Sanz
- CIMA, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Javier J. Zulueta
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain;
- Pulmonary, Critical Care and Sleep Medicine Division, Mount Sinai Morningside Hospital, New York, NY 10029, USA
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Bartolomé Celli
- Pulmonary Critical Care Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ciro Casanova
- Department of Internal Medicine, Dermatology and Psychiatry, Universidad de La Laguna, 38071 San Cristóbal de La Laguna, Spain;
- Pulmonary Department-Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Yang M, Zhang Y, Li M, Liu X, Darvishi M. The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies. Cancer Cell Int 2023; 23:24. [PMID: 36765409 PMCID: PMC9912632 DOI: 10.1186/s12935-022-02837-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 02/12/2023] Open
Abstract
After skin malignancy, breast cancer is the most widely recognized cancer detected in women in the United States. Breast cancer (BCa) can happen in all kinds of people, but it's much more common in women. One in four cases of cancer and one in six deaths due to cancer are related to breast cancer. Angiogenesis is an essential factor in the growth of tumors and metastases in various malignancies. An expanded level of angiogenesis is related to diminished endurance in BCa patients. This function assumes a fundamental part inside the human body, from the beginning phases of life to dangerous malignancy. Various factors, referred to as angiogenic factors, work to make a new capillary. Expanding proof demonstrates that angiogenesis is managed by microRNAs (miRNAs), which are small non-coding RNA with 19-25 nucleotides. MiRNA is a post-transcriptional regulator of gene expression that controls many critical biological processes. Endothelial miRNAs, referred to as angiomiRs, are probably concerned with tumor improvement and angiogenesis via regulation of pro-and anti-angiogenic factors. In this article, we reviewed therapeutic functions of miRNAs in BCa angiogenesis, several novel delivery carriers for miRNA-based therapeutics, as well as CRISPR/Cas9 as a targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Min Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
8
|
Li Y, Lin M, Wang S, Cao B, Li C, Li G. Novel Angiogenic Regulators and Anti-Angiogenesis Drugs Targeting Angiogenesis Signaling Pathways: Perspectives for Targeting Angiogenesis in Lung Cancer. Front Oncol 2022; 12:842960. [PMID: 35372042 PMCID: PMC8965887 DOI: 10.3389/fonc.2022.842960] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer growth is dependent on angiogenesis. In recent years, angiogenesis inhibitors have attracted more and more attention as potential lung cancer treatments. Current anti-angiogenic drugs targeting VEGF or receptor tyrosine kinases mainly inhibit tumor growth by reducing angiogenesis and blocking the energy supply of lung cancer cells. However, these drugs have limited efficiency, raising concerns about limited scope of action and mechanisms of patient resistance to existing drugs. Therefore, current basic research on angiogenic regulators has focused more on screening carcinogenic/anticancer genes, miRNAs, lncRNAs, proteins and other biomolecules capable of regulating the expression of specific targets in angiogenesis signaling pathways. In addition, new uses for existing drugs and new drug delivery systems have received increasing attention. In our article, we analyze the application status and research hotspots of angiogenesis inhibitors in lung cancer treatment as a reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Yingying Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Lin
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiyuan Wang
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Cao
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Sajjadi-Dokht M, Merza Mohamad TA, Rahman HS, Maashi MS, Danshina S, Shomali N, Solali S, Marofi F, Zeinalzadeh E, Akbari M, Adili A, Aslaminabad R, Hagh MF, Jarahian M. MicroRNAs and JAK/STAT3 signaling: A new promising therapeutic axis in blood cancers. Genes Dis 2021; 9:849-867. [PMID: 35685482 PMCID: PMC9170603 DOI: 10.1016/j.gendis.2021.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies.
Collapse
|
10
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
11
|
Tan HW, Xu YM, Qin SH, Chen GF, Lau ATY. Epigenetic regulation of angiogenesis in lung cancer. J Cell Physiol 2021; 236:3194-3206. [PMID: 33078404 DOI: 10.1002/jcp.30104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, in which angiogenesis is highly required for lung cancer cell growth and metastasis. Genetic regulation of this multistep process is being studied extensively, however, relatively less is known about the epigenetic regulation of angiogenesis in lung cancer. Several epigenetic alterations contribute to regulating angiogenesis, such as epimodifications of DNA, posttranslational modification of histones, and expression of noncoding RNAs. Here, we review the current knowledge of the epigenetic regulation of angiogenesis and discuss the potential clinical applications of epigenetic-based anticancer therapy in lung cancer. Overall, epigenetic-based therapy will likely emerge as a prominent approach to treat lung cancer in the future.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - San-Hai Qin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Guo-Feng Chen
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
12
|
Shi Y, Hu Y, Cui B, Zhuang S, Liu N. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Perit Dial Int 2021; 42:25-38. [PMID: 33823711 DOI: 10.1177/08968608211004683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for patients with end-stage renal diseases, which is limited by peritoneal neoangiogenesis leading to ultrafiltration failure (UFF). Vascular endothelial growth factor (VEGF) and its receptors are key angiogenic factors involved in almost every step of peritoneal neoangiogenesis. Impaired mesothelial cells are the major sources of VEGF in the peritoneum. The expression of VEGF will be up-regulated in specific pathological conditions in PD patients, such as with non-biocompatible peritoneal dialysate, uremia and inflammation, and so on. Other working cells (i.e. vascular endothelial cells, macrophages and adipocytes) can also stimulate the secretion of VEGF. Meanwhile, hypoxia and activation of complement system further aggravate peritoneal injury and contribute to neoangiogenesis. There are several signalling pathways participating in VEGF-mediated peritoneal neoangiogenesis including tumour growth factor-β, Wnt/β-catenin, Notch and interleukin-6/signal transducer and activator of transcription 3. Moreover, VEGF is highly expressed in dialysate effluent of long-term PD patients and is associated with peritoneal transport function, which supports its role in the alteration of peritoneal structure and function. In this review, we systematically summarize the angiogenic effect of VEGF and evaluate it as a potential target for the prevention of peritoneal neoangiogenesis and UFF. Preservation of the peritoneal membrane using targeted therapy of VEGF-mediated peritoneal neoangiogenesis may increase the longevity of the PD modality for those who require life-long dialysis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Lin YC, Chen TH, Huang YM, Wei PL, Lin JC. Involvement of microRNA in Solid Cancer: Role and Regulatory Mechanisms. Biomedicines 2021; 9:biomedicines9040343. [PMID: 33805515 PMCID: PMC8065716 DOI: 10.3390/biomedicines9040343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) function as the post-transcriptional factor that finetunes the gene expression by targeting to the specific candidate. Mis-regulated expression of miRNAs consequently disturbs gene expression profile, which serves as the pivotal mechanism involved in initiation or progression of human malignancy. Cancer-relevant miRNA is potentially considered the therapeutic target or biomarker toward the precise treatment of cancer. Nevertheless, the regulatory mechanism underlying the altered expression of miRNA in cancer is largely uncovered. Detailed knowledge regarding the influence of miRNAs on solid cancer is critical for exploring its potential of clinical application. Herein, we elucidate the regulatory mechanism regarding how miRNA expression is manipulated and its impact on the pathogenesis of distinct solid cancer.
Collapse
Affiliation(s)
- Ying-Chin Lin
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tso-Hsiao Chen
- Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Yu-Min Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastrointestinal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (P.-L.W.); (J.-C.L.); Tel.: +886-2-2736-1661 (ext. 3330) (J.-C.L.)
