1
|
Zhou L, Lu S, Gao X, Chen Z, Zhang Y, Zhong W, Zhu F, Li B, Lin X. Antioxidant and Anticancer Mechanisms of Unique Polyphenols in Camellia ptilophylla: Focus on Gallocatechin-3,5-di-O-gallate and 1,2,4,6-Tetra-O-galloyl-β-D-glucopyranose. Molecules 2025; 30:1919. [PMID: 40363725 PMCID: PMC12073820 DOI: 10.3390/molecules30091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Camellia ptilophylla Chang (C. ptilophylla), a unique low-caffeine tea species, is valued for its bioactive properties, especially antioxidant and anticancer activities, due to its distinct phytochemical profile. However, its precise constituents and mechanisms remain poorly understood. This study employs an integrated approach combining chromatographic separation, bioinformatic analysis, and cellular assays to systematically investigate the antioxidant and anticancer properties of C. ptilophylla and elucidate its underlying molecular mechanisms. Quantitative analysis revealed that in addition to trans-catechins, the unique polyphenolic compounds, gallocatechin-3,5-di-O-gallate (GC-3,5-diGA) and 1,2,4,6-tetra-O-galloyl-β-D-glucopyranose (1,2,4,6-GA-glc), constituted significant proportions of C. ptilophylla extracts, with concentrations of 10.25 ± 0.29% and 6.60 ± 0.14%, respectively. Monomeric activity assessment demonstrated that both GC-3,5-diGA and 1,2,4,6-GA-glc exhibited pronounced antiproliferative effects against three cancer cell lines including the Lymph Node Carcinoma of the Prostate cell, human colon cancer cell, and human breast cancer cell. Notably, these compounds demonstrated potent antioxidant capacity, with 62.5 μM of GC-3,5-diGA and 15.63 μM of 1,2,4,6-GA-glc protecting against tBHP-induced oxidative stress in NIH3T3 cells comparable to 125 μM of epigallocatechin gallate and gallocatechin gallate in half-maximal inhibitory concentration. Mechanistic studies revealed that these polyphenols modulated antioxidant defenses and reactive oxygen species homeostasis via targets like fibroblast growth factor 2, telomerase reverse transcriptase, matrix metalloproteinase 9, and ATP-binding cassette subfamily G member 2, inducing oxidative stress and mitochondrial apoptosis to inhibit carcinogenesis. These findings enhance our understanding of the bioactive components responsible for the anticancer and antioxidant properties of C. ptilophylla and provide a scientific basis for the development of this dual-purpose plant for food and medicinal applications.
Collapse
Affiliation(s)
- Langhua Zhou
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Sen Lu
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Xiong Gao
- Institute of Food Microstructure, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing 350300, China;
| | - Zhongzheng Chen
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Weixia Zhong
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Fuming Zhu
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| | - Bin Li
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, Scientific Research Base of Tea Comprehensive Utilization Technology Integration of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (L.Z.); (S.L.); (Z.C.); (Y.Z.); (W.Z.); (F.Z.)
