1
|
Aswani BS, Sajeev A, Hegde M, Mishra A, Abbas M, Vayalpurayil T, Sethi G, Kunnumakkara AB. Exosomal dynamics: Bridging the gap between cellular senescence and cancer therapy. Mech Ageing Dev 2025; 225:112045. [PMID: 40074065 DOI: 10.1016/j.mad.2025.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Cancer remains one of the most devastating diseases, severely affecting public health and contributing to economic instability. Researchers worldwide are dedicated to developing effective therapeutics to target cancer cells. One promising strategy involves inducing cellular senescence, a complex state in which cells exit the cell cycle. Senescence has profound effects on both physiological and pathological processes, influencing cellular systems through secreted factors that affect surrounding and distant cells. Among these factors are exosomes, small extracellular vesicles that play crucial roles in cellular communication, development, and defense, and can contribute to pathological conditions. Recently, there has been increasing interest in engineering exosomes as precise drug delivery vehicles, capable of targeting specific cells or intracellular components. Studies have emphasized the significant role of exosomes from senescent cells in cancer progression and therapy. Notably, chemotherapeutic agents can alter the tumor microenvironment, induce senescence, and trigger immune responses through exosome-mediated cargo transfer. This review explores the intricate relationship between cellular senescence, exosomes, and cancer, examining how different therapeutics can eliminate cancer cells or promote drug resistance. It also investigates the molecular mechanisms and signaling pathways driving these processes, highlighting current challenges and proposing future perspectives to uncover new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Anamika Mishra
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Mohseni A, Salehi F, Rostami S, Hadiloo K, Hashemi M, Baridjavadi Z, Ahangari F, Karami N, Samani F, Tahmasebi S, Farahani N, Taheriazam A. Harnessing the power of exosomes for diagnosis, prognosis, and treatment of hematological malignancies. Stem Cell Res Ther 2025; 16:6. [PMID: 39773361 PMCID: PMC11708188 DOI: 10.1186/s13287-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are small extracellular vesicles of endocytic origin released by various cell types. They consist of lipid bilayers containing macromolecules such as lipids, proteins, microRNAs, growth factors, cytokines, and carbohydrates. Exosomes play a critical role in the diagnosis and treatment of various diseases. For instance, exosome contents have been utilized as biomarkers in body fluids (urine, saliva, serum) to identify cancers, autoimmune diseases, and inflammatory conditions such as sepsis. Due to their small size and ability to reach tumor microenvironments, exosomes are also used as carriers for chemotherapeutic drugs in drug delivery systems. Furthermore, evidence indicates that malignant cells release exosomes into the tumor microenvironment, influencing immune cells in a paracrine manner. Additionally, immune cell-derived exosomes, such as those from Natural Killer (NK) cells or cytotoxic T lymphocytes (CTLs), show potential as therapeutic agents in treating malignancies like leukemia. This review discusses the diagnostic role of exosomes in various hematological malignancies and explores the therapeutic potential of immune cell-derived exosomes in these diseases.
Collapse
Affiliation(s)
- Amirata Mohseni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fatemeh Salehi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kaveh Hadiloo
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Baridjavadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institue of Iran, Tehran, Iran
| | - Najibeh Karami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samani
- Blood Transfusion Research Center, High Institute for Research and Education in transfusion medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Gil-Kulik P, Kluz N, Przywara D, Petniak A, Wasilewska M, Frączek-Chudzik N, Cieśla M. Potential Use of Exosomal Non-Coding MicroRNAs in Leukemia Therapy: A Systematic Review. Cancers (Basel) 2024; 16:3948. [PMID: 39682135 DOI: 10.3390/cancers16233948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Leukemia is a heterogeneous group of hematological malignancies. Despite the enormous progress that has been made in the field of hemato-oncology in recent years, there are still many problems related to, among others, disease recurrence and drug resistance, which is why the search for ideal biomarkers with high clinical utility continues. Research shows that exosomes play a critical role in the biology of leukemia and are associated with the drug resistance, metastasis, and immune status of leukemias. Exosomes with their cargo of non-coding RNAs act as a kind of intermediary in intercellular communication and, at the same time, have the ability to manipulate the cell microenvironment and influence the reaction, proliferative, angiogenic, and migratory properties of cells. Exosomal ncRNAs (in particular, circRNAs and microRNAs) appear to be promising cell-free biomarkers for diagnostic, prognostic, and treatment monitoring of leukemias. This review examines the expression of exosomal ncRNAs in leukemias and their potential regulatory role in leukemia therapy but also in conditions such as disease relapse, drug resistance, metastasis, and immune status. Given the key role of ncRNAs in regulating gene networks and intracellular pathways through their ability to interact with DNA, transcripts, and proteins and identifying their specific target genes, defining potential functions and therapeutic strategies will provide valuable information.
