1
|
Athans SR, Withers H, Stablewski A, Gurova K, Ohm J, Woloszynska A. STAG2 expression imparts distinct therapeutic vulnerabilities in muscle-invasive bladder cancer cells. Oncogenesis 2025; 14:4. [PMID: 40025053 PMCID: PMC11873148 DOI: 10.1038/s41389-025-00548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
Expression of stromal antigen 2 (STAG2), a member of the cohesin complex, is associated with aggressive tumor characteristics and worse clinical outcomes in muscle invasive bladder cancer (MIBC) patients. The mechanism by which STAG2 acts in a pro-oncogenic manner in bladder cancer remains unknown. Due to this elusive role of STAG2, targetable vulnerabilities based on STAG2 expression have not yet been identified. In the current study, we sought to uncover therapeutic vulnerabilities of muscle invasive bladder cancer cells based on the expression of STAG2. Using CRISPR-Cas9, we generated isogenic STAG2 wild-type (WT) and knock out (KO) cell lines and treated each cell line with a panel of 312 anti-cancer compounds. We identified 100 total drug hits and found that STAG2 KO sensitized cells to treatment with PLK1 inhibitor rigosertib, whereas STAG2 KO protected cells from treatment with MEK inhibitor TAK-733 and PI3K inhibitor PI-103. After querying drug sensitivity data of over 4500 drugs in 24 bladder cancer cell lines from the DepMap database, we found that cells with less STAG2 mRNA expression are more sensitive to ATR and CHK inhibition. In dose-response studies, STAG2 KO cells are more sensitive to the ATR inhibitor berzosertib, whereas STAG2 WT cells are more sensitive to PI3K inhibitor PI-103. These results, in combination with RNA-seq analysis of STAG2-regulated genes, suggest a novel role of STAG2 in regulating PI3K signaling in bladder cancer cells. Finally, synergy experiments revealed that berzosertib exhibits significant synergistic cytotoxicity in combination with cisplatin against MIBC cells. Altogether, our study presents evidence that berzosertib, PI-103, and the combination of berzosertib with cisplatin may be novel opportunities to investigate as precision medicine approaches for MIBC patients based on STAG2 tumor expression.
Collapse
Affiliation(s)
- Sarah R Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Henry Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aimee Stablewski
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joyce Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
2
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. eLife 2025; 13:RP95952. [PMID: 39960487 PMCID: PMC11832170 DOI: 10.7554/elife.95952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.
Collapse
Affiliation(s)
- Ashley L Cook
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Surojit Sur
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Laura Dobbyn
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Evangeline Watson
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joshua D Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Blair Ptak
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Bum Seok Lee
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Suman Paul
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Emily Hsiue
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurosurgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kathy Gabrielson
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Shibin Zhou
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nicolas Wyhs
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
3
|
Zhang W, Xiao Y, Zhu X, Zhang Y, Xiang Q, Wu S, Song X, Zhao J, Yuan R, Li Q, Xiao B, Li L. Integrative Pan-Cancer Analysis Reveals the Oncogenic Role of MND1 and Validation of MND1's Role in Breast Cancer. J Inflamm Res 2024; 17:4721-4746. [PMID: 39051055 PMCID: PMC11268618 DOI: 10.2147/jir.s458832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Meiotic nuclear division 1 (MND1) is a meiosis-specific protein that promotes lung adenocarcinoma progression. However, its expression and biological function across cancers remain largely unexplored. Patients and Methods The expression, prognostic significance, mutation status, and methylation profile of MND1 in various cancers were comprehensively analyzed using the TIMER, GTEX, Kaplan-Meier plotter, cBioPortal, and GSCA databases. Additionally, we constructed a PPI network, enrichment analysis and single-cell transcriptomic sequencing to elucidate the underlying mechanism of MND1. Furthermore, we investigated the association between MND1 expression and drug sensitivity using CellMiner. Moreover, we also explored the correlation between MND1 expression and immune infiltration. Finally, we validated the functional role of MND1 in breast cancer through IHC staining, CCK8, EdU, colony formation, and flow cytometry assays. Results MND1 has been reported to be highly expressed in Pan-cancer, High MND1 expression was significantly associated with poor prognosis in cancers. Additionally, MND1 mutation frequency is high in most cancers, and its expression correlates with methylation. Furthermore, MND1 expression significantly correlates with immune checkpoint blockade (ICB) markers, including PD-L1, PD-1, and CTLA-4. The PPI network reveals interactions between MND1 and PSMC3IP, BRCA1, and BRCA2. Enrichment analysis and single-cell sequencing indicate that MND1 positively correlates with cell cycle. ROC curve reveals favorable diagnostic efficacy of MND1 in breast cancer. In vitro, MND1 overexpression promotes breast cancer cell proliferation and increases the expression of key cell cycle regulators (CDK4, CDK6, and cyclin D3), accelerating the G1/S phase transition and leading to abnormal breast cancer cell proliferation. The immunohistochemical analysis revealed a robust expression of MND1 in breast cancer tissues, exhibiting a significant positive correlation with PD-L1 and FOXP3. Conclusion MND1 is an oncogene and may serve as a biomarker for cancer prognosis and immunotherapy. Targeting MND1 may be a potential tumor treatment strategy.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
- Department of Laboratory Medicine, Suzhou Municipal Hospital, Affiliated to Nanjing Medical University, Suzhou, 21500, People’s Republic of China
| | - Yuhan Xiao
- School of Public Health, Dali University, Dali, 671000, People’s Republic of China
| | - Xin Zhu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Qin Xiang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Xiaoyu Song
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Junxiu Zhao
- School of Public Health, Dali University, Dali, 671000, People’s Republic of China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Qiguang Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Bin Xiao
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| |
Collapse
|
4
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573594. [PMID: 38234817 PMCID: PMC10793421 DOI: 10.1101/2023.12.28.573594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.