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (P.-L.W.); (J.-C.L.); Tel.: +886-2-2736-1661 (ext. 3330) (J.-C.L.)
| |
Collapse
|
14
|
Role of microRNAs in Lung Carcinogenesis Induced by Asbestos. J Pers Med 2021; 11:jpm11020097. [PMID: 33546236 PMCID: PMC7913345 DOI: 10.3390/jpm11020097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are a class of small noncoding endogenous RNAs 19–25 nucleotides long, which play an important role in the post-transcriptional regulation of gene expression by targeting mRNA targets with subsequent repression of translation. MicroRNAs are involved in the pathogenesis of numerous diseases, including cancer. Lung cancer is the leading cause of cancer death in the world. Lung cancer is usually associated with tobacco smoking. However, about 25% of lung cancer cases occur in people who have never smoked. According to the International Agency for Research on Cancer, asbestos has been classified as one of the cancerogenic factors for lung cancer. The mechanism of malignant transformation under the influence of asbestos is associated with the genotoxic effect of reactive oxygen species, which initiate the processes of DNA damage in the cell. However, epigenetic mechanisms such as changes in the microRNA expression profile may also be implicated in the pathogenesis of asbestos-induced lung cancer. Numerous studies have shown that microRNAs can serve as a biomarker of the effects of various adverse environmental factors on the human body. This review examines the role of microRNAs, the expression profile of which changes upon exposure to asbestos, in key processes of carcinogenesis, such as proliferation, cell survival, metastasis, neo-angiogenesis, and immune response avoidance.
Collapse
|
15
|
Beyond Conventional: The New Horizon of Anti-Angiogenic microRNAs in Non-Small Cell Lung Cancer Therapy. Int J Mol Sci 2020; 21:ijms21218002. [PMID: 33121202 PMCID: PMC7663714 DOI: 10.3390/ijms21218002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors-the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs-MMP-2, MMP-7, MMP-9) and hypoxia-and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics-bevacizumab, ramucirumab and nintedanib-are briefly summarized through the lens of evidence-based medicine.
Collapse
|
16
|
Prognostic Value and Clinicopathological Features of MicroRNA-206 in Various Cancers: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2159704. [PMID: 33145343 PMCID: PMC7596429 DOI: 10.1155/2020/2159704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023]
Abstract
It has been reported that microRNA-206(miR-206) plays an important role in cancers and could be used as a prognostic biomarker. However, the results are controversial. Therefore, we summarize all available evidence and present a meta-analysis to estimate the prognostic value of miR-206 in various cancers. The relevant studies were collected by searching PubMed, EMBASE, and Web of Science databases until August 21, 2020. Hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were applied to explore the association between miR-206 and survival results and clinicopathologic features. Sources of heterogeneity were investigated by subgroup analysis and sensitivity analysis. Publication bias was evaluated using Egger's test. Twenty articles involving 2095 patients were included in the meta-analysis. The pooled HR showed that low miR-206 expression was significantly associated with unfavourable overall survival (OS) (HR = 2.03, 95 CI%: 1.53-2.70, P < 0.01). In addition, we found that low miR-206 expression predicted significantly negative association with tumor stage (III-IV VS. I-II) (OR = 4.20, 95% CI: 2.17-8.13, P < 0.01), lymph node status (yes VS. no) (OR = 3.58, 95%: 1.51-8.44, P = 0.004), distant metastasis (yes VS. no) (OR = 3.19, 95%: 1.07-9.50, P = 0.038), and invasion depth (T3 + T4 vs. T2 + T1) (OR = 2.43, 95%: 1.70-3.49, P < 0.01). miR-206 can be used as an effective prognostic indicator in various cancers. Further investigations are warranted to validate the present results.
Collapse
|
17
|
Munier CC, Ottmann C, Perry MWD. 14-3-3 modulation of the inflammatory response. Pharmacol Res 2020; 163:105236. [PMID: 33053447 DOI: 10.1016/j.phrs.2020.105236] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/11/2023]
Abstract
Regulation of inflammation is a central part of the maintenance of homeostasis by the immune system. One important class of regulatory protein that has been shown to have effects on the inflammatory process are the 14-3-3 proteins. Herein we describe the roles that have been identified for 14-3-3 in regulation of the inflammatory response. These roles encompass regulation of the response that affect inflammation at the genetic, molecular and cellular levels. At a genetic level 14-3-3 is involved in the regulation of multiple transcription factors and affects the transcription of key effectors of the immune response. At a molecular level many of the constituent parts of the inflammatory process, such as pattern recognition receptors, protease activated receptors and cytokines are regulated through phosphorylation and recognition by 14-3-3 whilst disruption of the recognition processes has been observed to result in clinical syndromes. 14-3-3 is also involved in the regulation of cell proliferation and differentiation, this has been shown to affect the immune system, particularly T- and B-cells. Finally, we discuss how abnormal levels of 14-3-3 contribute to undesirable immune responses and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Claire C Munier
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Matthew W D Perry
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
18
|
Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:399-409. [PMID: 32074070 DOI: 10.2478/acph-2020-0029] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 01/19/2023]
Abstract
Curcumin has been proved to inhibit cell proliferation and induce cell apoptosis in non-small cell lung cancer (NSCLC). However, little is known about antimetastatic effects and molecular mechanisms of curcumin in NSCLC. In this study, we investigated the involvement of miR-206 in curcumin's anti-invasion and anti-migration in NSCLC. Cell proliferation was determined by MTT assay. Cell migration and invasion were analyzed by wound healing assay and transwell assay. MiRNA-206 expression was detected by real-time PCR. Western blot was used to detect the protein expression of PI3K/AKT/mTOR signaling pathway. Curcumin significantly inhibited migration and invasion in A549 cells, accompanied by significantly elevated miR-206 expression. Overexpression of miR-206 could inhibit migration and invasion of A549 cells, but it could also significantly decrease the phosphorylation levels of mTOR and AKT. The inhibition of miR-206 promoted cell migration, invasion and increased the phosphorylation level of mTOR and AKT. Furthermore, miR-206 mimics improved the inhibitory effects of curcumin on cell migration, invasion and the phosphorylation level of mTOR and AKT in A549 cells. On the contrary, MiR-206 inhibitors reversed the inhibitory effects of curcumin on cell migration, invasion and the phosphorylation level of mTOR and AKT. In conclusion, curcumin inhibited cell invasion and migration in NSCLC by elevating the expression of miR-206 which further suppressed the activation of the PI3K/AKT/mTOR pathway.
Collapse
|
19
|
Wang H, Jia R, Lv T, Wang M, He S, Zhang X. Resveratrol Suppresses Tumor Progression via Inhibiting STAT3/HIF-1α/VEGF Pathway in an Orthotopic Rat Model of Non-Small-Cell Lung Cancer (NSCLC). Onco Targets Ther 2020; 13:7057-7063. [PMID: 32801741 PMCID: PMC7382608 DOI: 10.2147/ott.s259016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background The STAT3/HIF-1α/VEGF pathway is associated with the development and progress of various tumors including NSCLC. The aim of the present study was to investigate whether resveratrol (RES) could suppress NSCLC progression via inhibiting the expressions of STAT3, HIF-1α, and VEGF in a nude rat model. Methods Twenty-four nude rats were randomly divided into control, NSCLC, and NSCLC+RES groups. An orthotopic rat model of NSCLC was established. The animals in the NSCLC+RES group received the same operation as the NSCLC group and were intragastrically administered RES at 250 mg/kg/day for 12 weeks. Lung tissue samples were harvested for gross tumor burden measurement, histological examinations, RT-PCR, and Western blot assays. Results In the NSCLC+RES group, significant decreases in lung weight index, lung tumor burden, STAT3/HIF-1α/VEGF mRNA, and protein levels were observed when compared with the NSCLC group (all P<0.05). The structural integrity of the lung was less affected and the apoptotic index was significantly higher in the NSCLC+RES group, when compared to the NSCLC group (P<0.05). Conclusion RES suppresses NSCLC partly through inhibiting the expressions of STAT3, HIF-1α, and VEGF. The STAT3/HIF-1α/VEGF pathway might be a candidate drug target for developing new chemotherapy agents derived from RES for the treatment of NSCLC.