Collapse
Affiliation(s)
- Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Natalia Kluz
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Dominika Przywara
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Natalia Frączek-Chudzik
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Marek Cieśla
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
4
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Li X, Wu T, Chen W, Zhang J, Jiang Y, Deng J, Long W, Qin X, Zhou Y. Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway. Biomed Rep 2024; 20:43. [PMID: 38357243 PMCID: PMC10865295 DOI: 10.3892/br.2024.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most common malignant tumor types of the circulatory system. Dexamethasone (DEX) acts on the glucocorticoid (GC) receptor (GR) and is a first-line chemotherapy drug for ALL. However, long-term or high-dose applications of the drug can not only cause adverse reactions, such as osteoporosis and high blood pressure, but can also cause downregulation of GR and lead to drug resistance. In the present study, reverse transcription-quantitative PCR, western blotting and LysoTracker Red staining were used to observe the effects of DEX and andrographolide (AND; a botanical with antitumorigenic properties) combined treatment. It was found that AND enhanced the sensitivity of CEM-C1 cells, a GC-resistant cell line, to DEX, and synergistically upregulated GR both at the transcriptional and post-transcriptional level with DEX. The combination of AND with DEX synergistically alkalized lysosomal lumen and downregulated the expression of autophagy-related genes Beclin1 and microtubule-associated 1 protein light chain 3 (LC3), thereby inhibiting autophagy. Knocking down LC3 expression enhanced GR expression, suggesting that GR was regulated by autophagy. Furthermore, compared with the monotherapy group (AND or DEX in isolation), AND interacted with DEX to activate the autophagy-dependent PI3K/AKT/mTOR signaling pathway by enhancing the phosphorylation of PI3K, AKT and mTOR, thereby decreasing GR degradation and increasing the sensitivity of cells to GCs. In conclusion, the present study demonstrated that AND exhibited a synergistic anti-ALL effect with DEX via upregulation of GR, which was orchestrated by the autophagy-related PI3K/AKT/mTOR signaling pathway. The results of the present study therefore provided novel research avenues and strategies for the treatment of ALL.
Collapse
Affiliation(s)
- Xiaowen Li
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Tong Wu
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Weihong Chen
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Jiannan Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Yanping Jiang
- Department of Clinical Medicine, College of Lingui Clinical Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Jianzhi Deng
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Wenqing Long
- Department of Clinical Medicine, College of Lingui Clinical Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xi Qin
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Yuehan Zhou
- Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| |
Collapse
|
6
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O. In vitro simulation of the acute lymphoblastic leukemia niche: a critical view on the optimal approximation for drug testing. J Leukoc Biol 2023; 114:21-41. [PMID: 37039524 DOI: 10.1093/jleuko/qiad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Acute lymphoblastic leukemia with the worst prognosis is related to minimal residual disease. Minimal residual disease not only depends on the individual peculiarities of leukemic clones but also reflects the protective role of the acute lymphoblastic leukemia microenvironment. In this review, we discuss in detail cell-to-cell interactions in the 2 leukemic niches, more explored bone marrow and less studied extramedullary adipose tissue. A special emphasis is given to multiple ways of interactions of acute lymphoblastic leukemia cells with the bone marrow or extramedullary adipose tissue microenvironment, indicating observed differences in B- and T-cell-derived acute lymphoblastic leukemia behavior. This analysis argued for the usage of coculture systems for drug testing. Starting with a review of available sources and characteristics of acute lymphoblastic leukemia cells, mesenchymal stromal cells, endothelial cells, and adipocytes, we have then made an update of the available 2-dimensional and 3-dimensional systems, which bring together cellular elements, components of the extracellular matrix, or its imitation. We discussed the most complex available 3-dimensional systems like "leukemia-on-a-chip," which include either a prefabricated microfluidics platform or, alternatively, the microarchitecture, designed by using the 3-dimensional bioprinting technologies. From our analysis, it follows that for preclinical antileukemic drug testing, in most cases, intermediately complex in vitro cell systems are optimal, such as a "2.5-dimensional" coculture of acute lymphoblastic leukemia cells with niche cells (mesenchymal stromal cells, endothelial cells) plus matrix components or scaffold-free mesenchymal stromal cell organoids, populated by acute lymphoblastic leukemia cells. Due to emerging evidence for the correlation of obesity and poor prognosis, a coculture of adipocytes with acute lymphoblastic leukemia cells as a drug testing system is gaining shape.