| |
Collapse
|
2
|
Pazhani J, Chanthu K, Jayaraman S, Varun BR. Evaluation of salivary MMP-9 in oral squamous cell carcinoma and oral leukoplakia using ELISA. J Oral Maxillofac Pathol 2023; 27:649-654. [PMID: 38304520 PMCID: PMC10829443 DOI: 10.4103/jomfp.jomfp_426_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 02/03/2024] Open
Abstract
Background Cancer of the lip and the oral cavity is collectively the sixth most common malignancy worldwide, out of which 90% are oral squamous cell carcinomas (OSCCs). Oral cancer survival rates depend mainly upon the stage in which it is diagnosed. Successful early detection would eventually increase the survival rate. OSCCs may be preceded by potentially malignant disorders (PMDs) that are characterised by visible clinical changes in the oral mucosa. Correct diagnosis and timely treatment of PMDs may help prevent malignant transformation in oral lesions. Oral leukoplakia (OL) is the best known potentially malignant disorder of the oral mucosa with a malignant transformation rate of about 3% to 33%. Tumour markers in saliva have emerged as a new diagnostic tool in the early detection of oral cancer. Matrix metalloproteinase 9 (MMP-9) is a gelatinase which plays an important role in tumourogenisis. The present study was done to evaluate the salivary levels of MMP-9 in OSCC and oral leukoplakia patients using enzyme-linked immunosorbent assay (ELISA). Materials and Methods The study was conducted among 102 subjects, which included 34 OSCC patients (group I), 34 OL patients (group II), and 34 healthy subjects (group III). Unstimulated saliva was collected by the passive drooling method from all the study subjects during the study period, centrifuged, and stored at -80°C. The salivary MMP-9 was estimated in mg/ml using the sandwich ELISA technique. The data were analysed using a statistical software package, EZR. One-way analysis of variance was used for the comparison of salivary MMP-9 levels in OSCC, OL, and normal oral mucosa. Scheffe's multiple comparison was carried out to compare salivary MMP-9 levels among the different histological grades of OSCC and oral epithelial dysplasia. For all statistical interpretations, P ≤ 0.0 was considered the threshold for statistical significance. Results and Conclusion The mean salivary MMP-9 level in OSCC, OL, and normal oral mucosa was 50.9 ± 5.7 ng/ml, 31.6 ± 6 ng/ml, and 16.2 ± 4.8 ng/ml, respectively. Patients with OSCC had significantly higher levels of salivary MMP-9 when compared to OL and normal mucosa. Higher levels of salivary MMP-9 were observed in poorly differentiated OSCC when compared to well and moderately differentiated OSCCs. The salivary MMP-9 was higher in severe oral epithelial dysplasia when compared to mild and moderate oral epithelial dysplasias. As malignant transformation rates are higher in patients with severe oral epithelial dysplasia when compared to mild and moderate oral epithelial dysplasia, salivary MMP-9 could be considered as a surrogate marker of malignant transformation.
Collapse
Affiliation(s)
- Jayanthi Pazhani
- Department of Oral Pathology, Azeezia College of Dental Sciences and Research, Kollam, Kerala, India
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Krishnasree Chanthu
- Department of Oral Pathology, Azeezia College of Dental Sciences and Research, Kollam, Kerala, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - B. R. Varun
- Department of Oral Pathology, PMS College of Dental Sciences and Research, Trivandrum, Kerala, India
| |
Collapse
|
3
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
4
|
Zhou R, Guo T, Li J. Research progress on the antitumor effects of astragaloside IV. Eur J Pharmacol 2023; 938:175449. [PMID: 36473596 DOI: 10.1016/j.ejphar.2022.175449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
One of the most important and effective components of Astragalus membranaceus is astragaloside IV (AS-IV), which can exert anti-tumor effects through various pathways. For instance, AS-IV exerts an anti-tumor effect by acting at the cellular level, regulating the phenotype switch of tumor-associated macrophages, or inhibiting the development of tumor cells. Furthermore, AS-IV inhibits tumor cell progression by enhancing its sensitivity to antitumor drugs or reversing the drug resistance of tumor cells. This article reviews the different mechanisms of AS-IV inhibition of epithelial-mesenchymal transition (EMT), migration, proliferation, and invasion of tumor cells, inducing apoptosis and improving the sensitivity of anti-tumor drugs. This review summarizes recent progress in the current research into AS-IV anti-tumor effect and provides insight on the next anti-tumor research of AS-IV.