Collapse
|
5
|
Berndt-Paetz M, Han S, Weimann A, Reinhold A, Nürnberger S, Neuhaus J. Cell Line-Based Human Bladder Organoids with Bladder-like Self-Organization-A New Standardized Approach in Bladder Cancer Research. Biomedicines 2023; 11:2958. [PMID: 38001959 PMCID: PMC10669858 DOI: 10.3390/biomedicines11112958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Three-dimensional tumor models have gained significant importance in bladder cancer (BCa) research. Organoids consisting of different cell types better mimic solid tumors in terms of 3D architecture, proliferation, cell-cell interaction and drug responses. We developed four organoids from human BCa cell lines with fibroblasts and smooth muscle cells of the bladder, aiming to find models for BCa research. The organoids were characterized in terms of cytokeratins, vimentin, α-actin and KI67 by immunoreactivity. Further, we studied ligand-dependent activation of the Wnt/β-catenin pathway and investigated the responses to anti-tumor therapies. The organoids mimicked the structure of an inverse bladder wall, with outside urothelial cells and a core of supportive cells. The cytokeratin staining patterns and proliferation rate were in conjunction with the origins of the BCa cells. RT-112 even showed stratification of the epithelium. Treatment with Wnt10B led to increased β-catenin (active) levels in high-grade organoids, but not in low-grade BCa cells. Doxorubicin treatment resulted in clearly reduced viability (10-30% vs. untreated). In contrast, the effectivity of radiotherapy depended on the proliferation status of BCa cells. In conclusion, cell-line-based organoids can form bladder-like structures and reproduce in vivo features such as urothelial differentiation and stratification. Thus, they can be useful tools for functional studies in BCa and anti-cancer drug development.
Collapse
Affiliation(s)
- Mandy Berndt-Paetz
- Department of Urology, Research Laboratories, Leipzig University, 04103 Leipzig, Germany; (A.W.); (A.R.); (S.N.)
| | - Shanfu Han
- Clinical Apartment, Cornerstone MedTech (Beijing) Limited, Beijing 100005, China;
| | - Annett Weimann
- Department of Urology, Research Laboratories, Leipzig University, 04103 Leipzig, Germany; (A.W.); (A.R.); (S.N.)
| | - Annabell Reinhold
- Department of Urology, Research Laboratories, Leipzig University, 04103 Leipzig, Germany; (A.W.); (A.R.); (S.N.)
| | - Sandra Nürnberger
- Department of Urology, Research Laboratories, Leipzig University, 04103 Leipzig, Germany; (A.W.); (A.R.); (S.N.)
| | - Jochen Neuhaus
- Department of Urology, Research Laboratories, Leipzig University, 04103 Leipzig, Germany; (A.W.); (A.R.); (S.N.)
| |
Collapse
|
6
|
Athans SR, Krishnan N, Ramakrishnan S, Cortes Gomez E, Lage-Vickers S, Rak M, Kazmierczak ZI, Ohm JE, Attwood K, Wang J, Woloszynska A. STAG2 expression is associated with adverse survival outcomes and regulates cell phenotype in muscle-invasive bladder cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:1129-1143. [PMID: 36275363 PMCID: PMC9583756 DOI: 10.1158/2767-9764.crc-22-0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
STAG2 (Stromal Antigen 2), in healthy somatic cells, functions in sister chromatid cohesion, DNA damage repair, and genome organization, but its role in muscle invasive bladder cancer (MIBC) remains unknown. Here, using whole-exome and targeted sequencing (n=119 bladder cancer clinical samples), we found several STAG2 mutations in MIBC that correlate with loss of protein expression. The analysis of a bladder cancer tissue microarray (n=346) revealed that decreased STAG2 protein expression is associated with improved overall and progression-free survival for MIBC patients. In mouse xenograft studies, STAG2 knockdown (KD) decelerated MIBC tumor growth, whereas STAG2 overexpression accelerated tumor growth. In cell line studies, STAG2 loss augmented treatment with cisplatin, a first-line therapy for MIBC. STAG2 KD or overexpression did not alter degree of aneuploidy, copy number variations, or cell cycle distribution. However, unbiased RNA sequencing analysis revealed that STAG2 KD altered gene expression. STAG2 KD led to significant downregulation of several gene sets, such as collagen containing extracellular matrix, external encapsulating structure organization, and regulation of chemotaxis. Therefore, we investigated the effect of STAG2 KD on cell migration and invasion in vitro. We found that STAG2 KD minimized cell speed, displacement, and invasion. Altogether, our results present a non-canonical function of STAG2 in promoting cell motility and invasion of MIBC cells. This work forms the basis for additional investigation into the role of STAG2 in transcriptional regulation and how it becomes dysregulated in STAG2-mutant MIBC.
Collapse
Affiliation(s)
- Sarah R. Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nithya Krishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Monika Rak
- Department of Cell Biology, Jagiellonian University, 31-007, Krakow, Poland
| | - Zara I. Kazmierczak
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joyce Ellen Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Corresponding Author: Anna Woloszynska, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203. Phone: 716-845-8495; E-mail:
| |
Collapse
|
7
|
El Ahanidi H, El Azzouzi M, Arrouchi H, Alaoui CH, Tetou M, Bensaid M, Oukabli M, Ameur A, Al Bouzidi A, El Mzibri M, Attaleb M. AKT1 and PIK3CA activating mutations in Moroccan bladder cancer patients´ biopsies and matched urine. Pan Afr Med J 2022; 41:59. [PMID: 35317488 PMCID: PMC8917451 DOI: 10.11604/pamj.2022.41.59.31383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction in cancer cells, activating mutations in PIK3CA and AKT1 genes, major players of PI3K-AKT-mTOR signalling pathway, are widely reported in many cancers and present attractive targets for the identification of new therapeutics and better cancer management. The present study was planned to evaluate the mutational status of PIK3CA and AKT1 genes in bladder cancer patients and to assess the association between these mutations and patients´ clinico-pathological features. Methods in this prospective study, bladder cancer biopsies and matched urine sediments samples were collected form 70 patients. Mutations were assessed by deoxyribonucleic acid (DNA) sequencing and correlation with clinico-pathological data was performed using SPSS software. Results AKT1 alterations were poorly detected. Only one patient with pT1 stage and high-grade tumour carried the E17K mutation. In PIK3CA exon 9, 2 point mutations, E545K and Q546E, and a SNP (E547E) were reported, whereas in exon 20, 2 point mutations (L989V and H1047R) and 2 SNPs (I1022I and T1025T) were detected. PIK3CA mutations were mainly observed in early stages and high-grade tumours. Statistical analysis showed no significant association between the studied AKT1 and PIK3CA mutations and patients´ clinico-pathological parameters (p > 0.05). Detection of these mutations in voided urine samples showed a high specificity (100%) for both genes and a moderate sensitivity: 100% for AKT1 and 66.7% for PIK3CA genes. Conclusion this study shows clearly that mutations in AKT1 and PIK3CA are rare events and could not be considered as valuable biomarkers for bladder cancer management.
