1
|
Shaukat A, Aleem MT, Munir F, Gao F, Su RW. An overview of the role of steroid hormones in various parasitic infections. J Reprod Immunol 2025; 169:104533. [PMID: 40267633 DOI: 10.1016/j.jri.2025.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/26/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
There is a close relationship among hormones, neuropeptides, neurotransmitters, and cytokines that modify the host immune response through various effector mechanisms, including both humoral and cellular immunity. Interruption of this communication balance leads to infection or greater vulnerability to disease. The relationship between host and parasite is complex, and there is significant communication, interaction, and biochemical co-evolution. In parasitic infection, the role of various hormones has been proven and there are also reports on parasites the direct effect of hormones. Numerous parasites produce the secretion of molecules that affect the immunological and physiological responses in the host, including intermediaries and vectors. In contrast, the parasite secretes various factors that change the hormone host levels. In a few cases, the parasite's status hormones have negative and positive influences. On the other hand, the influences are indirectly intermediated through the host's immune system. In vertebrates, the occurrence of parasites also has a main effect on the host endocrine status and a normal suite of processes ruled through hormones. This procedure comprises host growth, establishment, transformation, and reproduction. Therefore, considering the mechanism involved in immuno-endocrine variation and its influences on parasites is critical for emerging new drugs, vaccine target finding, and inventing new therapies for numerous infections. Males are usually more vulnerable to parasitic diseases as compared to females. These sex differentiation can reflect the suppressive properties of testosterone and the excessive effects of estradiol on immune function. For defining the T-cell-driven immunity T. spiralis infection is a perfect model and also provides the crucial visions that can affect potential helminths therapies currently in development. Conflicting host variables regulate the efficiency of such treatment and have recognized the host-derived sex steroid hormones as the main factor in the growth of immunity. This study categorized the role of circulating steroid hormones as an immune regulator in various parasitic diseases.
Collapse
Affiliation(s)
- Aftab Shaukat
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Hasan MW, Haseeb M, Gadahi JA, Ehsan M, Wang Q, Lakho SA, Haider A, Aleem MT, Aimulajiang K, Lu M, Xu L, Song X, Li X, Yan R. Nanoparticle containing recombinant excretory/secretory-24 protein of Haemonchus contortus enhanced the cellular immune responses in mice. Front Vet Sci 2024; 11:1470084. [PMID: 39600880 PMCID: PMC11588750 DOI: 10.3389/fvets.2024.1470084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Haemonchus contortus poses a global challenge as a parasite affecting small ruminants, yet the problem of absence of an effective vaccine against H. contortus infection still exists. This investigation sought to appraise the immunological reaction induced by recombinant H. contortus excretory/secretory-24 (rHcES-24) in combination with complete Freund's adjuvant (CFA) and bio-polymeric nanoparticles (NPs) within a murine model. In this study, rHcES-24 was encapsulated in poly(d, l-lactide-co-glycolide) (PLGA) and chitosan (CS) NPs, administered subcutaneously to mice. Researchers analyzed the NPs using scanning electron microscope (SEM) and assessed lymphocyte proliferation, specific antibodies, cytokines, T cell proliferation (CD3e+CD4+, CD3e+CD8a+), and phenotypic alteration in splenocytes (CD11c+CD83+, CD11c+CD86+) through flow cytometry to understand the immune response. The results demonstrated that the administration of nanovaccines (NVs) prompted immune responses towards Th1 pathway. This was indicated by notable enhancements in the production of specific antibodies, heightened cytokine levels, and a robust proliferation of lymphocytes observed in mice that received the NVs compared to control groups. Remarkably, mice vaccinated with the antigen-loaded NPs formulations exhibited considerably higher proportions of splenic dendritic cells (DCs) and T cells in comparison to those receiving the traditional adjuvant or the control groups. Incorporating HcES-24 protein into NPs effectively conferred immunity against H. contortus, paving the way for developing a targeted and commercial vaccine.