Collapse
Affiliation(s)
- Ruixi Zhou
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
5
|
Computer-Aided Screening and Revealing Action Mechanism of Food-Derived Tripeptides Intervention in Acute Colitis. Int J Mol Sci 2022; 23:ijms232113471. [PMID: 36362252 PMCID: PMC9655126 DOI: 10.3390/ijms232113471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Food-derived tripeptides can relieve colitis symptoms; however, their alleviation mode has not been systematically evaluated as an alternative nutritional compound. This study aimed to reveal the potential mechanism of 8000 food-derived tripeptides against acute colitis using a computer-aided screening strategy. Forty-one potential hub targets related to colitis with a Fit score > 4.0 were screened to construct the protein-protein and protein-tripeptide network based on the PharmMapper database and STRING software (Ver. 11.5). In addition, 30 significant KEGG signaling pathways with p-values < 0.001 that the 41 hub targets mainly participated in were identified using DAVID software (Ver. 6.8), including inflammatory, immunomodulatory, and cell proliferation and differentiation-related signaling pathways, particularly in the Ras- and PI3K-Akt signaling pathways. Furthermore, molecular docking was performed using the Autodock against majorly targeted proteins (AKT1, EGFR, and MMP9) with the selected 52 tripeptides. The interaction model between tripeptides and targets was mainly hydrogen-bonding and hydrophobic interactions, and most of the binding energy of the tripeptide target was less than −7.13 kcal/mol. This work can provide valuable insight for exploring food-derived tripeptide mechanisms and therapeutic indications.
Collapse
|
6
|
Yu D, Liu Z. The research progress in the interaction between Candida albicans and cancers. Front Microbiol 2022; 13:988734. [PMID: 36246294 PMCID: PMC9554461 DOI: 10.3389/fmicb.2022.988734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus, which tends to infect the host with defective immune function including cancer patients. A growing number of studies have shown that C. albicans infection increases the host susceptibility to cancer such as oral, gastric, and colorectal cancer. Cancer and anti-cancer treatment may also affect the colonization of C. albicans. C. albicans may promote the development of cancer by damaging mucosal epithelium, inducing the production of carcinogens, triggering chronic inflammation including Th17 cell-mediated immune response. In this article, we aim to elaborate the interaction between C. albicans and cancers development and summarize the potential molecular mechanisms, so as to provide theoretical basis for prevention, diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Dalang Yu
- School of Basic Medicine, Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Zhiping Liu,
| |
Collapse
|
7
|
Chemically Induced Colitis-Associated Cancer Models in Rodents for Pharmacological Modulation: A Systematic Review. J Clin Med 2022; 11:jcm11102739. [PMID: 35628865 PMCID: PMC9146029 DOI: 10.3390/jcm11102739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Animal models for colitis-associated colorectal cancer (CACC) represent an important tool to explore the mechanistic basis of cancer-related inflammation, providing important evidence that several inflammatory mediators play specific roles in the initiation and perpetuation of colitis and CACC. Although several original articles have been published describing the CACC model in rodents, there is no consensus about the induction method. This review aims to identify, summarize, compare, and discuss the chemical methods for the induction of CACC through the PRISMA methodology. METHODS We searched MEDLINE via the Pubmed platform for studies published through March 2021, using a highly sensitive search expression. The inclusion criteria were only original articles, articles where a chemically-induced animal model of CACC is described, preclinical studies in vivo with rodents, and articles published in English. RESULTS Chemically inducible models typically begin with the administration of a carcinogenic compound (as azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)), and inflammation is caused by repeated cycles of colitis-inducing agents (such as 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS)). The strains mostly used are C57BL/6 and Balb/c with 5-6 weeks. To characterize the preclinical model, the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, angiogenesis markers such as proliferating cell nuclear antigen (PCNA), marker of proliferation Ki-67, and caspase 3, the presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of inflammation. CONCLUSION The AOM administration seems to be important to the CACC induction method, since the carcinogenic effect is achieved with just one administration. DSS has been the more used inflammatory agent; however, the TNBS contribution should be more studied, since it allows a reliable, robust, and a highly reproducible animal model of intestinal inflammation.