Collapse
Affiliation(s)
- Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| | - Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUSUR), University of Guadalajara, Jalisco, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| |
Collapse
|
7
|
Modvig S, Jeyakumar J, Marquart HV, Christensen C. Integrins and the Metastasis-like Dissemination of Acute Lymphoblastic Leukemia to the Central Nervous System. Cancers (Basel) 2023; 15:cancers15092504. [PMID: 37173970 PMCID: PMC10177281 DOI: 10.3390/cancers15092504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) disseminates with high prevalence to the central nervous system (CNS) in a process resembling aspects of the CNS surveillance of normal immune cells as well as aspects of brain metastasis from solid cancers. Importantly, inside the CNS, the ALL blasts are typically confined within the cerebrospinal fluid (CSF)-filled cavities of the subarachnoid space, which they use as a sanctuary protected from both chemotherapy and immune cells. At present, high cumulative doses of intrathecal chemotherapy are administered to patients, but this is associated with neurotoxicity and CNS relapse still occurs. Thus, it is imperative to identify markers and novel therapy targets specific to CNS ALL. Integrins represent a family of adhesion molecules involved in cell-cell and cell-matrix interactions, implicated in the adhesion and migration of metastatic cancer cells, normal immune cells, and leukemic blasts. The ability of integrins to also facilitate cell-adhesion mediated drug resistance, combined with recent discoveries of integrin-dependent routes of leukemic cells into the CNS, have sparked a renewed interest in integrins as markers and therapeutic targets in CNS leukemia. Here, we review the roles of integrins in CNS surveillance by normal lymphocytes, dissemination to the CNS by ALL cells, and brain metastasis from solid cancers. Furthermore, we discuss whether ALL dissemination to the CNS abides by known hallmarks of metastasis, and the potential roles of integrins in this context.
Collapse
Affiliation(s)
- Signe Modvig
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jenani Jeyakumar
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Claus Christensen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Cappelli LV, Fiore D, Phillip JM, Yoffe L, Di Giacomo F, Chiu W, Hu Y, Kayembe C, Ginsberg M, Consolino L, Barcia Duran JG, Zamponi N, Melnick AM, Boccalatte F, Tam W, Elemento O, Chiaretti S, Guarini A, Foà R, Cerchietti L, Rafii S, Inghirami G. Endothelial cell-leukemia interactions remodel drug responses, uncovering T-ALL vulnerabilities. Blood 2023; 141:503-518. [PMID: 35981563 PMCID: PMC10082359 DOI: 10.1182/blood.2022015414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and often incurable disease. To uncover therapeutic vulnerabilities, we first developed T-ALL patient-derived tumor xenografts (PDXs) and exposed PDX cells to a library of 433 clinical-stage compounds in vitro. We identified 39 broadly active drugs with antileukemia activity. Because endothelial cells (ECs) can alter drug responses in T-ALL, we developed an EC/T-ALL coculture system. We found that ECs provide protumorigenic signals and mitigate drug responses in T-ALL PDXs. Whereas ECs broadly rescued several compounds in most models, for some drugs the rescue was restricted to individual PDXs, suggesting unique crosstalk interactions and/or intrinsic tumor features. Mechanistically, cocultured T-ALL cells and ECs underwent bidirectional transcriptomic changes at the single-cell level, highlighting distinct "education signatures." These changes were linked to bidirectional regulation of multiple pathways in T-ALL cells as well as in ECs. Remarkably, in vitro EC-educated T-ALL cells transcriptionally mirrored ex vivo splenic T-ALL at single-cell resolution. Last, 5 effective drugs from the 2 drug screenings were tested in vivo and shown to effectively delay tumor growth and dissemination thus prolonging overall survival. In sum, we developed a T-ALL/EC platform that elucidated leukemia-microenvironment interactions and identified effective compounds and therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Institute for Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Jude M. Phillip
- Departments of Biomedical Engineering, Chemical and Biomolecular Engineering, Oncology, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD
| | - Liron Yoffe
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Filomena Di Giacomo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - William Chiu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Yang Hu
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Clarisse Kayembe
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | | | - Lorena Consolino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Jose Gabriel Barcia Duran
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Nahuel Zamponi
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | - Ari M. Melnick
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | | | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Sabina Chiaretti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Guarini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Robin Foà
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Leandro Cerchietti
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Cariello M, Squilla A, Piacente M, Venutolo G, Fasano A. Drug Resistance: The Role of Exosomal miRNA in the Microenvironment of Hematopoietic Tumors. Molecules 2022; 28:molecules28010116. [PMID: 36615316 PMCID: PMC9821808 DOI: 10.3390/molecules28010116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, have an important role thanks to their ability to communicate and exchange information between tumor cells and the tumor microenvironment (TME), and have also been associated with communicating anti-cancer drug resistance (DR). The increase in proliferation of cancer cells alters oxygen levels, which causes hypoxia and results in a release of exosomes by the cancer cells. In this review, the results of studies examining the role of exosomal miRNA in DR, and their mechanism, are discussed in detail in hematological tumors: leukemia, lymphoma, and multiple myeloma. In conclusion, we underline the exosome's function as a possible drug delivery vehicle by understanding its cargo. Engineered exosomes can be used to be more specific for personalized therapy.
Collapse
Affiliation(s)
- Mariaconcetta Cariello
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
| | - Angela Squilla
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
| | - Martina Piacente
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
| | - Giorgia Venutolo
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 84125 Salerno, Italy
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA 02114, USA
- Correspondence: ; Tel.: +1-617-724-4604
| |
Collapse
|
10
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
11
|
Hu D, Yuan S, Zhong J, Liu Z, Wang Y, Liu L, Li J, Wen F, Liu J, Zhang J. Cellular senescence and hematological malignancies: From pathogenesis to therapeutics. Pharmacol Ther 2021; 223:107817. [PMID: 33587950 DOI: 10.1016/j.pharmthera.2021.107817] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
Cellular senescence constitutes a permanent state of cell cycle arrest in proliferative cells induced by different stresses. The exploration of tumor pathogenesis and therapies has been a research hotspot in recent years. Cellular senescence is a significant mechanism to prevent the proliferation of potential tumor cells, but it can also promote tumor growth. Increasing evidence suggests that cellular senescence is involved in the pathogenesis and development of hematological malignancies, including leukemia, myelodysplastic syndrome (MDS) and multiple myeloma (MM). Cellular senescence is associated with functional decline of hematopoietic stem cells (HSCs) and increased risk of hematological malignancies. Moreover, the bone marrow (BM) microenvironment has a crucial regulatory effect in the process of these diseases. The senescence-associated secretory phenotype (SASP) in the BM microenvironment establishes a protumor environment that supports the proliferation and survival of tumor cells. Therefore, a series of therapeutic strategies targeting cellular senescence have been gradually developed, including the induction of cellular senescence and elimination of senescent cells. This review systematically summarizes the emerging information describing the roles of cellular senescence in tumorigenesis and potential clinical applications, which may be beneficial for designing rational therapeutic strategies for various hematopoietic malignancies.