Collapse
Affiliation(s)
- Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State and NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Javaid Ali Gadahi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiangqiang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ali Haider
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Wang W, Jin Z, Kong M, Yan Z, Fu L, Du X. Single-Cell Transcriptomic Profiling Unveils Dynamic Immune Cell Responses during Haemonchus contortus Infection. Cells 2024; 13:842. [PMID: 38786064 PMCID: PMC11120485 DOI: 10.3390/cells13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Haemonchus contortus is a parasite widely distributed in tropical, subtropical, and warm temperate regions, causing significant economic losses in the livestock industry worldwide. However, little is known about the genetics of H. contortus resistance in livestock. In this study, we monitor the dynamic immune cell responses in diverse peripheral blood mononuclear cells (PBMCs) during H. contortus infection in goats through single-cell RNA sequencing (scRNA-Seq) analysis. METHODS AND RESULTS A total of four Boer goats, two goats with oral infection with the L3 larvae of H. contortus and two healthy goats as controls, were used in the animal test. The infection model in goats was established and validated by the fecal egg count (FEC) test and qPCR analysis of the gene expression of IL-5 and IL-6. Using scRNA-Seq, we identified seven cell types, including T cells, monocytes, natural killer cells, B cells, and dendritic cells with distinct gene expression signatures. After identifying cell subpopulations of differentially expressed genes (DEGs) in the case and control groups, we observed the upregulation of multiple inflammation-associated genes, including NFKBIA and NFKBID. Kyoto Encyclopedia of the Genome (KEGG) enrichment analysis revealed significant enrichment of NOD-like receptor pathways and Th1/Th2 cell differentiation signaling pathways in CD4 T cells DEGs. Furthermore, the analysis of ligand-receptor interaction networks showed a more active state of cellular communication in the PBMCs from the case group, and the inflammatory response associated MIF-(CD74 + CXCR4) ligand receptor complex was significantly more activated in the case group, suggesting a potential inflammatory response. CONCLUSIONS Our study preliminarily revealed transcriptomic profiling characterizing the cell type specific mechanisms in host PBMCs at the single-cell level during H. contortus infection.
Collapse
Affiliation(s)
- Wenxuan Wang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhe Jin
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Kong
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuofan Yan
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiaoyong Du
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.W.); (Z.J.); (M.K.); (Z.Y.)
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Liang M, Zhang Y, Wang M, Wen Z, Chen C, Bu Y, Lu M, Song X, Xu L, Li X, Yan R. Haemonchus contortus HcL6 promoted the Th9 immune response in goat PBMCs by activating the STAT6/PU.1/NF-κB pathway. Vet Res 2023; 54:80. [PMID: 37740213 PMCID: PMC10517550 DOI: 10.1186/s13567-023-01214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
Th9 cells play a crucial role in parasite immunity. The development of Th9 cells is facilitated by several cytokines. Key transcription factors, such as STAT6, STAT5, and PU.1, are known to enhance IL-9 expression during the Th9 immune response. NF-κB-mediated transduction pathways participate in the induction of IL-9. In a previous study, we unveiled a unique ribosomal protein derived from Haemonchus contortus excretory-secretory proteins (HcESPs) that interact with host Th9 cells. In the present study, the effects of the Haemonchus contortus ribosomal protein L6 domain DE-containing protein (HcL6) on IL-9 secretion, Th9 differentiation, and IL-9 transcription were assessed by employing ELISA, flow cytometry, and qPCR methodologies. The observations revealed the transcriptional upregulation of several key genes within the Th9 immune response pathway. Moreover, silencing STAT6, PU.1, and NF-κB was found to attenuate the Th9 immune response. In this study, we unveiled the Th9 immune response-inducing capabilities of HcL6 and elucidated some of its underlying mechanisms. These findings suggest that HcL6 is an immunostimulatory antigen capable of inducing the Th9 immune response. These insights could prove instrumental in identifying potential candidate antigens for the development of immunoprophylactic strategies against H. contortus infections.
Collapse
Affiliation(s)
- Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yongqian Bu
- Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
5
|