Collapse
|
8
|
Hong XC, Liang QL, Chen M, Yang HX, Huang J, Yi SL, Wang ZW, Liang HY, Zhang DY, Huang ZY. PRL-3 and MMP9 Expression and Epithelial-Mesenchymal Transition Markers in Circulating Tumor Cells From Patients With Colorectal Cancer: Potential Value in Clinical Practice. Front Oncol 2022; 12:878639. [PMID: 35574414 PMCID: PMC9104807 DOI: 10.3389/fonc.2022.878639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Objective To evaluate the clinical correlation of epithelial-mesenchymal transition (EMT) with PRL-3 and MMP9 expression in the circulating tumor cells (CTCs) of patients with colorectal cancer (CRC). Materials and Methods Between January 2016 and December 2018, the EMT phenotype-based subsets of CTCs and the expression levels of PRL-3 and MMP9 in CTCs were identified, and their clinical values in 172 patients were evaluated. The CTCs were isolated, classified, and counted using the CanPatrol™ CTC filtration system. The CTC subsets (epithelial cells, mesenchymal cells and biphenotypic cells), as well as PRL-3 and MMP9 expression, were detected by RNA in situ hybridization. Results CTCs were detected in 93.0% (160/172) of the included patients with CRC. Positive PRL-3 and MMP9 expression in CTC and M-CTC was found in 75.0% (102/136) and 80.8% (97/120) of the patients, respectively. The proportion of patients with positive PRL-3 and MMP9 expression in M-CTC was significantly associated with distant metastasis (p<0.05). The patients with ≥6 CTCs tended to show poorer progression-free survival (PFS) and overall survival (OS) rates (p=0.016, 0.02, respectively), and the patients with ≥3 M-CTC also showed poor PFS (p=0.0013). Additionally, the patients with positive PRL-3 and MMP9 expression in CTCs had significantly poorer PFS (p=0.0024) and OS (p=0.095) than the patients with negative PRL-3 and MMP9 expression. Multivariate Cox analysis uncovered that positive PRL-3 and MMP9 expression in CTCs may be an independent prognostic factor for worse PFS. Conclusion EMT phenotypes and CTC numbers can be used as prognostic indicators for metastasis and survival in patients with CRC, and the combination of PRL-3 and MMP9 expression in CTCs is a promising clinical marker for patients with CRC.
Collapse
Affiliation(s)
- Xiao-Cui Hong
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi-Lian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Qi-Lian Liang,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hai-Xia Yang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jie Huang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Si-Lin Yi
- Pathology Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhen-Wei Wang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hai-Yan Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ding-Yue Zhang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeng-Yi Huang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
9
|
Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers (Basel) 2022; 14:cancers14071847. [PMID: 35406619 PMCID: PMC8998077 DOI: 10.3390/cancers14071847] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Having the capability to proteolyze diverse structural and signaling proteins, matrix metalloproteinase 9 (MMP9), one of the best-studied secretory endopeptidases, has been identified as a crucial mediator of processes closely associated with tumorigenesis, such as the extracellular matrix reorganization, epithelial to mesenchymal transition, cell migration, new blood vessel formation, and immune response. In this review, we present the current state of knowledge on MMP9 and its role in cancer growth in the context of cell adhesion/migration, cancer-related inflammation, and tumor microenvironment formation. We also summarize recent achievements in the development of selective MMP9 inhibitors and the limitations of using them as anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| | | | - Renata Tabola
- Department of Thoracic Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamilla Stach
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
10
|
Liu L, Li Y, Zhang X, Zhang H. The correlation of the miR-29a/MMP9 axis with Helicobacter pylori infection in gastric cancer. Am J Transl Res 2021; 13:10155-10162. [PMID: 34650687 PMCID: PMC8506987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study was designed to investigate the association between the miR-29a/MMP9 axis expression levels and Helicobacter pylori (HP) infection in gastric cancer patients. METHODS A total of 100 gastric cancer patients referred to our hospital from June 2017 to June 2019 were recruited as the study cohort. Among them, 50 HP-positive patients were included in the experimental group and 50 HP-negative patients were included in the control group. The changes in the patients' conditions were compared, the miR-29a/MMP9 axis expression levels were recorded, and the correlation between the miR-29a/MMP9 axis and the HP infections was analyzed. All the discharged patients were followed up for one year to analyze the correlation between the HP infections and the serum miR-29a and MMP9 expression levels with the disease progression. RESULTS The experimental group had higher miR-29a expression levels and higher MMP9 chromogenic scores than the control group (P<0.05). A negative correlation was found between the miR-29 expression level and the MMP9 expression level (r=-5.369, P<0.05). One year after discharge, there were 27 patients with severe disease in the experimental group and 6 in the control group, with a significant difference between the two groups. Moreover, the expression levels of the miR-29a/MMP9 axis were significantly higher in the discharged patients than in the patients with severe disease (P<0.05). A receiver operating characteristic (ROC) curve was used to analyze the predictive value of miR-29/MMP9 in the diagnosis of gastric cancer, and the area under the curve was found to be 0.97. CONCLUSION The miR-29a/MMP9 axis levels were increased in the HP positive patients but not in the HP negative patients. HP infection is considered to be closely related to gastric cancer cell spread, disease relapse, and high miR-29a/MMP9 axis expression levels.