Collapse
Affiliation(s)
- Hajar El Ahanidi
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco.,Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Meryem El Azzouzi
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco.,Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Housna Arrouchi
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco
| | | | | | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.,Military Hospital Mohammed V, Rabat, Morocco
| | - Ahmed Ameur
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.,Military Hospital Mohammed V, Rabat, Morocco
| | | | - Mohammed El Mzibri
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco
| | - Mohammed Attaleb
- Biology and Medical Research Unit, The National Center for Energy and Nuclear Science and Technology, Rabat, Morocco
| |
Collapse
|
8
|
Mastri M, Ramakrishnan S, Shah SD, Karasik E, Gillard BM, Moser MT, Farmer BK, Azabdaftari G, Chatta GS, Woloszynska A, Eng KH, Foster BA, Huss WJ. Patient derived models of bladder cancer enrich the signal of the tumor cell transcriptome facilitating the analysis of the tumor cell compartment. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:416-434. [PMID: 34993263 PMCID: PMC8727788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 06/14/2023]
Abstract
The evolving paradigm of the molecular classification of bladder cancer requires models that represent the classifications with less heterogeneity. Robust transcriptome based molecular classifications are essential to address tumor heterogeneity. Patient derived models (PDMs) are a powerful preclinical tool to study specific tumor compartments. We tested if the consensus molecular subtype analysis was applicable to PDMs and evaluated the tumor compartment each model represents. PDMs derived from surgical specimens were established as xenografts (PDX), organoids (PDO), and spheroids (PDS). The surgical specimens and PDMs were molecularly characterized by RNA sequencing. PDMs that were established in immune deficient mice or in vitro significantly downregulated transcripts related to the immune and stromal compartments compared to the surgical specimens. However, PDMs upregulate a patient-specific bladder cancer cell signal which allowed for analysis of cancer cell pathways independent of the tumor microenvironment. Based on transcriptomic signatures, PDMs are more similar to their surgical specimen than the model type; indicating that the PDMs retained unique features of the tumor from which the PDM was derived. When comparing models, PDX models were the most similar to the surgical specimen, while PDO and PDS models were most similar to each other. When the consensus molecular subtype classification system was applied to both the surgical samples and the three PDMs, good concordance was found between all samples indicating that this system of classification can be applied to PDO and PDS models. PDMs reduce tumor heterogeneity and allow analysis of tumor cells while maintaining the gene expression profile representative of the original tumor.
Collapse
Affiliation(s)
- Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Shruti D Shah
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Bryan M Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Michael T Moser
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Bailey K Farmer
- Department of Medicine, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Gissou Azabdaftari
- Department of Pathology, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Gurkamal S Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Kevin H Eng
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| | - Wendy J Huss
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer CenterBuffalo 14263, NY, USA
| |
Collapse
|
9
|
Liu S, Chen X, Lin T. Emerging strategies for the improvement of chemotherapy in bladder cancer: Current knowledge and future perspectives. J Adv Res 2021; 39:187-202. [PMID: 35777908 PMCID: PMC9263750 DOI: 10.1016/j.jare.2021.11.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The response of chemotherapy and prognosis in bladder cancer is unsatisfied. Immunotherapy, targeted therapy, and ADC improve the efficacy of chemotherapy. Emerging targets in cancer cells and TME spawned novel preclinical agents. Novel drug delivery, such as nanotechnology, enhances effects of chemotherapeutics. The organoid and PDX model are promising to screen and evaluate the target therapy.
Background Chemotherapy is a first-line treatment for advanced and metastatic bladder cancer, but the unsatisfactory objective response rate to this treatment yields poor 5-year patient survival. Only PD-1/PD-L1-based immune checkpoint inhibitors, FGFR3 inhibitors and antibody-drug conjugates are approved by the FDA to be used in bladder cancer, mainly for platinum-refractory or platinum-ineligible locally advanced or metastatic urothelial carcinoma. Emerging studies indicate that the combination of targeted therapy and chemotherapy shows better efficacy than targeted therapy or chemotherapy alone. Newly identified targets in cancer cells and various functions of the tumour microenvironment have spawned novel agents and regimens, which give impetus to sensitizing chemotherapy in the bladder cancer setting. Aim of Review This review aims to present the current evidence for potentiating the efficacy of chemotherapy in bladder cancer. We focus on combining chemotherapy with other treatments as follows: targeted therapy, including immunotherapy and antibody-drug conjugates in clinic; novel targeted drugs and nanoparticles in preclinical models and potential targets that may contribute to chemosensitivity in future clinical practice. The prospect of precision therapy is also discussed in bladder cancer. Key Scientific Concepts of Review Combining chemotherapy drugs with immune checkpoint inhibitors, antibody-drug conjugates and VEGF inhibitors potentially elevates the response rate and survival. Novel targets, including cancer stem cells, DNA damage repair, antiapoptosis, drug metabolism and the tumour microenvironment, contribute to chemosensitization. Gene alteration-based drug selection and patient-derived xenograft- and organoid-based drug validation are the future for precision therapy.
Collapse
|
10
|
Zhu S, Zhu Z, Ma AH, Sonpavde GP, Cheng F, Pan CX. Preclinical Models for Bladder Cancer Research. Hematol Oncol Clin North Am 2021; 35:613-632. [PMID: 33958154 DOI: 10.1016/j.hoc.2021.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
At diagnosis, more than 70% of bladder cancers (BCs) are at the non-muscle-invasive bladder cancer (NMIBC) stages, which are usually treated with transurethral resection followed by intravesical instillation. For the remaining advanced cancers, systemic therapy is the standard of care, with addition of radical cystectomy in cases of locally advanced cancer. Because of the difference in treatment modalities, different models are needed to advance the care of NMIBC and advanced BC. This article gives a comprehensive review of both in vitro and in vivo BC models and compares the advantages and drawbacks of these preclinical systems in BC research.