Collapse
Affiliation(s)
- Dingyu Hu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Shunling Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Jing Zhong
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Yanyan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Li Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Feng Wen
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China; Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
12
|
Mohamed D, Abd Alazim F, Salem E, Ali N, Elgalaly D. Aerobic training versus strength exercises on muscle strength and quality of life for children with acute lymphoblastic leukemia. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2020. [DOI: 10.1186/s43161-020-00007-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The treatment for children and adolescents with acute lymphoblastic leukemia (ALL) can lead to multiple adverse effects, including poor physical capacity and muscle weakness. This study aimed to determine which is more effective, aerobic exercises or modified strength training program, on muscle strength and quality of life (QOL) for children with ALL.
Results
In terms of muscle strength, there was a significant difference (P < 0.05) in selected group of muscles elbow flexors, shoulder abductors, hip flexors, knee extensors, and ankle dorsiflexors at both sides in group B compared with group A, whereas there was no significant difference (P > 0.05) between groups on QOL.
Conclusion
The outcomes of the study showed that there was a significant difference in the selected group of muscles at both sides in group B compared with group A; thus, the modified strength training program is more effective for muscle strength of children with ALL than aerobic training, but there was no significant difference between them on QOL.
Trial registration
The clinical trial registered in clinicaltrials.gov with an identifier number NCT03147365
Collapse
|
13
|
Gholipour E, Sarvarian P, Samadi P, Talebi M, Movassaghpour A, Motavalli R, Hojjat-Farsangi M, Yousefi M. Exosome: From leukemia progression to a novel therapeutic approach in leukemia treatment. Biofactors 2020; 46:698-715. [PMID: 32797698 DOI: 10.1002/biof.1669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as small vesicles, are released by tumor cells and tumor microenvironment (cells and function as key intercellular mediators and effects on different processes including tumorigenesis, angiogenesis, drug resistance, and evasion from immune system. These functions are due to exosomes' biomolecules which make them as efficient markers in early diagnosis of the disease. Also, exosomes have been recently applied in vaccination. The potential role of exosomes in immune response toward leukemic cells makes them efficient immunotherapeutic agents treating leukemia. Furthermore, variations in exosomes contents make them beneficial to be used in treating different diseases. This review introduces the role of exosomes in the development of hematological malignancies and evaluates their functional role in the treatment of these malignancies.
Collapse
Affiliation(s)
- Elham Gholipour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sarvarian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Samadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Immune and Gene Therapy Lab, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz university of Medical Sciences, Tabriz, Iran
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Habiel DM, Hohmann MS, Espindola MS, Coelho AL, Jones I, Jones H, Carnibella R, Pinar I, Werdiger F, Hogaboam CM. DNA-PKcs modulates progenitor cell proliferation and fibroblast senescence in idiopathic pulmonary fibrosis. BMC Pulm Med 2019; 19:165. [PMID: 31464599 PMCID: PMC6716822 DOI: 10.1186/s12890-019-0922-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies have highlighted the contribution of senescent mesenchymal and epithelial cells in Idiopathic Pulmonary Fibrosis (IPF), but little is known regarding the molecular mechanisms that regulate the accumulation of senescent cells in this disease. Therefore, we addressed the hypothesis that the loss of DNA repair mechanisms mediated by DNA protein kinase catalytic subunit (DNA-PKcs) in IPF, promoted the accumulation of mesenchymal progenitors and progeny, and the expression of senescent markers by these cell types. METHODS Surgical lung biopsy samples and lung fibroblasts were obtained from patients exhibiting slowly, rapidly or unknown progressing IPF and lung samples lacking any evidence of fibrotic disease (i.e. normal; NL). The expression of DNA-Pkcs in lung tissue was assessed by quantitative immunohistochemical analysis. Chronic inhibition of DNA-PKcs kinase activity was mimicked using a highly specific small molecule inhibitor, Nu7441. Proteins involved in DNA repair (stage-specific embryonic antigen (SSEA)-4+ cells) were determined by quantitative Ingenuity Pathway Analysis of transcriptomic datasets (GSE103488). Lastly, the loss of DNA-PKc was modeled in a humanized model of pulmonary fibrosis in NSG SCID mice genetically deficient in PRKDC (the transcript for DNA-PKcs) and treated with Nu7441. RESULTS DNA-PKcs expression was significantly reduced in IPF lung tissues. Chronic inhibition of DNA-PKcs by Nu7441 promoted the proliferation of SSEA4+ mesenchymal progenitor cells and a significant increase in the expression of senescence-associated markers in cultured lung fibroblasts. Importantly, mesenchymal progenitor cells and their fibroblast progeny derived from IPF patients showed a loss of transcripts encoding for DNA damage response and DNA repair components. Further, there was a significant reduction in transcripts encoding for PRKDC (the transcript for DNA-PKcs) in SSEA4+ mesenchymal progenitor cells from IPF patients compared with normal lung donors. In SCID mice lacking DNA-PKcs activity receiving IPF lung explant cells, treatment with Nu7441 promoted the expansion of progenitor cells, which was observed as a mass of SSEA4+ CgA+ expressing cells. CONCLUSIONS Together, our results show that the loss of DNA-PKcs promotes the expansion of SSEA4+ mesenchymal progenitors, and the senescence of their mesenchymal progeny.