Collapse
Affiliation(s)
- Lunqin Liu
- Shandong Public Health Clinical CenterJinan, Shandong Province, China
| | - Yuecui Li
- Maternal and Child Health HospitalZhangqiu District, Jinan, Shandong Province, China
| | - Xia Zhang
- Maternal and Child Health HospitalZhangqiu District, Jinan, Shandong Province, China
| | - Hong Zhang
- The Sixth People’s Hospital of JinanJinan, Shandong Province, China
| |
Collapse
|
11
|
Ayoup MS, Abu-Serie MM, Awad LF, Teleb M, Ragab HM, Amer A. Halting colorectal cancer metastasis via novel dual nanomolar MMP-9/MAO-A quinoxaline-based inhibitors; design, synthesis, and evaluation. Eur J Med Chem 2021; 222:113558. [PMID: 34116327 DOI: 10.1016/j.ejmech.2021.113558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) and monoamine oxidase-A (MAO-A) are central signaling nodes in CRC and promotors of distant metastasis associated with high mortality rates. Novel series of quinoxaline-based dual MMP-9/MAO-A inhibitors were synthesized to suppress CRC progression. The design rationale combines the thematic pharmacophoric features of MMP-9 and MAO-A inhibitors in hybrid scaffolds. All derivatives were initially screened via MTT assay for cytotoxic effects on normal colonocytes to assess their safety profiles, then evaluated for their anticancer potential on HCT116 cells overexpressing MMP-9 and MAO-A. The most promising derivatives 8, 16, 17, 19, and 28 exhibited single digit nanomolar IC50 against HCT116 cells within their safe doses (EC100) on normal colonocytes. They suppressed HCT116 cell migration by 73.32, 61.29, 21.27, 28.82, and 27.48%, respectively as detected by wound healing assay. Enzymatic assays revealed that the selected derivatives were superior to the reference MMP-9 and MAO-A inhibitors (quercetin and clorgyline, respectively). The nanomolar dual MMP-9/MAO-A inhibitor 19 was identified as the most potent and balanced dual inhibitor among the evaluated series with considerable selectivity against MAO-A over MAO-B. Besides, qRT-PCR analysis was conducted to explore the hit compounds' potential to downregulate hypoxia-inducing factor (HIF-1α) in HCT116 cells being correlated with MAO-A mediated CRC migration and invasion. The five above-mentioned compounds significantly downregulated HIF-1α by more than 5 folds. Docking simulations predicted their possible binding modes with MMP-9 and MAO-A and highlighted their essential structural features. Finally, they recorded drug-like in silico physicochemical parameters and ADMET profiles.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Laila F Awad
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Adel Amer
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt; Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.