Collapse
Affiliation(s)
- Huixia Wang
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Ruzhen Jia
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Tianle Lv
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Mei Wang
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Shiwei He
- Respiratory Department, The People's Hospital of Baoji City, Baoji, Shaanxi 721000, People's Republic of China
| | - Xia Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Hanzhong City, Hanzhong, Shaanxi 723000, People's Republic of China
| |
Collapse
|
20
|
Crosstalk of MicroRNAs and Oxidative Stress in the Pathogenesis of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2415324. [PMID: 32411322 PMCID: PMC7204110 DOI: 10.1155/2020/2415324] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Oxidative stress refers to an imbalance between reactive oxygen species (ROS) generation and body's capability to detoxify the reactive mediators or to fix the relating damage. MicroRNAs are considered to be important mediators that play essential roles in the regulation of diverse aspects of carcinogenesis. Growing studies have demonstrated that the ROS can regulate microRNA biogenesis and expression mainly through modulating biogenesis course, transcription factors, and epigenetic changes. On the other hand, microRNAs may in turn modulate the redox signaling pathways, altering their integrity, stability, and functionality, thus contributing to the pathogenesis of multiple diseases. Both ROS and microRNAs have been identified to be important regulators and potential therapeutic targets in cancers. However, the information about the interplay between oxidative stress and microRNA regulation is still limited. The present review is aimed at summarizing the current understanding of molecular crosstalk between microRNAs and the generation of ROS in the pathogenesis of cancer.
Collapse
|
21
|
Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:27. [PMID: 32014012 PMCID: PMC6998277 DOI: 10.1186/s13046-020-1535-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a classic characteristic of the tumor microenvironment with a significant impact on cancer progression and therapeutic response. Hypoxia-inducible factor-1 alpha (HIF-1α), the most important transcriptional regulator in the response to hypoxia, has been demonstrated to significantly modulate hypoxic gene expression and signaling transduction networks. In past few decades, growing numbers of studies have revealed the importance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. These hypoxia-responsive ncRNAs (HRNs) play pivotal roles in regulating hypoxic gene expression at the transcriptional, posttranscriptional, translational and posttranslational levels. In addition, as a significant gene expression regulator, ncRNAs exhibit promising roles in regulating HIF-1α expression at multiple levels. In this review, we briefly elucidate the reciprocal regulation between HIF-1α and ncRNAs, as well as their effect on cancer cell behaviors. We also try to summarize the complex feedback loop existing between these two components. Moreover, we evaluated the biomarker potential of HRNs for the diagnosis and prognosis of cancer, as well as the potential clinical utility of shared regulatory mechanisms between HIF-1α and ncRNAs in cancer treatment, providing novel insights into tumorigenicity, which may lead to innovative clinical applications.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.,The First Clinical Medicine School, Nanjing Medical University, Nanjing, 211166, China
| | - Han Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
22
|
Orso F, Quirico L, Dettori D, Coppo R, Virga F, Ferreira LC, Paoletti C, Baruffaldi D, Penna E, Taverna D. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol 2020; 60:214-224. [DOI: 10.1016/j.semcancer.2019.07.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
|
23
|
Petrek H, Yu A. MicroRNAs in non-small cell lung cancer: Gene regulation, impact on cancer cellular processes, and therapeutic potential. Pharmacol Res Perspect 2019; 7:e00528. [PMID: 31859460 PMCID: PMC6923806 DOI: 10.1002/prp2.528] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer remains the most lethal cancer among men and women in the United States and worldwide. The majority of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Developing new therapeutics on the basis of better understanding of NSCLC biology is critical to improve the treatment of NSCLC. MicroRNAs (miRNAs or miRs) are a superfamily of genome-derived, small noncoding RNAs that govern posttranscriptional gene expression in cells. Functional miRNAs are commonly dysregulated in NSCLC, caused by genomic deletion, methylation, or altered processing, which may lead to the changes of many cancer-related pathways and processes, such as growth and death signaling, metabolism, angiogenesis, cell cycle, and epithelial to mesenchymal transition, as well as sensitivity to current therapies. With the understanding of miRNA biology in NSCLC, there are growing interests in developing new therapeutic strategies, namely restoration of tumor suppressive miRNAs and inhibition of tumor promotive miRNAs, to combat against NSCLC. In this article, we provide an overview on the molecular features of NSCLC and current treatment options with a focus on pharmacotherapy and personalized medicine. By illustrating the roles of miRNAs in the control of NSCLC tumorigenesis and progression, we highlight the latest efforts in assessing miRNA-based therapies in animal models and discuss some critical challenges in developing RNA therapeutics.
Collapse
Affiliation(s)
- Hannah Petrek
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| | - Ai‐Ming Yu
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| |
Collapse
|
24
|
Leone P, Buonavoglia A, Fasano R, Solimando AG, De Re V, Cicco S, Vacca A, Racanelli V. Insights into the Regulation of Tumor Angiogenesis by Micro-RNAs. J Clin Med 2019; 8:jcm8122030. [PMID: 31757094 PMCID: PMC6947031 DOI: 10.3390/jcm8122030] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
One of the hallmarks of cancer is angiogenesis, a series of events leading to the formation of the abnormal vascular network required for tumor growth, development, progression, and metastasis. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNAs whose functions include modulation of the expression of pro- and anti-angiogenic factors and regulation of the function of vascular endothelial cells. Vascular-associated microRNAs can be either pro- or anti-angiogenic. In cancer, miRNA expression levels are deregulated and typically vary during tumor progression. Experimental data indicate that the tumor phenotype can be modified by targeting miRNA expression. Based on these observations, miRNAs may be promising targets for the development of novel anti-angiogenic therapies. This review discusses the role of various miRNAs and their targets in tumor angiogenesis, describes the strategies and challenges of miRNA-based anti-angiogenic therapies and explores the potential use of miRNAs as biomarkers for anti-angiogenic therapy response.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
- Correspondence: ; Tel.: +39-080-5478050; Fax: +39-080-5478-045
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Viale Orazio Flacco, 65, 70124 Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy;
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| |
Collapse
|
25
|
Tang Y, Zhang Y, Liu S, Sun Z, Wang C, Li L, Zhou W, Cheng S. 14-3-3ζ binds to and stabilizes phospho-beclin 1 S295 and induces autophagy in hepatocellular carcinoma cells. J Cell Mol Med 2019; 24:954-964. [PMID: 31709727 PMCID: PMC6933394 DOI: 10.1111/jcmm.14806] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/21/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022] Open
Abstract
Data from The Cancer Genome Atlas (TCGA) indicate that the expression levels of 14‐3‐3ζ and beclin 1 (a key molecule involved in cellular autophagy) are up‐regulated and positively correlated with each other (R = .5, P < .05) in HCC tissues. Chemoresistance developed in hepatoma cancer cells is associated with autophagy initiation. This study aimed to explore 14‐3‐3ζ’s role in regulating autophagy in HCC cells, with a focus on beclin 1. The co‐localization of 14‐3‐3ζ and beclin 1 was detectable in primary HCC tissues. To simulate in vivo tumour microenvironment (hypoxia), CSQT‐2 and HCC‐LM3 cells were exposed to 2% oxygen for 24 hours. The protein levels of 14‐3‐3ζ and phospho‐beclin 1S295 peaked at 12 hours following hypoxia. Meanwhile, the strongest autophagy flux occurred: LC3II was increased, and p62 was decreased significantly. By sequencing the coding area of BECN 1 gene of CSQT‐2 and HCC‐LM3 cells, we found that the predicted translational products of BECN 1 gene contained RLPS295VP (R, arginine; L, leucine; P, proline; S, serine; V, valine), a classic 14‐3‐3ζ binding motif. CO‐IP results confirmed that 14‐3‐3ζ bound to beclin 1, and this connection was markedly weakened when S295 was mutated into A295 (alanine). Further, 14‐3‐3ζ overexpression prevented phospho‐beclin 1S295 from degradation and enhanced its binding to VPS34, whilst its knockdown accelerated the degradation. Additionally, 14‐3‐3ζ enhanced the chemoresistance of HCC cells to cis‐diammined dichloridoplatium by activating autophagy. Our work reveals that 14‐3‐3ζ binds to and stabilizes phospho‐beclin 1S295 and induces autophagy in HCC cells to resist chemotherapy.