Collapse
Affiliation(s)
- David M Habiel
- Department of Medicine, Cedars-Sinai Medical Center, Women's Guild Lung Institute, 127 S San Vicente Blvd., AHSP A9315, Los Angeles, CA, 90048, USA
| | - Miriam S Hohmann
- Department of Medicine, Cedars-Sinai Medical Center, Women's Guild Lung Institute, 127 S San Vicente Blvd., AHSP A9315, Los Angeles, CA, 90048, USA.
| | - Milena S Espindola
- Department of Medicine, Cedars-Sinai Medical Center, Women's Guild Lung Institute, 127 S San Vicente Blvd., AHSP A9315, Los Angeles, CA, 90048, USA
| | - Ana Lucia Coelho
- Department of Medicine, Cedars-Sinai Medical Center, Women's Guild Lung Institute, 127 S San Vicente Blvd., AHSP A9315, Los Angeles, CA, 90048, USA
| | - Isabelle Jones
- Department of Medicine, Cedars-Sinai Medical Center, Women's Guild Lung Institute, 127 S San Vicente Blvd., AHSP A9315, Los Angeles, CA, 90048, USA
| | - Heather Jones
- Department of Medicine, Cedars-Sinai Medical Center, Women's Guild Lung Institute, 127 S San Vicente Blvd., AHSP A9315, Los Angeles, CA, 90048, USA
| | - Richard Carnibella
- Laboratory of Dynamic Imaging, Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Isaac Pinar
- Laboratory of Dynamic Imaging, Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Freda Werdiger
- Laboratory of Dynamic Imaging, Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Cory M Hogaboam
- Department of Medicine, Cedars-Sinai Medical Center, Women's Guild Lung Institute, 127 S San Vicente Blvd., AHSP A9315, Los Angeles, CA, 90048, USA.
| |
Collapse
|
15
|
Simioni C, Zauli G, Martelli AM, Vitale M, Ultimo S, Milani D, Neri LM. Physical training interventions for children and teenagers affected by acute lymphoblastic leukemia and related treatment impairments. Oncotarget 2018; 9:17199-17209. [PMID: 29682216 PMCID: PMC5908317 DOI: 10.18632/oncotarget.24762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/25/2018] [Indexed: 12/28/2022] Open
Abstract
A decreased physical fitness has been reported in patients and survivors of acute lymphoblastic leukemia (ALL). This is influenced by the negative effects of the disease and by the treatments of childhood cancer. In the past, children were advised to recover in bed, and to take as much relax as possible. Nowadays, it is considered that too much immobility may result in a further decrease of physical fitness and functioning. Exercise training for ALL children has frequently been reported to improve physical fitness and the well-being of the children, since it prevents the negative effects of a sedentary life-style, such as obesity and a poor skeletal health. In recent years, different studies and protocols on this subject has become available for children and young adults with cancer, both during and after treatment. The efficacy of recent physical exercise training interventions, that act on several ALL impairments in children such as skeletal, musculoskeletal, neuromuscular, cardiopulmonary and cardiovascular systems, fatigue, body balance disorders and metabolism alterations have been examined. These side effects might be prevented or significantly reduced by introducing a physical exercise program during or shortly after cancer treatment. Several interventions are discussed and presented for each impairment, reducing their level caused by the disease and thus suggesting the importance of physical training activity in ameliorating the children quality of life.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Griffiths K, Habiel DM, Jaffar J, Binder U, Darby WG, Hosking CG, Skerra A, Westall GP, Hogaboam CM, Foley M. Anti-fibrotic Effects of CXCR4-Targeting i-body AD-114 in Preclinical Models of Pulmonary Fibrosis. Sci Rep 2018; 8:3212. [PMID: 29453386 PMCID: PMC5816662 DOI: 10.1038/s41598-018-20811-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/24/2018] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease that is prevalent in individuals >50 years of age, with a median survival of 3–5 years and limited therapeutic options. The disease is characterized by collagen deposition and remodeling of the lung parenchyma in a process that is thought to be driven by collagen-expressing immune and structural cells. The