| |
Collapse
|
12
|
Al-Sadi R, Engers J, Haque M, King S, Al-Omari D, Ma TY. Matrix Metalloproteinase-9 (MMP-9) induced disruption of intestinal epithelial tight junction barrier is mediated by NF-κB activation. PLoS One 2021; 16:e0249544. [PMID: 33826658 PMCID: PMC8026081 DOI: 10.1371/journal.pone.0249544] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Matrix Metalloproteinase-9 (MMP-9) has been shown to play a key role in mediating inflammation and tissue damage in inflammatory bowel disease (IBD). In patients with IBD, the intestinal tight junction (TJ) barrier is compromised as characterized by an increase in intestinal permeability. MMP-9 is elevated in intestinal tissue, serum and stool of patients with IBD. Previous studies from our laboratory showed that MMP-9 causes an increase in intestinal epithelial TJ permeability and that the MMP-9 induced increase in intestinal permeability is an important pathogenic factor contributing to the development of intestinal inflammation in IBD. However, the intracellular mechanisms that mediate the MMP-9 modulation of intestinal barrier function remain unclear. AIMS The main aim of this study was to further elucidate the molecular mechanisms involved in MMP-9 induced increase in intestinal epithelial TJ permeability using Caco-2 monolayers as an in-vitro model system. RESULTS MMP-9 induced increase in Caco-2 TJ permeability was associated with activation and cytoplasmic-to-nuclear translocation of NF-κB p65. Knocking-down NF-κB p65 by siRNA transfection prevented the MMP-9 induced expression of the NF-κB target gene IL-8, myosin light chain kinase (MLCK) protein expression, and subsequently prevented the increase in Caco-2 TJ permeability. In addition, the effect of MMP-9 on Caco-2 intestinal epithelial TJ barrier function was not mediated by apoptosis or necrosis. CONCLUSION Our data show that the MMP-9 induced disruption of Caco-2 intestinal epithelial TJ barrier function is regulated by NF-κB pathway activation of MLCK.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Jessica Engers
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Mohammad Haque
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Steven King
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Deemah Al-Omari
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Thomas Y. Ma
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
13
|
Walter L, Canup B, Pujada A, Bui TA, Arbasi B, Laroui H, Merlin D, Garg P. Matrix metalloproteinase 9 (MMP9) limits reactive oxygen species (ROS) accumulation and DNA damage in colitis-associated cancer. Cell Death Dis 2020; 11:767. [PMID: 32943603 PMCID: PMC7498454 DOI: 10.1038/s41419-020-02959-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Colitis-associated cancer (CAC) is a subtype of colon cancer that is driven by chronic inflammation and is prevalent in chronic ulcerative colitis patients. The development of CAC is associated with the inflammation-dysplasia-carcinoma pathway which is significantly different than adenoma-carcinoma pathway of sporadic colon cancer (CRC). Matrix Metalloproteinase 9 (MMP9) is a zinc-dependent endopeptidase against extracellular matrix (ECM) proteins expressed in the gastrointestinal tract during inflammation. We have previously shown that MMP9 plays a tumor suppressor role in CAC via “MMP9-Notch1-ARF-p53 axis” pathway. The aim of this study is to determine the role of MMP9 in maintaining genomic stability in CAC. Homozygous transgenic mice with constitutive-expression of MMP9 in the colonic epithelium (TgM9) with their wild-type littermates (WT) and stably transfected HCT116 cells with/without MMP9 were used for in vivo and in vitro experiments, respectively. As ‘proof of concept’ model, nanoparticles (NPs) loaded with MMP9 siRNA were used to examine the effect of MMP9 silencing in the colonic epithelium. In CAC, colonic epithelium of TgM9 mice exhibited lower amounts of reactive oxygen species (ROS), less DNA damage, and increased expression of mismatch repair genes compared to WTs. Our study showed that MMP9 expression correlates with the reduced ROS levels, decreased DNA damage, and upregulated mismatch repair pathway. This suggests that MMP9 expression is a natural biological way to suppress CAC by limiting ROS accumulation and DNA damage in the colon. Therefore, MMP9 inhibition could be deleterious for CAC patient.