Collapse
Affiliation(s)
- Shaoming Zhu
- Department of Urology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Hubei Province, 430060, China; Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, USA
| | - Zheng Zhu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ai-Hong Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, 2700 Stockton BLVD, Sacramento, CA 95817, USA
| | - Guru P Sonpavde
- Dana-Farber Cancer Institute, Harvard University, 450 Brookline Ave, Boston, MA 02215, USA
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang District, Hubei Province, 430060, China.
| | - Chong-Xian Pan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; VA Boston Healthcare System, West Roxbury, MA, USA.
| |
Collapse
|
11
|
Caston RA, Shah F, Starcher CL, Wireman R, Babb O, Grimard M, McGeown J, Armstrong L, Tong Y, Pili R, Rupert J, Zimmers TA, Elmi AN, Pollok KE, Motea EA, Kelley MR, Fishel ML. Combined inhibition of Ref-1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co-culture models. J Cell Mol Med 2021; 25:784-800. [PMID: 33274592 PMCID: PMC7812272 DOI: 10.1111/jcmm.16132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
With a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref-1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF-κB, AP-1, HIF-1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref-1 (redox factor-1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref-1 in multiple cancer types. Using targeted small molecule inhibitors, Ref-1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer-associated fibroblasts (CAF) response to determine the synergy of Ref-1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref-1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.
Collapse
Affiliation(s)
- Rachel A. Caston
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Colton L. Starcher
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Randall Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Michelle Grimard
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Jack McGeown
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Lee Armstrong
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Yan Tong
- Department of BiostatisticsIndiana University School of MedicineIndianapolisINUSA
| | - Roberto Pili
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Department of UrologyIndiana University School of MedicineIndianapolisINUSA
- Department of Hematology and OncologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Joseph Rupert
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Richard L. Roudebush Veterans Administration Medical CenterIndianapolisINUSA
| | - Adily N. Elmi
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Karen E. Pollok
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Edward A. Motea
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Mark R. Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Melissa L. Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
12
|
Kita Y, Saito R, Inoue T, Kim WY, Ogawa O, Kobayashi T. Patient-Derived Urothelial Cancer Xenograft Models: A Systematic Review and Future Perspectives. Bladder Cancer 2020. [DOI: 10.3233/blc-200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Lack of appropriate models that recapitulate the diversity, heterogeneity, and tumor microenvironment of urothelial cancer (UC) is a limitation to preclinical models. Patient-derived xenograft (PDX) models are a promising tool to overcome some of these issues, and thus we present an up-to-date and comprehensive overview of UC PDX models to aid in their future use. OBJECTIVE: To provide an overview on methodology, applications and limitations as well as future perspectives on bladder cancer PDX models. METHODS: Literature searches using PubMed and Web of Science databases were performed for relevant articles according to the following MeSH terms: “urothelial carcinoma(s)” OR “urothelial cancer” OR “urothelial tumor” OR “bladder cancer(s)” OR “bladder carcinoma(s)” OR “transitional cell carcinoma(s)” AND “xenograft(s)” OR “xenotransplant” at December 6th, 2019. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS: Of the 49 studies extracted, 41 studies after the year 2000 were finally analyzed. Published studies show that (1) UC PDX platforms retained the histology and genomic characteristics of the corresponding patient tumors. (2) UC PDX can be applied to ask various questions including to study the mechanisms of disease progression and treatment resistance, to develop novel drugs and biomarkers, as well as to potentially realize personalized drug selection. Recent topics of research using PDX have included the development of humanized mice as well as the use of 3D culture to complement some of the limitations of PDX models. CONCLUSIONS: UC PDX models serve as tools for understanding cancer biology, drug development and empowering precision medicine. The improvement of experimental systems using humanized mice to recapitulate the immune microenvironment of tumors will optimize UC PDX to study future questions in the field of immunotherapy.
Collapse
Affiliation(s)
- Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ryoichi Saito
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - William Y. Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Liu W, Ju L, Cheng S, Wang G, Qian K, Liu X, Xiao Y, Wang X. Conditional reprogramming: Modeling urological cancer and translation to clinics. Clin Transl Med 2020; 10:e95. [PMID: 32508060 PMCID: PMC7403683 DOI: 10.1002/ctm2.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Patient-derived models, including cell models (organoids and conditionally reprogrammed cells [CRCs]) and patient-derived xenografts, are urgently needed for both basic and translational cancer research. Conditional reprogramming (CR) technique refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. Considering its robust features, the CR technique may facilitate cancer research in many aspects. Under in vitro culturing, malignant CRCs can share certain genetic aberrations and tumor phenotypes with their parental specimens. Thus, tumor CRCs can promisingly be utilized for the study of cancer biology, the discovery of novel therapies, and the promotion of precision medicine. For normal CRCs, the characteristics of normal karyotype maintenance and lineage commitment suggest their potential in toxicity testing and regenerative medicine. In this review, we discuss the applications, limitations, and future potential of CRCs in modeling urological cancer and translation to clinics.
Collapse
Affiliation(s)
- Wei Liu
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Lingao Ju
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Songtao Cheng
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Gang Wang
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Kaiyu Qian
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| | - Yu Xiao
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
- Human Genetic Resources Preservation Center of Hubei ProvinceWuhanChina
| | - Xinghuan Wang
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Medical Research InstituteWuhan UniversityWuhanChina
| |
Collapse
|
14
|
Tracey AT, Murray KS, Coleman JA, Kim K. Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12020439. [PMID: 32069881 PMCID: PMC7072311 DOI: 10.3390/cancers12020439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
The engraftment of human tumor tissues into immunodeficient host mice to generate patient-derived xenograft (PDX) models has become increasingly utilized for many types of cancers. By capturing the unique genomic and molecular properties of the parental tumor, PDX models enable analysis of patient-specific clinical responses. PDX models are an important platform to address the contribution of inter-tumoral heterogeneity to therapeutic sensitivity, tumor evolution, and the mechanisms of treatment resistance. With the increasingly important role played by targeted therapies in urological malignancies, the establishment of representative PDX models can contribute to improved facilitation and adoption of precision medicine. In this review of the evolving role of the PDX in urothelial cancer and kidney cancer, we discuss the essential elements of successful graft development, effective translational application, and future directions for clinical models.