G-protein coupled C-X-C chemokine receptor 4, CXCR4, is a candidate therapeutic target for IPF owing to its role in the recruitment of CXCR4+ fibrocytes from the bone marrow to fibrotic lung tissue and its increased expression levels by structural cells in fibrotic lung tissue. We have engineered a novel fully human single domain antibody “i-body” called AD-114 that binds with high affinity to human CXCR4. We demonstrate here that AD-114 inhibits invasive wound healing and collagen 1 secretion by human IPF fibroblasts but not non-diseased control lung fibroblasts. Furthermore, in a murine bleomycin model of pulmonary fibrosis, AD-114 reduced the accumulation of fibrocytes (CXCR4+/Col1+/CD45+) in fibrotic murine lungs and ameliorated the degree of lung injury. Collectively, these studies demonstrate that AD-114 holds promise as a new biological therapeutic for the treatment of IPF.
Collapse
Affiliation(s)
- K Griffiths
- AdAlta Limited, La Trobe University, 15/2 Park Drive, Bundoora, 3083, Australia.,The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, 3086, Australia
| | - D M Habiel
- Cedars-Sinai, Medical Centre, Los Angeles, CA, 90048, USA
| | - J Jaffar
- Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, 3000, Australia
| | - U Binder
- XL-protein GmbH, Lise-Meitner-Str. 30, 85354, Freising, Germany
| | - W G Darby
- AdAlta Limited, La Trobe University, 15/2 Park Drive, Bundoora, 3083, Australia.,The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, 3086, Australia
| | - C G Hosking
- AdAlta Limited, La Trobe University, 15/2 Park Drive, Bundoora, 3083, Australia.,The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, 3086, Australia
| | - A Skerra
- XL-protein GmbH, Lise-Meitner-Str. 30, 85354, Freising, Germany
| | - G P Westall
- Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, 3000, Australia
| | - C M Hogaboam
- Cedars-Sinai, Medical Centre, Los Angeles, CA, 90048, USA
| | - M Foley
- AdAlta Limited, La Trobe University, 15/2 Park Drive, Bundoora, 3083, Australia. .,The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, 3086, Australia.
| |
Collapse
|
17
|
Han L, Xu J, Xu Q, Zhang B, Lam EWF, Sun Y. Extracellular vesicles in the tumor microenvironment: Therapeutic resistance, clinical biomarkers, and targeting strategies. Med Res Rev 2017; 37:1318-1349. [PMID: 28586517 DOI: 10.1002/med.21453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022]
Abstract
Numerous studies have proved that cell-nonautonomous regulation of neoplastic cells is a distinctive and essential characteristic of tumorigenesis. Two way communications between the tumor and the stroma, or within the tumor significantly influence disease progression and modify treatment responses. In the tumor microenvironment (TME), malignant cells utilize paracrine signaling initiated by adjacent stromal cells to acquire resistance against multiple types of anticancer therapies, wherein extracellular vesicles (EVs) substantially promote such events. EVs are nanoscaled particles enclosed by phospholipid bilayers, and can mediate intercellular communications between cancerous cells and the adjacent microenvironment to accelerate pathological proceeding. Here we review the most recent studies of EV biology and focus on key cell lineages of the TME and their EV cargoes that are biologically active and responsible for cancer resistance, including proteins, RNAs, and other potentially essential components. Since EVs are emerging as novel but critical elements in establishing and maintaining hallmarks of human cancer, timely and insightful understanding of their molecular properties and functional mechanisms would pave the road for clinical diagnosis, prognosis, and effective targeting in the global landscape of precision medicine. Further, we address the potential of EVs as promising biomarkers in cancer clinics and summarize the technical improvements in EV preparation, analysis, and imaging. We highlight the practical issues that should be exercised with caution to guide the development of targeting agents and therapeutic methodologies to minimize cancer resistance driven by EVs, thereby allowing to effectively control the early steps of disease exacerbation.