Collapse
Affiliation(s)
- Lewins Walter
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Brandon Canup
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Adani Pujada
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Tien Anh Bui
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Behafarin Arbasi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Hamed Laroui
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Pallavi Garg
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States.
| |
Collapse
|
14
|
Li Y, He J, Wang F, Wang X, Yang F, Zhao C, Feng C, Li T. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol 2020; 18:181. [PMID: 32698816 PMCID: PMC7376963 DOI: 10.1186/s12957-020-01958-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background The purpose of this study is to explore the role and mechanism of MMP-9 in the EMT process of thyroid cancer (TC), so as to provide a basis for clinical exploration of invasion and metastasis process of TC, looking for biological markers of tumor metastasis and molecular intervention therapy. Methods Western blot and RT-PCR were employed to detect the expression of MMP-9 in human normal thyroid cell line HT-ori3 and human TC cell lines IHH-4 (PTC), FTC-133, and 8505C. Expression levels of EMT-related markers: epithelial cell marker E-cadherin and stromal cell marker Vimentin in TGF-1-induced TC cell lines were detected by Western blot and RT-PCR, respectively. The effects of MMP-9 downregulation on cell invasion and metastasis were investigated by wound-healing assay and cell invasion experiment. Results The protein and mRNA expression levels of MMP-9 in TC cell lines were increased compared with the human normal thyroid cell line HT-ori3. When TGF-β1 was added, the expression of EMT and Vimentin increased while the expression of E-cadherin decreased. Compared with the control group, the TC cells stably transfected with MMP-9 shRNA showed inhibited EMT, decreased Vimentin expression, and increased E-cadherin expression. The induction of TGF-β1 did not promote the occurrence of EMT in TC cells which were stably transformed with MMP-9 shRNA. The addition of TGF-β1 to TC cells increased the ability of the cells to migrate and invade. Compared with the control group, the migration and invasion ability of TC cells stably transfected with MMP-9 shRNA was significantly reduced, and the induction of TGF-β1 could not restore the migration and invasion ability of cells without MMP-9. Conclusions In conclusion, we found that MMP-9 can be used as a biomarker for TC, which can promote the EMT process of TGF-β1 induced TC, and thus affecting the cell migration and invasion ability.
Collapse
Affiliation(s)
- Yuanchun Li
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No.37 Zhonghua West Road, Qiqihar, 161006, People's Republic of China.
| | - Jing He
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Feng Wang
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No.37 Zhonghua West Road, Qiqihar, 161006, People's Republic of China
| | - Xin Wang
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No.37 Zhonghua West Road, Qiqihar, 161006, People's Republic of China
| | - Fan Yang
- Clinical Pathologic Diagnosis Center, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Chunyang Zhao
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No.37 Zhonghua West Road, Qiqihar, 161006, People's Republic of China
| | - Chunling Feng
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, No.37 Zhonghua West Road, Qiqihar, 161006, People's Republic of China
| | - Tiejun Li
- Department of Clinical Medicine, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| |
Collapse
|
15
|
Wang H, Liu Y, Shi J, Cheng Z. ORMDL3 knockdown in the lungs alleviates airway inflammation and airway remodeling in asthmatic mice via JNK1/2-MMP-9 pathway. Biochem Biophys Res Commun 2019; 516:739-746. [PMID: 31255288 DOI: 10.1016/j.bbrc.2019.06.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022]
Abstract
Orosomucoid-like protein 3 (ORMDL3) is a common mutation in many asthma patients and its effects on the specific pathogenesis of asthma are still unclear. Therefore, in this study, we used a mouse that specifically knockout the mouse ORDML3 gene to further study the mechanism. We used ovalbumin (OVA) to induce asthma in wild-type mice and ORMDL3 knockout mice. Lung ventilation resistance, airway inflammation, mucus hypersecretion, collagen deposition, the levels of inflammatory factors and the expression of ORDML3 and JNK1/2-MMP-9 pathway were detected. The results showed that ORMDL3 gene was highly expressed in clinical asthmatic children and mouse asthma model. Knocking down the ORMDL3 gene in the lung tissue of asthmatic mice can reduce airway hyperresponsiveness, airway inflammation, mucus secretion, and collagen deposition around the airway. After knocking down the lung tissue of mice, the IL-4, IL-5 and IL-13 concentrations in broncho alveolar lavage fluid of asthmatic mice were significantly decreased, and the activation of JNK1/2-MMP-9 pathway was inhibited in mouse lung tissue. Collectively, our results demonstrate that the ORMDL3 gene may aggravate asthma symptoms by activating the JNK1/2-MMP-9 pathway, which indicates that the ORMDL3 gene may be the key molecule for the next step of asthma targeted therapy.