Collapse
Affiliation(s)
- Yufu Tang
- Department of Hepatobiliary Surgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Yibing Zhang
- Department of Medical Affairs, The General Hospital of Northern Theater Command, Shenyang, China
| | - Shupeng Liu
- Department of Gynecology and Obstetrics, Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongyi Sun
- Department of Hepatobiliary Surgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Chunhui Wang
- Department of Hepatobiliary Surgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Longfei Li
- Department of Hepatobiliary Surgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Wenping Zhou
- Department of Hepatobiliary Surgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Shuqun Cheng
- Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
26
|
Qiu Y, Shan W, Yang Y, Jin M, Dai Y, Yang H, Jiao R, Xia Y, Liu Q, Ju L, Huang G, Zhang J, Yang L, Li L, Li Y. Reversal of sorafenib resistance in hepatocellular carcinoma: epigenetically regulated disruption of 14-3-3η/hypoxia-inducible factor-1α. Cell Death Discov 2019; 5:120. [PMID: 31341646 PMCID: PMC6642098 DOI: 10.1038/s41420-019-0200-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/15/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
Sorafenib resistance is one of the main obstacles to the treatment of advanced/recurrent hepatocellular carcinoma (HCC). Here, sorafenib-resistant HCC cells and xenografts in nude mice were used as experimental models. A cohort of patients with advanced recurrent HCC who were receiving sorafenib therapy was used to assess the clinical significance of this therapy. Our data showed that 14-3-3η maintained sorafenib resistance in HCC. An analysis of the underlying molecular mechanisms revealed that 14-3-3η stabilizes hypoxia-inducible factor 1α (HIF-1α) through the inhibition of ubiquitin-dependent proteasome protein degradation, which leads to the maintenance of cancer stem cell (CSC) properties. We further found that microRNA-16 (miR-16) is a competent miRNA that reverses sorafenib resistance by targeting the 3'-UTR of 14-3-3η and thereby inhibits 14-3-3η/HIF-1α/CSC properties. In HCC patients, significant negative correlations were found between the expression of miR-16 and 14-3-3η, HIF-1α, or CSC properties. Further analysis showed that low miR-16 expression but high 14-3-3η expression can prognosticate sorafenib resistance and poor survival. Collectively, our present study indicated that miR-16/14-3-3η is involved in sorafenib resistance in HCC and that these two factors could be potential therapeutic targets and biomarkers for predicting the response to sorafenib treatment.
Collapse
Affiliation(s)
- Yongxin Qiu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Wenqi Shan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Ye Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Ming Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Yi Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Hanyu Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Ruonan Jiao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Yunwei Xia
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Qinqiang Liu
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Liang Ju
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Guangming Huang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Jianping Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Lihua Yang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Department of Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011 China
| | - Lei Li
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| | - Yuan Li
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
27
|
Platania CBM, Maisto R, Trotta MC, D'Amico M, Rossi S, Gesualdo C, D'Amico G, Balta C, Herman H, Hermenean A, Ferraraccio F, Panarese I, Drago F, Bucolo C. Retinal and circulating miRNA expression patterns in diabetic retinopathy: An in silico and in vivo approach. Br J Pharmacol 2019; 176:2179-2194. [PMID: 30883703 PMCID: PMC6555853 DOI: 10.1111/bph.14665] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetic retinopathy, a secondary complication of diabetes mellitus, can lead to irreversible vision loss. Currently, no treatment is approved for early phases of diabetic retinopathy. Modifications of the expression pattern of miRNAs could be involved in the early retinal damage of diabetic subjects. Therefore, we aimed at identification of dysregulated miRNAs-mRNA interactions that might be biomarkers and pharmacological targets for diagnosis and treatment of early diabetic retinopathy. METHODS A focused set of miRNAs was predicted through a bioinformatic analysis accessing to Gene Expression Omnibus dataset and enrichment of information approach (GENEMANIA-Cytoscape). Identification of miRNAs-mRNA interactions was carried out with miRNET analysis. Diabetes was induced in C57BL6J mice by streptozotocin and samples analysed at 5 and 10 weeks after diabetes induction. Retinal ultrastructure of diabetic mice was analysed through electron microscopy. We used Real-time PCR, western blot analysis, elisa, and immunohistochemistry to study expression of miRNAs and possible targets of dysregulated miRNAs. KEY RESULTS We found that miR-20a-5p, miR-20a-3p, miR-20b, miR-106a-5p, miR-27a-5p, miR-27b-3p, miR-206-3p, and miR-381-3p were dysregulated in the retina and serum of diabetic mice. VEGF, brain-derived neurotrophic factor (BDNF), PPAR-α, and cAMP response element-binding protein 1 (CREB1) are targets of dysregulated miRNAs, which then modulated protein expression in diabetic retina. We found structural modifications in retinas from diabetic mice. CONCLUSIONS AND IMPLICATIONS Serum and retina of diabetic mice express eight dysregulated miRNAs, which modified the expression of VEGF, BDNF, PPAR-α, and CREB1, before vasculopathy in diabetic retinas.
Collapse
Affiliation(s)
| | - Rosa Maisto
- Department of Experimental Medicine, Division of PharmacologyUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of PharmacologyUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Michele D'Amico
- Department of Experimental Medicine, Division of PharmacologyUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | | | - Cornel Balta
- Institute of Life SciencesVasile Godis Western University of AradAradRomania
| | - Hildegard Herman
- Institute of Life SciencesVasile Godis Western University of AradAradRomania
| | - Anca Hermenean
- Institute of Life SciencesVasile Godis Western University of AradAradRomania
- Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
| | - Franca Ferraraccio
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Iacopo Panarese
- Pathology Unit, Department of Mental and Physical Health and Preventive MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of MedicineUniversity of CataniaCataniaItaly
- Center for Research in Ocular Pharmacology—CERFOUniversity of CataniaCataniaItaly
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of MedicineUniversity of CataniaCataniaItaly
- Center for Research in Ocular Pharmacology—CERFOUniversity of CataniaCataniaItaly
| |
Collapse
|
28
|
Mukwaya A, Jensen L, Peebo B, Lagali N. MicroRNAs in the cornea: Role and implications for treatment of corneal neovascularization. Ocul Surf 2019; 17:400-411. [PMID: 30959113 DOI: 10.1016/j.jtos.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
With no safe and efficient approved therapy available for treating corneal neovascularization, the search for alternative and effective treatments is of great importance. Since the discovery of miRNAs as key regulators of gene expression, knowledge of their function in the eye has expanded continuously, facilitated by high throughput genomic tools such as microarrays and RNA sequencing. Recently, reports have emerged implicating miRNAs in pathological and developmental angiogenesis. This has led to the idea of targeting these regulatory molecules as a therapeutic approach for treating corneal neovascularization. With the growing volume of data generated from high throughput tools applied to study corneal neovascularization, we provide here a focused review of the known miRNAs related to corneal neovascularization, while presenting new experimental data and insights for future research and therapy development.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Lasse Jensen
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
29
|
Wang Y, Tai Q, Zhang J, Kang J, Gao F, Zhong F, Cai L, Fang F, Gao Y. MiRNA-206 inhibits hepatocellular carcinoma cell proliferation and migration but promotes apoptosis by modulating cMET expression. Acta Biochim Biophys Sin (Shanghai) 2019; 51:243-253. [PMID: 30805592 DOI: 10.1093/abbs/gmy119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Indexed: 12/25/2022] Open
Abstract
A close relationship between cancer progression and microRNAs (miRNAs) regulation has been demonstrated. Abnormal microRNA-206 (miR-206) expression has been shown to be related to the development of malignancies. However, the role of miR-206 in hepatocellular carcinoma (HCC) remains unclear. Here, we evaluated the function of miR-206 in HCC. Results showed that miR-206 expression was decreased in 27 human HCC tissues compared with that of adjacent normal tissues. Conversely, cMET was up-regulated in human HCC cancer tissues, and cMET levels were shown to be negatively correlated with miR-206 expression. Abnormally increased miR-206 expression in three HCC cell lines (SMMC-7721, HepG2, and Huh7) attenuated cell viability, migration, and invasion. Increased apoptosis was also observed in these miR-206 expressing cells. Furthermore, we identified that miR-206 targets the 3'-UTR of the cMET gene for silencing, and restoration of cMET expression reversed the inhibitory effect of miR-206 on HCC. Tumor cells expressing miR-206 also showed delayed growth in the in vivo experiments compared with the controls. Altogether, our findings provide new insights into the molecular mechanisms of HCC oncogenesis.