Collapse
Affiliation(s)
- Andrew T. Tracey
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.T.T.); (J.A.C.)
| | - Katie S. Murray
- Department of Surgery, Division of Urology, University of Missouri, Columbia, MO 65211, USA;
| | - Jonathan A. Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.T.T.); (J.A.C.)
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence: ; Tel.: +1-646-422-4432
| |
Collapse
|
15
|
Fishel ML, Xia H, McGeown J, McIlwain DW, Elbanna M, Craft AA, Kaimakliotis HZ, Sandusky GE, Zhang C, Pili R, Kelley MR, Jerde TJ. Antitumor Activity and Mechanistic Characterization of APE1/Ref-1 Inhibitors in Bladder Cancer. Mol Cancer Ther 2019; 18:1947-1960. [PMID: 31413178 DOI: 10.1158/1535-7163.mct-18-1166] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/15/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Bladder cancer is the ninth most common cause of cancer-related deaths worldwide. Although cisplatin is used routinely in treating bladder cancer, refractory disease remains lethal for many patients. The recent addition of immunotherapy has improved patient outcomes; however, a large cohort of patients does not respond to these treatments. Therefore, identification of innovative molecular targets for bladder cancer is crucial. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in both DNA repair and activation of transcription factors through reduction-oxidation (redox) regulation. High APE1/Ref-1 expression is associated with shorter patient survival time in many cancer types. In this study, we found high APE1/Ref-1 expression in human bladder cancer tissue relative to benign urothelium. Inhibition of APE1/Ref-1 redox signaling using APE1/Ref-1-specific inhibitors attenuates bladder cancer cell proliferation in monolayer, in three-dimensional cultures, and in vivo. This inhibition corresponds with an increase in apoptosis and decreased transcriptional activity of NF-κB and STAT3, transcription factors known to be regulated by APE1/Ref-1, resulting in decreased expression of downstream effectors survivin and Cyclin D1 in vitro and in vivo. We also demonstrate that in vitro treatment of bladder cancer cells with APE1/Ref-1 redox inhibitors in combination with standard-of-care chemotherapy cisplatin is more effective than cisplatin alone at inhibiting cell proliferation. Collectively, our data demonstrate that APE1/Ref-1 is a viable drug target for the treatment of bladder cancer, provide a mechanism of APE1/Ref-1 action in bladder cancer cells, and support the use of novel redox-selective APE1/Ref-1 inhibitors in clinical studies. SIGNIFICANCE: This work identifies a critical mechanism for APE1/Ref-1 in bladder cancer growth and provides compelling preclinical data using selective redox activity inhibitors of APE1/Ref-1 in vitro and in vivo.
Collapse
Affiliation(s)
- Melissa L Fishel
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hanyu Xia
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jack McGeown
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,University of Ulster, Coleraine, Northern Ireland
| | - David W McIlwain
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - May Elbanna
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ariel A Craft
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University Simon Cancer Center, Indianapolis, Indiana
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Roberto Pili
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Travis J Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana. .,Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
16
|
Ragunathan A, Malathi K, Ramaiah S, Anbarasu A. FtsA as a cidal target for Staphylococcus aureus: Molecular docking and dynamics studies. J Cell Biochem 2019; 120:7751-7758. [PMID: 30417432 DOI: 10.1002/jcb.28049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Staphylococcus aureus infection is a healthcare problem to mankind for a considerable period of time. Once when it enters the bloodstream of an individual, it may potentially result in life-threatening conditions. The resistance of S. aureus to various drugs such as penicillin, methicillin, gentamicin, erythromycin, and tetracycline have been well documented. Presently vancomycin is the drug of choice for methicillin resistant S. aureus. Scientists believe that S. aureus would completely develop resistance to vancomycin as well. Therefore there is a commensurate need to develop a drug to replace vancomycin. In the current study, we have focussed on FtsA, an important and vital cell division protein, which is found only in S. aureus and in other prokaryotic cells. We have carried out virtual screening process for FtsA against ZINC database, the best hit molecules obtained from the preliminary docking studies were subjected to SYBYL X 2.0 docking. The molecules ZINC74432848, ZINC37769607, and ZINC96896268 displayed the highest C-score value of 4.89, 4.49, and 4.22, respectively. The top ranked molecule ZINC74432848 was observed to form 4 hydrogen bonds with FtsA. The simulation study reveals the greater stability of the FtsA-ZINC74432848 complex. If the in vitro and in vivo study turns out affirmative, then ZINC74432848 could be developed as a potent drug for FtsA.
Collapse
Affiliation(s)
- Adhithya Ragunathan
- Department of Biotechnology, Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kullappan Malathi
- Department of Biotechnology, Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sudha Ramaiah
- Department of Biotechnology, Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Anbarasu
- Department of Biotechnology, Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
17
|
Malathi K, Ramaiah S, Anbarasu A. Comparative Molecular Field Analysis and Molecular Docking Studies on Quinolinone Derivatives Indicate Potential Hepatitis C Virus Inhibitors. Cell Biochem Biophys 2019; 77:139-156. [PMID: 30796723 DOI: 10.1007/s12013-019-00867-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/09/2019] [Indexed: 12/12/2022]
Abstract
Presently, there are no effective vaccines and anti-virals for the prevention and treatment of Hepatitis C virus infections and hence there is an urgent need to develop potent HCV inhibitors. In this study, we have carried out molecular docking, molecular dynamics and 3D-QSAR on heteroaryl 3-(1,1-dioxo-2H-(1,2,4)-benzothiadizin-3-yl)-4-hydroxy-2(1H)-quinolinone series using NS5B protein. Total of 41 quinolinone derivatives is used for molecular modeling study. The binding conformation and hydrogen bond interaction of the docked complexes were analyzed to model the inhibitors. We identified the molecule XXXV that had a higher affinity with NS5B. The molecular dynamics study confirmed the stability of the compound XXXV-NS5B complex. The developed CoMFA descriptors parameters, which were calculated using a test set of 13 compounds, were statistically significant. Our results will provide useful insights and lead to design potent anti-Hepatitis C virus molecules.