Collapse
Affiliation(s)
- L Han
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - J Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Q Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B Zhang
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Y Sun
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China.,Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Yu Y, Li J, Zhu X, Tang X, Bao Y, Sun X, Huang Y, Tian F, Liu X, Yang L. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential. Int J Nanomedicine 2017; 12:1969-1983. [PMID: 28331319 PMCID: PMC5357075 DOI: 10.2147/ijn.s127575] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nanobodies, named as VHHs (variable domain of heavy chain of HCAb [heavy-chain antibodies]), are derived from heavy-chain-only antibodies that circulate in sera of camelids. Their exceptional physicochemical properties, possibility of humanization, and unique antigen recognition properties make them excellent candidates for targeted delivery of biologically active components, including immunotoxins. In our previous efforts, we have successfully generated the monovalent and bivalent CD7 nanobody-based immunotoxins, which can effectively trigger the apoptosis of CD7-positive malignant cells. To pursue the possibility of translating those immunotoxins into clinics, we humanized the nanobody sequences (designated as dhuVHH6) as well as further truncated the Pseudomonas exotoxin A (PE)-derived PE38 toxin to produce a more protease-resistant form, which is named as PE-LR, by deleting majority of PE domain II. METHODS AND RESULTS Three new types of immunotoxins, dhuVHH6-PE38, dVHH6-PE-LR, and dhuVHH6-PE-LR, were successfully constructed. These recombinant immunotoxins were expressed in Escherichia coli and showed that nanobody immunotoxins have the benefits of easy soluble expression in a prokaryotic expression system. Flow cytometry results revealed that all immunotoxins still maintained the ability to bind specifically to CD7-positive T lymphocyte strains without binding to CD7-negative control cells. Laser scanning confocal microscopy revealed that these proteins can be endocytosed into the cytoplasm after binding with CD7-positive cells and that this phenomenon was not observed in CD7-negative cells. WST-8 experiments showed that all immunotoxins retained the highly effective and specific growth inhibition activity in CD7-positive cell lines and primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Further in vivo animal model experiments showed that humanized dhuVHH6-PE38 immunotoxin can tolerate higher doses and extend the survival of NOD-Prkdcem26Il2rgem26Nju (NCG) mice transplanted with CEM cells without any obvious decrease in body weight. Further studies on NCG mice model with patient-derived T-ALL cells, dhuVHH6-PE38 treatment, significantly prolonged mice survival with ~40% survival improvement. However, it was also noticed that although dhuVHH6-PE-LR showed strong antitumor effect in vitro, its in vivo antitumor efficacy was disappointing. CONCLUSION We have successfully constructed a targeted CD7 molecule-modified nanobody (CD7 molecule-improved nanobody) immunotoxin dhuVHH6-PE38 and demonstrated its potential for treating CD7-positive malignant tumors, especially T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Yuan Yu
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
- Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou
| | - Jialu Li
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
- Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou
| | - Xuejun Zhu
- Central Laboratory, Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing
| | - Xiaowen Tang
- Collaborative Innovation Center of Hematology, Soochow University
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Yangyi Bao
- Department of Hematology-Oncology, The First People’s Hospital of Hefei, Hefei, People’s Republic of China
| | - Xiang Sun
- Department of Hematology-Oncology, The First People’s Hospital of Hefei, Hefei, People’s Republic of China
| | - Yuhui Huang
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
| | - Fang Tian
- Central Laboratory, Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing
| | - Xiaomei Liu
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
| | - Lin Yang
- The Cyrus Tang Hematology Center
- Collaborative Innovation Center of Hematology, Soochow University
- Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou
| |
Collapse
|