Collapse
Affiliation(s)
- Yuanxi Wang
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qinwen Tai
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jinhui Zhang
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Junsheng Kang
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Feng Gao
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Feng Zhong
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liquan Cai
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fa Fang
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A. Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol 2019; 234:1099-1110. [PMID: 30070704 DOI: 10.1002/jcp.27051] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs, miRs) are small (21-25 nucleotides) endogenous and noncoding RNAs involved in many cellular processes such as apoptosis, development, proliferation, and differentiation via binding to the 3'-untranslated region of the target mRNA and inhibiting its translation. Angiogenesis is a hallmark of cancer, which provides oxygen and nutrition for tumor growth while removing deposits and wastes from the tumor microenvironment. There are many angiogenesis stimulators, among which vascular endothelial growth factor (VEGF) is the most well known. VEGF has three tyrosine kinase receptors, which, following VEGF binding, initiate proliferation, invasion, migration, and angiogenesis of endothelial cells in the tumor environment. One of the tumor microenvironment conditions that induce angiogenesis through increasing VEGF and its receptors expression is hypoxia. Several miRNAs have been identified that affect different targets in the tumor angiogenesis pathway. Most of these miRNAs affect VEGF and its tyrosine kinase receptors expression downstream of the hypoxia-inducible Factor 1 (HIF-1). This review focuses on tumor angiogenesis regulation by miRNAs and the mechanism underlying this regulation.
Collapse
Affiliation(s)
- Nasser H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejad Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Deng M, Qin Y, Chen X, Wang Q, Wang J. MiR-206 inhibits proliferation, migration, and invasion of gastric cancer cells by targeting the MUC1 gene. Onco Targets Ther 2019; 12:849-859. [PMID: 30774372 PMCID: PMC6355168 DOI: 10.2147/ott.s180021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNAs (miRNAs) can regulate the post-transcriptional level of gene expression. It has been documented that downregulation of miR-206 is significant in human gastric cancer (GC), whereas its role in GC cell biological behaviors, including proliferation, migration, and invasion, has not been thoroughly investigated. MiR-206 levels have a negative association with lymph node metastasis and tumor invasion, and patients with higher miR-206 expression have better prognoses. Functional studies demonstrated that miR-206 overexpression significantly suppresses GC cell proliferation, migration, and invasion, and induces apoptosis in vitro. Materials and methods MiR-206 and MUC1 were determined by RNA extraction, quantitative real-time polymerase chain reaction, and luciferase reporter gene assays. The viability of GC cells was tested using the Cell Counting Kit 8 assay. Transwell invasion and migration assays detected GC cancer cell proliferation, invasion, and migration. Flow cytometry was applied to analyze apoptotic cells. FACS analysis was applied to detect the mitochondrial membrane potential of cells. Western blotting assay determined protein levels. Results The luciferase reporter gene assay demonstrated that miR-206 might directly bind to the 3'UTR of the MUC1 gene and suppress MUC1 expression. Furthermore, MUCI expression was upregulated and inversely associated with miR-206 levels in GC tissues. More importantly, the miR-206-mediated suppression of proliferation, migration, and invasion, and the induction of apoptosis, were abrogated by MUC1 overexpression. Conclusion Our data demonstrated that miR-206 may exert antitumor activities through inhibiting the expression of MUC1, which may serve as an effective and potential target for GC treatment.
Collapse
Affiliation(s)
- Min Deng
- Department of Gastroenterology, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui 233004, People's Republic of China
| | - Yiyu Qin
- Clinical Medical College, Research Centre of Biomedical Technology, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, People's Republic of China
| | - Xiaodong Chen
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, People's Republic of China,
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui 233004, People's Republic of China
| | - Jianchao Wang
- Department of Gastroenterology, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui 233004, People's Republic of China
| |
Collapse
|
32
|
Song J, Zhang X, Liao Z, Liang H, Chu L, Dong W, Zhang X, Ge Q, Liu Q, Fan P, Zhang Z, Zhang B. 14-3-3ζ inhibits heme oxygenase-1 (HO-1) degradation and promotes hepatocellular carcinoma proliferation: involvement of STAT3 signaling. J Exp Clin Cancer Res 2019; 38:3. [PMID: 30606233 PMCID: PMC6319010 DOI: 10.1186/s13046-018-1007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heme oxygenase 1 (HO-1) has been reported to be very important in the pathogenesis or progression of multiple types of cancer. Identification of novel hmox1 binding proteins may reveal undefined oncogenes, tumor suppressors, signaling pathways, and possible treatment targets. METHODS Immunoprecipitation and mass spectrometry analyses were used to identify novel regulators of HO-1. The association of the 14-3-3ζ protein with HO-1 and modulation of the stability of HO-1 were investigated by co-immunoprecipitation, immunofluorescence, western blotting, and quantitative RT-PCR. Degradation and in vivo ubiquitination assays were utilized to examine whether 14-3-3ζ stabilizes the HO-1 protein by inhibiting its ubiquitination. The effect of 14-3-3ζ on proliferation was investigated by function assays conducted in vitro using the CCK-8 and colony formation assays and in vivo in a xenograft mouse model. The biological functions of the 14-3-3ζ/HO-1 axis were demonstrated by western blotting and rescue experiments. Using gain-of-function and loss-of-function strategies, we further clarified the impact of 14-3-3ζ/HO-1 complex on the signal transducers and activators of transcription 3 (STAT3) signaling pathway in cancer cells. RESULTS We identified 14-3-3ζ as a novel HO-1 binding protein. The binding inhibited the ubiquitination and proteasome-mediated degradation of HO-1, thus facilitating its stabilization. Enforced expression of 14-3-3ζ significantly promoted cell proliferation in vitro, as well as tumorigenesis in vivo, while 14-3-3ζ knockdown had opposite effects. The data indicated that 14-3-3ζ can stabilize HO-1 expression and thus influence cancer cell proliferation. We further demonstrated the involvement of the STAT3 pathway in 14-3-3ζ/HO-1 regulation of hepatocellular carcinoma cell proliferation. CONCLUSIONS Collectively, these data show that 14-3-3ζ regulates the stability of HO-1 to promote cancer cell proliferation and STAT3 signaling activation. The data establish the 14-3-3ζ-HO-1-STAT3 axis as an important regulatory mechanism of cancer cell growth and implicate HO-1 and 14-3-3ζ as potential therapeutic targets in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Xiaochao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Qianyun Ge
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Pan Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| |
Collapse
|
33
|