Collapse
Affiliation(s)
- Kullappan Malathi
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
18
|
Syring I, Weiten R, Müller T, Schmidt D, Steiner S, Kristiansen G, Müller SC, Ellinger J. The knockdown of the Mediator complex subunit MED15 restrains urothelial bladder cancer cells' malignancy. Oncol Lett 2018; 16:3013-3021. [PMID: 30127891 PMCID: PMC6096071 DOI: 10.3892/ol.2018.9014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/05/2018] [Indexed: 01/07/2023] Open
Abstract
The Mediator complex, a multi-subunit protein complex, plays an integral role in regulating transcription. Genetic alterations of the mediator subunit 15 (MED15) in separate tumor entities have been described previously. However, till now, not much is known about the role of MED15 in urothelial bladder cancer (BCa). Using cBioPortal, database analysis was executed for the mRNA expression and survival analysis of MED15 in BCa. Immunohistochemistry (IHC) analysis against MED15 was performed on tissue microarrays with 18 benign, 126 BCa, and 38 metastases samples. The intensity evaluation was performed using a staining intensity score from 0 to 3 and associated with clinicopathological data. The BCa cell lines T24 and TCCSUP were used for the functional investigation. After the MED15 knockdown by small interfering (si)RNA, cell proliferation, migration and invasion were investigated. On the mRNA level, only a low number of alterations (2%) was found for MED15 in BCa. Due to the small count of events, there were no significant differences or tendencies in survival. For IHC, MED15 was found to have a higher expression in non-muscle invasive BCa compared with benign and muscle invasive BCa. For survival analysis, no significant differences between samples with or without overexpression of MED15 were found. In the functional analysis, proliferation, migration, and invasion were significantly reduced in BCa-cells following the transient siRNA-mediated MED15 knockdown. In summary, MED15 appears to play a role in the tumor parameters proliferation, migration, and invasion in BCa, but further investigations are necessary.
Collapse
Affiliation(s)
- Isabella Syring
- Clinic for Urology and Paediatric Urology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Richard Weiten
- Clinic for Urology and Paediatric Urology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Tim Müller
- Institute of Pathology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Doris Schmidt
- Clinic for Urology and Paediatric Urology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Susanne Steiner
- Institute of Pathology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Stefan C Müller
- Clinic for Urology and Paediatric Urology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Jörg Ellinger
- Clinic for Urology and Paediatric Urology, University Hospital of Bonn, D-53127 Bonn, Germany
| |
Collapse
|
19
|
Malathi K, Ramaiah S. Mechanism of imipenem resistance in metallo‐β‐lactamases expressing pathogenic bacterial spp. and identification of potential inhibitors: An in silico approach. J Cell Biochem 2018; 120:584-591. [DOI: 10.1002/jcb.27414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Kullappan Malathi
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| |
Collapse
|
20
|
Malathi K, Ramaiah S. Bioinformatics approaches for new drug discovery: a review. Biotechnol Genet Eng Rev 2018; 34:243-260. [DOI: 10.1080/02648725.2018.1502984] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sudha Ramaiah
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu
| |
Collapse
|
21
|
Ramakrishnan S, Huss W, Foster B, Ohm J, Wang J, Azabdaftari G, Eng KH, Woloszynska-Read A. Transcriptional changes associated with in vivo growth of muscle-invasive bladder cancer cell lines in nude mice. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2018; 6:138-148. [PMID: 30038946 PMCID: PMC6055076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Cancer cells set in motion transcriptomic programs allowing for adaptation and growth in immunocompromised mice to form xenografts, a frequently used tool in cancer research. 2D cultures may not be representative of tumors growing in a complex host microenvironment. This can result in different responses to the same agent tested in vitro and in vivo which impedes the process of developing novel therapeutics. Understanding the transition cells undergo from 2D cell culture to a 3D host microenvironment will help in developing and choosing appropriate models for pre-clinical studies. Our study characterized the transcriptome of a three frequently used muscle-invasive bladder cancer cell lines HT1376, T24 and UM-UC-3 grown in culture and xenografts in nude mice. We found that bladder cancer cells undergo few transcriptomic changes when transitioned from 2D cell culture to xenografts in nude mice. UM-UC-3 cells have the least transcriptomic alterations followed by T24 and HT1376 cells. Respective xenografts cluster with their parental cell lines rather than other xenografts or cell lines. We applied established bladder cancer molecular subtypes to our data and found that UM-UC-3, containing the least transcriptomic alterations, most closely resembled the basal-like molecular subtype of bladder cancer. HT1376 and T24 have mixed basal and luminal molecular signatures. Our studies suggest this subset of bladder cancer cell lines and derived xenografts maintain similar transcriptomic profiles in both 2D culture and 3D xenografts and can be used interchangeably in pre-clinical studies.
Collapse
Affiliation(s)
- Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Cancer InstituteBuffalo, NY 14263, USA
| | - Wendy Huss
- Department of Pharmacology and Therapeutics, Roswell Park Cancer InstituteBuffalo, NY 14263, USA
| | - Barbara Foster
- Department of Pharmacology and Therapeutics, Roswell Park Cancer InstituteBuffalo, NY 14263, USA
| | - Joyce Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer InstituteBuffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Cancer InstituteBuffalo, NY 14263, USA
| | - Gissou Azabdaftari
- Department of Pathology, Roswell Park Cancer InstituteBuffalo, NY 14263, USA
| | - Kevin H Eng
- Department of Bioinformatics and Biostatistics, Roswell Park Cancer InstituteBuffalo, NY 14263, USA
| | - Anna Woloszynska-Read
- Department of Pharmacology and Therapeutics, Roswell Park Cancer InstituteBuffalo, NY 14263, USA
| |
Collapse
|
22
|
Sakamoto Y, Yamagishi S, Tanizawa Y, Tajimi M, Okusaka T, Ojima H. PI3K-mTOR pathway identified as a potential therapeutic target in biliary tract cancer using a newly established patient-derived cell panel assay. Jpn J Clin Oncol 2018; 48:396-399. [PMID: 29474549 DOI: 10.1093/jjco/hyy011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Biliary tract carcinoma (BTC) is an extremely malignant tumor, but available treatment options are limited. Despite of needs for novel therapies, few BTC-related resources are currently available for evaluation of candidate drugs. To address this issue, we have recently established 13 cell lines from surgical specimens from Japanese BTC patients. In the present study, we evaluated four new molecular targeting agents using our BTC cell-based assay panel with 17 BTC cell lines. PI3K/mTOR dual inhibitor LY3023414 showed activity at submicromolar concentration ranges against 13 of the 17 cell lines tested, including the ones with gemcitabine insensitivity. In conclusion, we demonstrated that in vitro study with the BTC cell line panel would be an efficient approach to screen for novel therapeutic strategies. Although this is preliminary result and further investigations are required for confirmation, PI3K/mTOR inhibitor might be a potential target for BTC drug development.