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ying Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jiang Shi
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhe Cheng
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
16
|
Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. SENSORS 2018; 18:s18103249. [PMID: 30262739 PMCID: PMC6211011 DOI: 10.3390/s18103249] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
As one of the most widely investigated matrix metalloproteinases (MMPs), MMP-9 is a significant protease which plays vital roles in many biological processes. MMP-9 can cleave many extracellular matrix (ECM) proteins to regulate ECM remodeling. It can also cleave many plasma surface proteins to release them from the cell surface. MMP-9 has been widely found to relate to the pathology of cancers, including but not limited to invasion, metastasis and angiogenesis. Some recent research evaluated the value of MMP-9 as biomarkers to various specific cancers. Besides, recent research of MMP-9 biosensors discovered various novel MMP-9 biosensors to detect this enzyme. In this review, some recent advances in exploring MMP-9 as a biomarker in different cancers are summarized, and recent discoveries of novel MMP-9 biosensors are also presented.
Collapse
|
17
|
Matrix metalloproteinases as regulators of inflammatory processes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2036-2042. [DOI: 10.1016/j.bbamcr.2017.05.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
|
18
|
Pujada A, Walter L, Patel A, Bui TA, Zhang Z, Zhang Y, Denning TL, Garg P. Matrix metalloproteinase MMP9 maintains epithelial barrier function and preserves mucosal lining in colitis associated cancer. Oncotarget 2017; 8:94650-94665. [PMID: 29212256 PMCID: PMC5706902 DOI: 10.18632/oncotarget.21841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
In colitis associated cancer (CAC), chronic inflammation exposes the epithelial mucosal defensive lining to inflammatory mediators such as cytokines and anti-microbial peptides (AMPs) causing the dysbiosis of microbiota population and the dysregulation of immune response. Matrix Metalloproteinases (MMPs) are zinc dependent endopeptidases which mediate inflammation, tissue remodeling, and carcinogenesis. MMP9 is undetectable in healthy tissue, although highly upregulated during inflammation and cancer. We have previously shown that MMP9 plays a protective role in CAC opposite to its conventional role of acute inflammation and cancer mediator. In this study, we investigated the mechanistic role of MMP9 in preserving the epithelial mucosal integrity to suppress the progression of tumor microenvironment in CAC. We used transgenic mice constitutively expressing MMP9 in colonic epithelium (TgM9) as an in vivo model and intestinal cell line CaCo2BBE as an in vitro model. We induced CAC with three cycles of dextran sodium sulfate (DSS). We observed that MMP9 expression in colonic epithelium maintains the microbiota. We also observed that MMP9 mediates pro-inflammatory cytokine levels and AMPs but suppresses IL-22 resulting in lower levels of REG3-g and S100A8 AMPs. We also found that MMP9 maintains an efficient barrier function and the integrity of tight junctions. We also observed increased levels of mucin and intestinal trefoil factor among TgM9 mice in CAC. We also found that MMP9 expressing CaCo2BBE cells had increased expressions of EGFR and nuclear transcription factor- specificity protein 1 (Sp1). These data imply that MMP9 acts as a tumor suppressor in CAC by sustaining the epithelial mucosal integrity due to the activation of EGFR-Sp1 signaling pathway.
Collapse
Affiliation(s)
- Adani Pujada
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Lewins Walter
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Aashka Patel
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Tien Anh Bui
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Pallavi Garg
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|