Zhang X, Liu Y, Huang WC, Zheng LC. MiR-125b-1-3p Exerts Antitumor Functions in Lung Carcinoma Cells by Targeting S1PR1. Chin Med J (Engl) 2018; 131:1909-1916. [PMID: 30082521 PMCID: PMC6085848 DOI: 10.4103/0366-6999.238135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNAs (miRNAs) have been extensively studied over the decades and have been identified as potential molecular targets for cancer therapy. To date, many miRNAs have been found participating in the tumorigenesis of non-small cell lung cancer (NSCLC). The present study was designed to evaluate the functions of miR-125b-1-3p in NSCLC cells. Methods MiR-125b-1-3p expression was detected in tissue samples from 21 NSCLC patients and in NSCLC cell lines using the real-time polymerase chain reaction. A549 cell lines were transfected with a miR-125b-1-3p mimic or miR-125b-1-3p antisense. Cell counting kit-8, wound healing, Matrigel invasion assays, and flow cytometry were used to assess the effects of these transfections on cell growth, migration, invasion, and apoptosis, respectively. Western blotting was used to detect apoptosis-related proteins, expression of S1PR1, and the phosphorylation status of STAT3. Significant differences between groups were estimated using Student's t-test or a one-way analysis of variance. Results MiR-125b-1-3p was downregulated in NSCLC samples and cell lines. Overexpression of miR-125b-1-3p inhibited NSCLC cell proliferation (37.8 ± 9.1%, t = 3.191, P = 0.013), migration (42.3 ± 6.7%, t = 6.321, P = 0.003), and invasion (57.6 ± 11.3%, t = 4.112, P = 0.001) and simultaneously induced more NSCLC cell apoptosis (2.76 ± 0.78 folds, t = 3.772, P = 0.001). MiR-125b-1-3p antisense resulted in completely opposite results. S1PR1 was found as the target gene of miR-125b-1-3p. Overexpression of miR-125b-1-3p inhibited S1PR1 protein expression (27.4 ± 6.1% of control, t = 4.083, P = 0.007). In addition, S1PR1 siRNA decreased STAT3 phosphorylation (16.4 ± 0.14% of control, t = 3.023, P = 0.015), as in cells overexpressing miR-125b-1-3p (16.7 ± 0.17% of control, t = 4.162, P = 0.026). Conclusion Our results suggest that miR-125b-1-3p exerts antitumor functions in NSCLC cells by targeting S1PR1.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wei-Cong Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Liang-Cheng Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
34
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
35
|
Chen X, Zheng Q, Li W, Lu Y, Ni Y, Ma L, Fu Y. SOX5 induces lung adenocarcinoma angiogenesis by inducing the expression of VEGF through STAT3 signaling. Onco Targets Ther 2018; 11:5733-5741. [PMID: 30254466 PMCID: PMC6140741 DOI: 10.2147/ott.s176533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background and objectives Angiogenesis is the main cause of lung adenocarcinoma (LAC) poor prognosis. This study aimed to investigate the effect of sex-determining region Y-box protein 5 (SOX5) expression on angiogenesis of LAC and explore its possible mechanism. Patients and methods The effect on angiogenesis was tested by tube formation assays using human umbilical vein endothelial cells cocultured with A549 cells. Lentivirus shRNA of SOX5 and lentivirus of SOX5 overexpression system were used to establish LAC cell lines, which expressed SOX5 of different levels. SOX5 downstream signaling targets were analyzed by real-time qPCR and Western blot. We collected 90 LAC cases and the tissues were examined by immunohistochemistry for SOX5 and vascular endothelial growth factor (VEGF). Results We found that SOX5 overexpression in A549 cells significantly promoted tube formation capacity of the cocultured human umbilical vein endothelial cells. SOX5 increased VEGF expression and signal transducer activator of transcription 3 phosphorylation; however, SOX5 had no effect on extracellular signal-regulated kinase and protein kinase B pathway. Furthermore, the expression of SOX5 and VEGF had a significantly positive correlation (r=0.399, P=0.001) according to the tissue microarray data. Conclusion These findings suggest that SOX5 induces angiogenesis by activating signal transducer activator of transcription 3/VEGF signaling and confer its candidacy as a potential therapeutic target in LAC.
Collapse
Affiliation(s)
- Xin Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Qi Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Weidong Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Yuan Lu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Yiming Ni
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Liang Ma
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Yufei Fu
- Zhejiang Key Laboratory of Gastro-Intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P. R. China,
| |
Collapse
|
36
|
Lu M, Dai Y, Xu M, Zhang C, Ma Y, Gao P, Teng M, Jiao K, Huang G, Zhang J, Yang Y, Chu Z. The Attenuation of 14-3-3ζ is Involved in the Caffeic Acid-Blocked Lipopolysaccharide-Stimulated Inflammatory Response in RAW264.7 Macrophages. Inflammation 2018; 40:1753-1760. [PMID: 28688098 DOI: 10.1007/s10753-017-0618-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation plays important roles in the initiation and progress of many diseases. Caffeic acid (CaA) is a naturally occurring hydroxycinnamic acid derivative, which shows hypotoxicity and diverse biological functions, including anti-inflammation. The molecular mechanisms involved in the CaA-inhibited inflammatory response are very complex; generally, the down-regulated phosphorylation of such important transcriptional factors, for example, nuclear factor κB (NF-κB) and signal transducers and activators of transcription-3 (STAT-3), plays an important role. Here, we found that in RAW264.7 macrophage cells, CaA blocked lipopolysaccharide (LPS)-stimulated inflammatory response by attenuating the expression of 14-3-3ζ (a phosphorylated protein regulator). Briefly, the increased expression of 14-3-3ζ was involved in the LPS-induced inflammatory response. CaA blocked the LPS-elevated 14-3-3ζ via attenuating the LPS-induced tumor necrosis factor-α (TNF-α) secretion and via enhancing the 14-3-3ζ ubiquitination. These processes inhibited the LPS-induced activation (phosphorylation) of NF-κB and STAT-3, in turn blocked the transcriptional activation of inducible NO synthase (iNOS), interleukin-6 (IL-6), and TNF-α, and finally attenuated the productions of nitric oxide (NO), IL-6, and TNF-α. By understanding a novel mechanism whereby CaA inhibited the 14-3-3ζ, our study expanded the understanding of the molecular mechanisms involved in the anti-inflammation potential induced by CaA.
Collapse
Affiliation(s)
- Ming Lu
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Yi Dai
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Miao Xu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chi Zhang
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Yuhong Ma
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Ping Gao
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Mengying Teng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Kailin Jiao
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guangming Huang
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Jianping Zhang
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China.
| | - Ye Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhiping Chu
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
37
|
Rust R, Gantner C, Schwab ME. Pro- and antiangiogenic therapies: current status and clinical implications. FASEB J 2018; 33:34-48. [PMID: 30085886 DOI: 10.1096/fj.201800640rr] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Blood vessels nurture every part of the human body. Consequently, abnormalities in the vasculature are closely associated with a variety of diseases, including cerebral stroke, heart disease, retinopathy, and cancer. Pro- or antiangiogenic therapies can influence these diseases by regulating the growth of new blood vessels from a pre-existing vascular network or dampening excessive blood growth. However, clinical translation of these approaches is slow and challenging. In this review, we discuss recent preclinical approaches to regulate angiogenesis and their potential and risks in a clinical setting.-Rust, R., Gantner, C., Schwab, M. E. Pro- and antiangiogenic therapies: current status and clinical implications.