Collapse
Affiliation(s)
- Yasunari Sakamoto
- Department of Hepatobiliary and Pancreatic Oncology, Tokyo, National Cancer Center Hospital
| | - Seri Yamagishi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo
| | | | | | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, Tokyo, National Cancer Center Hospital
| | - Hidenori Ojima
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo.,Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Decitabine, a DNA-demethylating agent, promotes differentiation via NOTCH1 signaling and alters immune-related pathways in muscle-invasive bladder cancer. Cell Death Dis 2017; 8:3217. [PMID: 29242529 PMCID: PMC5870579 DOI: 10.1038/s41419-017-0024-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation observed in cancer can provide survival benefits to cells by silencing genes essential for anti-tumor activity. DNA-demethylating agents such as Decitabine (DAC)/Azacitidine (AZA) activate otherwise silenced tumor suppressor genes, alter immune response and epigenetically reprogram tumor cells. In this study, we show that non-cytotoxic nanomolar DAC concentrations modify the bladder cancer transcriptome to activate NOTCH1 at the mRNA and protein level, increase double-stranded RNA sensors and CK5-dependent differentiation. Importantly, DAC treatment increases ICN1 expression (the active intracellular domain of NOTCH1) significantly inhibiting cell proliferation and causing changes in cell size inducing morphological alterations reminiscent of senescence. These changes were not associated with β-galactosidase activity or increased p16 levels, but instead were associated with substantial IL-6 release. Increased IL-6 release was observed in both DAC-treated and ICN1 overexpressing cells as compared to control cells. Exogenous IL-6 expression was associated with a similar enlarged cell morphology that was rescued by the addition of a monoclonal antibody against IL-6. Treatment with DAC, overexpression with ICN1 or addition of exogenous IL-6 showed CK5 reduction, a surrogate marker of differentiation. Overall this study suggests that in MIBC cells, DNA hypomethylation increases NOTCH1 expression and IL-6 release to induce CK5-related differentiation.
Collapse
|
24
|
Thillainayagam M, Malathi K, Ramaiah S. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biomol Struct Dyn 2017; 36:3993-4009. [DOI: 10.1080/07391102.2017.1404935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mahalakshmi Thillainayagam
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| |
Collapse
|
25
|
Zheng L, Li H, Mo Y, Qi G, Liu B, Zhao J. Autophagy inhibition sensitizes LY3023414-induced anti-glioma cell activity in vitro and in vivo. Oncotarget 2017; 8:98964-98973. [PMID: 29228741 PMCID: PMC5716781 DOI: 10.18632/oncotarget.22147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/13/2017] [Indexed: 11/25/2022] Open
Abstract
PI3K-AKT-mTOR signaling is a valuable treatment target for human glioma. LY3023414 is a novel, highly-potent and pan PI3K-AKT-mTOR inhibitor. Here, we show that LY3023414 efficiently inhibited survival and proliferation of primary and established human glioma cells. Meanwhile, apoptosis activation was observed in LY3023414-treated glioma cells. LY3023414 blocked AKT-mTOR activation in human glioma cells. Further studies show that LY3023414 induced feedback activation of autophagy in U251MG cells. On the other hand, autophagy inhibition via adding pharmacological inhibitors or silencing Beclin-1/ATG-5 significantly potentiated LY3023414-induced glioma cell apoptosis. In vivo studies demonstrated that U251MG xenograft tumor growth in mice was suppressed by oral administration of LY3023414. Remarkably, LY3023414's anti-tumor activity was further augmented against the Beclin-1-silenced U251MG tumors. Together, our results suggest that targeting PI3K-AKT-mTOR cascade by LY3023414 inhibits human glioma cell growth in vitro and in vivo. Autophagy inhibition could further sensitize LY3023414 against human glioma cells.
Collapse
Affiliation(s)
- Lan Zheng
- Neurology Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Huanyin Li
- Neurology Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanqing Mo
- Neurology Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Gong Qi
- Neurology Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Bin Liu
- Neurology Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Jing Zhao
- Neurology Department, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Spinelli A, Campennì P, Carvello M. Minimally invasive surgery for rectal cancer. COLOPROCTOLOGY 2017. [DOI: 10.1007/s00053-017-0196-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Zou Y, Ge M, Wang X. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Polo A, Crispo A, Cerino P, Falzone L, Candido S, Giudice A, De Petro G, Ciliberto G, Montella M, Budillon A, Costantini S. Environment and bladder cancer: molecular analysis by interaction networks. Oncotarget 2017; 8:65240-65252. [PMID: 29029427 PMCID: PMC5630327 DOI: 10.18632/oncotarget.18222] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is the 9th most common cancer worldwide, and the 6th most common cancer in men. Its development is linked to chronic inflammation, genetic susceptibility, smoking, occupational exposures and environmental pollutants. Aim of this work was to identify a sub-network of genes/proteins modulated by environmental or arsenic exposure in BC by computational network approaches. Our studies evidenced the presence of HUB nodes both in "BC and environment" and "BC and arsenicals" networks. These HUB nodes resulted to be correlated to circadian genes and targeted by some miRNAs already reported as involved in BC, thus suggesting how they play an important role in BC development due to environmental or arsenic exposure. Through data-mining analysis related to putative effect of the identified HUB nodes on survival we identified genes/proteins and their mutations on which it will be useful to focus further experimental studies related to the evaluation of their expression in biological matrices and to their utility as biomarkers of BC development.