Collapse
Affiliation(s)
- Ruslan Rust
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; and
| | - Christina Gantner
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; and
| |
Collapse
|
38
|
Watt K, Newsted D, Voorand E, Gooding RJ, Majewski A, Truesdell P, Yao B, Tuschl T, Renwick N, Craig AW. MicroRNA-206 suppresses TGF-β signalling to limit tumor growth and metastasis in lung adenocarcinoma. Cell Signal 2018; 50:25-36. [PMID: 29935234 DOI: 10.1016/j.cellsig.2018.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022]
Abstract
MicroRNA-206 (miR-206) has demonstrated tumor suppressive effects in a variety of cancers. Numerous studies have identified aberrantly expressed targets of miR-206 that contribute to tumor progression and metastasis, however, the broader gene-networks and pathways regulated by miR-206 remain poorly defined. Here, we have ectopically expressed miR-206 in lung adenocarcinoma cell lines and tumors to identify differentially expressed genes, and study the effects on tumor growth and metastasis. In H1299 tumor xenograft assays, stable expression of miR-206 suppressed both tumor growth and metastasis in mice. Profiling of xenograft tumors using small RNA sequencing and a targeted panel of tumor progression and metastasis-related genes revealed a network of genes involved in TGF-β signalling that were regulated by miR-206. Among these were the TGFB1 ligand, as well as direct transcriptional targets of Smad3. Other differentially expressed genes included components of the extracellular matrix involved in TGF-β activation and signalling, including Thrombospondin-1, which is responsible for the activation of latent TGF-β in the stroma. In cultured lung adenocarcinoma cells treated with recombinant TGF-β, ectopic expression of miR-206 impaired canonical signalling, and expression of TGF-β target genes linked to epithelial-mesenchymal transition. This was due at least in part to the suppression of Smad3 protein levels in lung adenocarcinoma cells with ectopic miR-206 expression. Together, these findings indicate that miR-206 can suppress tumor progression and metastasis by limiting autocrine production of TGF-β, and highlight the potential utility of TGF-β inhibitors for the treatment of lung adenocarcinomas.
Collapse
Affiliation(s)
- Kathleen Watt
- Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Daniel Newsted
- Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Elena Voorand
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Robert J Gooding
- Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Canada; Department of Physics, Queen's University, Kingston, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Adrianna Majewski
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Peter Truesdell
- Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Binchen Yao
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Thomas Tuschl
- HHMI Laboratory of RNA Molecular Biology, The Rockefeller University, New York, USA
| | - Neil Renwick
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada; HHMI Laboratory of RNA Molecular Biology, The Rockefeller University, New York, USA
| | - Andrew W Craig
- Cancer Biology & Genetics Division, Queen's Cancer Research Institute, Kingston, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
39
|
Shan Y, Wang B, Zhang J. New strategies in achieving antiangiogenic effect: Multiplex inhibitors suppressing compensatory activations of RTKs. Med Res Rev 2018; 38:1674-1705. [DOI: 10.1002/med.21517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanyuan Shan
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Binghe Wang
- Department of Chemistry; Center for Diagnostics and Therapeutics; Georgia State University; Atlanta GA USA
| | - Jie Zhang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
40
|
Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka RJ, Collawn JF, Bartoszewski R. miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 2018; 21:183-202. [PMID: 29383635 PMCID: PMC5878208 DOI: 10.1007/s10456-018-9600-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
The decline of oxygen tension in the tissues below the physiological demand leads to the hypoxic adaptive response. This physiological consequence enables cells to recover from this cellular insult. Understanding the cellular pathways that mediate recovery from hypoxia is therefore critical for developing novel therapeutic approaches for cardiovascular diseases and cancer. The master regulators of oxygen homeostasis that control angiogenesis during hypoxia are hypoxia-inducible factors (HIFs). HIF-1 and HIF-2 function as transcriptional regulators and have both unique and overlapping target genes, whereas the role of HIF-3 is less clear. HIF-1 governs the acute adaptation to hypoxia, whereas HIF-2 and HIF-3 expressions begin during chronic hypoxia in human endothelium. When HIF-1 levels decline, HIF-2 and HIF-3 increase. This switch from HIF-1 to HIF-2 and HIF-3 signaling is required in order to adapt the endothelium to prolonged hypoxia. During prolonged hypoxia, the HIF-1 levels and activity are reduced, despite the lack of oxygen-dependent protein degradation. Although numerous protein factors have been proposed to modulate the HIF pathways, their application for HIF-targeted therapy is rather limited. Recently, the miRNAs that endogenously regulate gene expression via the RNA interference (RNAi) pathway have been shown to play critical roles in the hypoxia response pathways. Furthermore, these classes of RNAs provide therapeutic possibilities to selectively target HIFs and thus modulate the HIF switch. Here, we review the significance of the microRNAs on the relationship between the HIFs under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - Renata J Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
41
|
Kong G, Jiang Y, Sun X, Cao Z, Zhang G, Zhao Z, Zhao Y, Yu Q, Cheng G. Irisin reverses the IL-6 induced epithelial-mesenchymal transition in osteosarcoma cell migration and invasion through the STAT3/Snail signaling pathway. Oncol Rep 2017; 38:2647-2656. [PMID: 29048621 PMCID: PMC5780017 DOI: 10.3892/or.2017.5973] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
As a novel discovered myokine, irisin is considered to be a promising candidate for the treatment of metabolic disorders and cancer. However, little is known about the anti-metastasic effect of irisin on osteosarcoma cells and its underlying mechanisms. In the present study, we aimed to explore the effect of irisin on the migration and invasion of osteosarcoma cells and the underlying mechanisms involved. Viability and proliferation of osteosarcoma cells were examined by MTT assay. Then, by using scratch wound healing assay and Transwell assays, we evaluated migratory and invasive ability of the cells, respectively. Moreover, the expression of epithelial-to-mesenchymal transition (EMT) markers were determined by qPCR, western blot and immunofluorescence staining after treatment with IL-6 and irisin. Furthermore, the expression of ERK, p38, STAT3 and Snail were detected by western blot analysis. Finally, an inhibitor of STAT3, WP1066 was applied to testify the effect of irisin on the expression of EMT markers and Snail. It was found that irisin treatment significantly suppressed the proliferation, migration and invasion of osteosarcoma cells. Furthermore, irisin reversed the IL-6-induced epithelial-mesenchymal transition (EMT) in osteosarcoma cells by regulating the expression of E-cadherin, N-cadherin, vimentin, fibronectin, MMP-2, MMP-7 and MMP-9. In addition, irisin suppressed the IL-6-activated phosphorylation of STAT3 and the expression of Snail in osteosarcoma cells. Finally, blockade of STAT3 by WP1066 (a STAT3 inhibitor) further enhanced the effect of irisin on the EMT and Snail expression in osteosarcoma cells. Collectively, our findings revealed that irisin may play a critical role in the IL-6-induced EMT of osteosarcoma cells via the STAT3/Snail signaling pathway.
Collapse
Affiliation(s)
- Gang Kong
- Department of Orthopaedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Yunpeng Jiang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Xiujiang Sun
- Department of Orthopaedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Zhilin Cao
- Department of Orthopaedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Guodong Zhang
- Department of Orthopaedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Zhongyuan Zhao
- Department of Orthopaedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Yong Zhao
- Department of Orthopaedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Qian Yu
- Department of Orthopaedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Gong Cheng
- Department of Orthopaedics, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
42
|
Pan JY, Sun CC, Bi ZY, Chen ZL, Li SJ, Li QQ, Wang YX, Bi YY, Li DJ. miR-206/133b Cluster: A Weapon against Lung Cancer? MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:442-449. [PMID: 28918043 PMCID: PMC5542379 DOI: 10.1016/j.omtn.2017.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/25/2017] [Accepted: 06/02/2017] [Indexed: 12/29/2022]
Abstract
Lung cancer is a deadly disease that ends numerous lives around the world. MicroRNAs (miRNAs) are a group of non-coding RNAs involved in a variety of biological processes, such as cell growth, organ development, and tumorigenesis. The miR-206/133b cluster is located on the human chromosome 6p12.2, which is essential for growth and rebuilding of skeletal muscle. The miR-206/133b cluster has been verified to be dysregulated and plays a crucial role in lung cancer. miR-206 and miR-133b participate in lung tumor cell apoptosis, proliferation, migration, invasion, angiogenesis, drug resistance, and cancer treatment. The mechanisms are sophisticated, involving various target genes and molecular pathways, such as MET, EGFR, and the STAT3/HIF-1α/VEGF signal pathway. Hence, in this review, we summarize the role and potential mechanisms of the miR-206/133b cluster in lung cancer.
Collapse
Affiliation(s)
- Jing-Yu Pan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China.
| | - Zhuo-Yue Bi
- Hubei Provincial Key Laboratory for Applied Toxicology (Hubei Provincial Academy for Preventive Medicine), Wuhan 430079 Hubei, P.R. China
| | - Zhen-Long Chen
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022 Hubei, P.R. China
| | - Shu-Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China; Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022 Hubei, P.R. China
| | - Qing-Qun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Yu-Xuan Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Yong-Yi Bi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China.
| |
Collapse
|
43
|
Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity. Neurol Sci 2017; 38:2015-2023. [PMID: 28875333 DOI: 10.1007/s10072-017-3071-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/12/2017] [Indexed: 10/18/2022]
Abstract
The main objectives of this study are to evaluate 28 selected pro-angiogenic and anti-angiogenic microRNA (miRNA) expressions in plasma of acute ischemic stroke (AIS) patients and controls and to assess the correlations of these miRNAs with risk and severity of AIS. In the exploring stage, 10 AIS patients and 10 controls with vascular risk factors were enrolled. And in the validating stage, 106 AIS patients and 110 controls with the same eligibility were recruited. Blood samples were collected from participants within 24 h post the onset of symptoms, and plasma levels of miRNAs were evaluated by the qPCR method. In the exploring stage, 11 differentially expressed miRNAs (DEM) were identified and included into the validating stage. In the validating stage, the expression of miR-126, miR-130a, and miR-378 in plasma declined in the AIS patients; however, miR-222, miR-218, and miR-185 plasma levels were elevated. Univariate and multivariate logistic regression analysis disclosed that miR-126, miR-130a, miR-222, miR-218, and miR-185 were independent predicting factors for AIS. When these five DEMs were combined together, they presented a good diagnostic value with an area under curve (AUC) value of 0.767 (95% CI 0.705-0.829), sensitivity of 87.7%, and specificity of 54.5% at best cutoff point. Additionally, miR-126, miR-378, miR-101, miR-222, miR-218, and miR-206 were associated with National Institutes of Health Stroke Scale (NIHSS) score. Circulating miR-126, miR-130a, miR-222, miR-218, and miR-185 could be served as promising and independent biomarkers for risk of AIS, and miR-126, miR-378, miR-222, miR-101, miR-218, and miR-206 could be used for disease severity management of AIS.
Collapse
|
44
|
Wang Z, Liu T. Placental growth factor signaling regulates isoform splicing of vascular endothelial growth factor A in the control of lung cancer cell metastasis. Mol Cell Biochem 2017; 439:163-169. [PMID: 28861767 DOI: 10.1007/s11010-017-3145-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
Vascular endothelial growth factor (VEGF) family members play critical and complex roles in the regulation of cancer vascularization and metastasis. The exact molecular control of lung cancer metastasis by VEGF family members is not completely understood. Here, we showed that specimens from non-small cell lung cancer (NSCLC) contained significantly higher levels of placental growth factor (PlGF) than paired non-cancer tissue (p < 0.05, N = 25). Moreover, higher levels of PlGF were detected in NSCLC specimens from the patients who had distal metastases than those who had not. High-PlGF levels appeared to be associated with poor patient survival. In vitro, PlGF dose-dependently increased the ratio of pro-angiogenic VEGF isoform (VEGF165) versus anti-angiogenic VEGF isoform (VEGF165b), seemingly through induction of expression of splicing regulatory factor SRp40, resulting in the enhancement of the cancer cell metastatic potential. Higher levels of SRp40 were detected in NSCLC specimens, compared to paired non-cancer tissue (p < 0.05, N = 25). Finally, a strong correlation was detected between the levels of PlGF and SRp40 in NSCLC specimens (r = 0.83, p < 0.0001, N = 25). Together, these data suggest that PlGF may increase NSCLC metastasis through SRp40-mediated mRNA splicing of VEGF.
Collapse
Affiliation(s)
- Zanfeng Wang
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China.
| | - Tingwei Liu
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, China
| |
Collapse
|
45
|
Zhu L, Wang G, Fischbach S, Xiao X. Suppression of microRNA-205-5p in human mesenchymal stem cells improves their therapeutic potential in treating diabetic foot disease. Oncotarget 2017; 8:52294-52303. [PMID: 28881730 PMCID: PMC5581029 DOI: 10.18632/oncotarget.17012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a prevalent disease endangering human health, while diabetic foot disease (DF) is one of the most severe complications of diabetes. Mesenchymal stem cells (MSCs) have been used in DF treatment, taking advantage of the differentiation potential of MSCs into endothelial cells and their production and secretion of trophic factors like vascular endothelial growth factor (VEGF). Molecular modification of MSCs to improve their therapeutic effects has been recently applied in treating other diseases, but not yet in DF. Here, we found that micoRNA-205-5p (miR-205-5p) is expressed in human MSCs, and miR-205-5p inhibits protein translation of VEGF through its interaction with 3'-UTR of the VEGF mRNA. Expression of antisense of miR-205-5p (as-miR-205-5p) significantly increased both cellular and secreted VEGF by MSCs, which significantly improved the therapeutic effects of MSCs on DF-associated wound healing in diabetic NOD/SCID mice. Together, our data suggest that miR-205-5p suppression in MSCs may improve their therapeutic effects on DF, seemingly through augmentation of VEGF-mediated vascularization.
Collapse
Affiliation(s)
- Lingyan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shane Fischbach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA15224, USA
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA15224, USA
| |
Collapse
|
46
|
Tang R, Ma F, Li W, Ouyang S, Liu Z, Wu J. miR-206-3p Inhibits 3T3-L1 Cell Adipogenesis via the c-Met/PI3K/Akt Pathway. Int J Mol Sci 2017; 18:ijms18071510. [PMID: 28708070 PMCID: PMC5536000 DOI: 10.3390/ijms18071510] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators during adipocyte adipogenesis. MiR-206-3p, a tissue-specific miRNA, is absent in white adipocytes. In this study, we examined the roles of mmu-miR-206-3p in the adipogenic differentiation of 3T3-L1 preadipocytes. The miR-206-3p expression has shown an apparent decreasing trend after induction, and sustained low expression throughout the differentiation of 3T3-L1 cells. miR-206-3p blocked the adipogenic differentiation of 3T3-L1 cells by attenuating c-Met expression; the inhibition effect of miR-206 to the adipogenic differentiation can be counteracted by restoring c-Met expression. In addition, miR-206-3p decreased the phosphorylation of Akt, which is the downstream effector of c-Met in the PI3K/Akt signaling pathway. These data indicate that miR-206-3p inhibits adipocyte adipogenesis through silencing c-Met and subsequently inactivating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Renqiao Tang
- Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing 100730, China.
- Department of Biochemistry, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing 100020, China.
| | - Feifei Ma
- Department of Biochemistry, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing 100020, China.
| | - Wei Li
- Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing 100730, China.
- Department of Biochemistry, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing 100020, China.
| | - Shengrong Ouyang
- Department of Biochemistry, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing 100020, China.
| | - Zhuo Liu
- Department of Biochemistry, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing 100020, China.
| | - Jianxin Wu
- Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing 100730, China.
- Department of Biochemistry, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing 100020, China.
| |
Collapse
|