Collapse
Affiliation(s)
- Andrea Polo
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Anna Crispo
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), Napoli, Italia
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology - Translational Oncology and Functional Genomics Laboratory, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology - Translational Oncology and Functional Genomics Laboratory, University of Catania, Catania, Italy
| | - Aldo Giudice
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Giuseppina De Petro
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italia
| | - Gennaro Ciliberto
- Scientific Directorate, Istituto Nazionale Tumori "Regina Elena", IRCCS, Roma, Italia
| | - Maurizio Montella
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| |
Collapse
|
29
|
Jin Z, Niu H, Wang X, Zhang L, Wang Q, Yang A. Preclinical study of CC223 as a potential anti-ovarian cancer agent. Oncotarget 2017; 8:58469-58479. [PMID: 28938571 PMCID: PMC5601667 DOI: 10.18632/oncotarget.17753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 01/23/2023] Open
Abstract
Aberrant activation of mTOR contributes to ovarian cancer progression. CC223 is a novel and potent mTOR kinase inhibitor. The current study tested its activity against human ovarian cancer cells. We showed that CC223, at nM concentrations, inhibited survival and proliferation of established/primary human ovarian cancer cells. Further, significant apoptosis activation was observed in CC223-treated ovarian cancer cells. CC223 disrupted assembly of mTOR complex 1 (mTORC1) and mTORC2 in SKOV3 cells. Meanwhile, activation of mTORC1 and mTORC2 was almost completely blocked by CC223. Intriguingly, restoring mTOR activation by introduction of a constitutively-active Akt1 only partially inhibited CC223-induced cytotoxicity in SKOV3 cells. Further studies showed that CC223 inhibited sphingosine kinase 1 (SphK1) activity and induced reactive oxygen species (ROS) production in SKOV3 cells. At last, oral administration of CC223 potently inhibited SKOV3 xenografted tumor growth in nude mice. The results of this study imply that CC223 could be further studied as a potential anti-ovarian cancer agent.
Collapse
Affiliation(s)
- Zhenzhen Jin
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huanfu Niu
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xuenan Wang
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lei Zhang
- Department of Pathology and Laboratory Medicine, Clinical Microarray Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Qin Wang
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Aijun Yang
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
30
|
Inoue T, Terada N, Kobayashi T, Ogawa O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat Rev Urol 2017; 14:267-283. [PMID: 28248952 DOI: 10.1038/nrurol.2017.19] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lack of appropriate models that recapitulate the complexity and heterogeneity of urological tumours precludes most of the preclinical reagents that target urological tumours from receiving regulatory approval. Patient-derived xenograft (PDX) models are characterized by direct engraftment of patient-derived tumour fragments into immunocompromised mice. PDXs can maintain the original histology, as well as the molecular and genetic characteristics of the source tumour. Thus, PDX models have various advantages over conventional cell-line-derived xenograft (CDX) and other models, which has resulted in an increase in the use of urological tumour PDXs in the analysis of tumour biology and, importantly, for drug development and treatment decisions in personalized medicine. PDX models of urological malignancies have great potential to be used for both basic and clinical research, but limitations exist and need to be overcome. In particular, several agents targeting the immune system have shown promising results in kidney and bladder cancer; however, establishing PDX models in mice with an intact immune system so that an immune response against the tumour is triggered is important to investigate these new therapeutics. Moreover, international collaboration to share PDX models is essential for research concerning fatal urological tumours.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| | - Naoki Terada
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| |
Collapse
|
31
|
Anisuzzaman ASM, Haque A, Wang D, Rahman MA, Zhang C, Chen Z, Chen ZG, Shin DM, Amin ARMR. In Vitro and In Vivo Synergistic Antitumor Activity of the Combination of BKM120 and Erlotinib in Head and Neck Cancer: Mechanism of Apoptosis and Resistance. Mol Cancer Ther 2017; 16:729-738. [PMID: 28119490 DOI: 10.1158/1535-7163.mct-16-0683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
We previously reported that the EGFR-targeted inhibitor erlotinib induces G1 arrest of squamous cell carcinoma of the head and neck (SCCHN) cell lines without inducing significant apoptosis. Large-scale genomic studies suggest that >50% of SCCHN cases have activation of PI3K pathways. This study investigated whether cotargeting of EGFR and PI3K has synergistic antitumor effects and apoptosis induction. We examined growth suppression, apoptosis, and signaling pathway modulation resulting from single and combined targeting of EGFR and PI3K with erlotinib and BKM120, respectively, in a panel of SCCHN cell lines and a xenograft model of SCCHN. In a panel of 12 cell lines, single targeting of EGFR with erlotinib or PI3K with BKM120 suppressed cellular growth without inducing significant apoptosis. Cotargeting of EGFR and PI3K synergistically inhibited SCCHN cell line and xenograft tumor growth, but induced variable apoptosis; some lines were highly sensitive, others were resistant. Mechanistic studies revealed that the combination inhibited both axes of the mTORC1 (S6 and 4EBP1) pathway in apoptosis-sensitive cell lines along with translational inhibition of Bcl-2, Bcl-xL, and Mcl-1, but failed to inhibit p-4EBP1, Bcl-2, Bcl-xL, and Mcl-1 in an apoptosis-resistant cell line. siRNA-mediated knockdown of eIF4E inhibited Bcl-2 and Mcl-1 and sensitized this cell line to apoptosis. Our results strongly suggest that cotargeting of EGFR and PI3K is synergistic and induces apoptosis of SCCHN cell lines by inhibiting both axes of the AKT-mTOR pathway and translational regulation of antiapoptotic Bcl-2 proteins. These findings may guide the development of clinical trials using this combination of agents. Mol Cancer Ther; 16(4); 729-38. ©2017 AACR.
Collapse
Affiliation(s)
- Abu Syed Md Anisuzzaman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Abedul Haque
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mohammad Aminur Rahman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Chao Zhang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Zhuo Georgia Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - A R M Ruhul Amin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|