Liu H, Tao Z, Wang Y, Liu X, Wang C, Liu L, Hu M. A member of the CAP protein superfamily, Hc-CAP-15, is important for the parasitic-stage development of Haemonchus contortus. Parasit Vectors 2023; 16:290. [PMID: 37592312 PMCID: PMC10433639 DOI: 10.1186/s13071-023-05907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The CAP superfamily proteins are distributed widely in eukaryotes and play crucial roles in various biological processes. However, very little is known about their functions in parasitic nematodes, including Haemonchus contortus, a socioeconomically important parasitic nematode. We have therefore studied a member of the CAP protein family of H. contortus, named Hc-CAP-15, with the aim to explore its roles in regulating the parasitic developmental process. METHODS The conservation and phylogenetic relationships, spatial expression and temporal transcription profiles of Hc-CAP/cap-15, as well its biological function during parasite development were investigated using bioinformatics, immunofluorescence, real-time PCR and RNA interference (RNAi). RESULTS Hc-CAP-15 was found to be a single-domain CAP protein consisting of four conserved motifs that is localized in the cuticle, intestine and oocyte of adult worms. Hc-cap-15 was transcribed at all developmental stages of H. contortus, with the highest transcription level in parasitic fourth-stage larvae (L4s). Silencing of Hc-cap-15 resulted in a significant increase in the body length of L4s. CONCLUSIONS The results suggested that Hc-CAP-15 is important for the development of H. contortus. Our findings provide a basis for further study of the functions of the CAP family proteins in H. contortus and related parasitic nematodes.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuolin Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Liang M, Lu M, Aleem MT, Zhang Y, Wang M, Wen Z, Song X, Xu L, Li X, Yan R. Identification of excretory and secretory proteins from Haemonchus contortus inducing a Th9 immune response in goats. Vet Res 2022; 53:36. [PMID: 35597967 PMCID: PMC9123704 DOI: 10.1186/s13567-022-01055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Th9 cells have been shown to play crucial roles in anti-parasite immunity, pathogenic microbe infection, and allergy. Previous studies have demonstrated that Haemonchus contortus excretory and secretory proteins (HcESPs) induce the proliferation of Th9 cells and alter the transcriptional level of IL-9 as well as its related pathways in the Th9 immune response after infection. However, the exact molecule(s) in HcESPs inducing the Th9 immune response is not yet known. In this study, flow cytometry, co-immunoprecipitation (Co-IP) and shotgun liquid chromatography tandem-mass spectrometry (LC–MS/MS) were used, and a total of 218 proteins from HcESPs that might interact with goat Th9 cells were identified. By in vitro culture of Th9 cells with HcESPs, 40 binding proteins were identified. In vivo, 38, 47, 42 and 142 binding proteins were identified at 7, 15, 35 and 50 days post-infection (dpi), respectively. Furthermore, 2 of the 218 HcESPs, named DNA/RNA helicase domain containing protein (HcDR) and GATA transcription factor (HcGATA), were confirmed to induce the proliferation of Th9 cells and promote the expression of IL-9 when incubated with goat peripheral blood mononuclear cells (PBMCs). This study represents a proteomics-guided investigation of the interactions between Th9 cells and HcESPs. It provides a new way to explore immunostimulatory antigens among HcESPs and identifies candidates for immune-mediated prevention of H. contortus infection.
Collapse
Affiliation(s)
- Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
7
|
Wen Z, Xie X, Aleem MT, Aimulajiang K, Chen C, Liang M, Song X, Xu L, Li X, Yan R. In vitro characterization of Haemonchus contortus trehalose-6-phosphate phosphatase and its immunomodulatory effects on peripheral blood mononuclear cells (PBMCs). Parasit Vectors 2021; 14:611. [PMID: 34930417 PMCID: PMC8685816 DOI: 10.1186/s13071-021-05115-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Trehalose-6-phosphate phosphatase (TPP6) is a key enzyme in the trehalose biosynthesis pathway. The accumulation of TPP6 inside the body is harmful to the pathogen, but almost nothing is currently known about the function of TPP6 from Haemonchus contortus (CRE-GOB-1). Methods The H. contortus CRE-GOB-1 (HcGOB) gene was cloned and recombinant protein of GOB (rHcGOB) was expressed; transcription of the HcGOB gene at different developmental stages of H. contortus was then studied. The spatial expression pattern of the HcGOB gene in adult female and male worms was determined by both quantitative real-time PCR (qPCR) and immunofluorescence. The binding of the rHcGOB protein to goat PBMCs was assessed by immunofluorescence assay. The immunomodulatory impacts of rHcGOB on cell proliferation, nitric oxide generation and cytokine secretion were assessed by co-culture of rHcGOB protein with goat PBMCs. Results The HcGOB protein was transcribed in eggs, infective third-stage larvae (iL3s) and adults of H. contortus, with the highest transcript levels found in the egg stage. The transcript levels were significantly elevated in iL3s after manual desheathing. HcGOB was widely distributed in adult worms where it was mainly localized in the gut and gonads. rHcGOB was observed to bind to PBMCs and also to be recognized by sera collected from a goat infected with H. contortus. rHcGOB significantly activated the interleukin-10/transforming growth factor β/signal transducer and activator of transcription 3 (IL-10/TGF-β/STAT3) pathway in PBMCs while suppressing the transcription and expression of IL-4 and IL-17. Conclusions These results suggest that the HcGOB gene plays an important role in the development, parasitism and reproduction of H. contortus. The rHcGOB protein affected the immunomodulatory function of PBMCs in the in vitro study, suggesting that this protein would be a promising vaccine target. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05115-4.
Collapse
Affiliation(s)
- ZhaoHai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XinRan Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Fei H, Naqvi MAUH, Naqvi SZ, Xu L, Song X, Li X, Yan R. Trichinella spiralis: Knockdown of gamma interferon inducible lysosomal thiol reductase (GILT) results in the reduction of worm burden. PLoS Negl Trop Dis 2021; 15:e0009958. [PMID: 34847145 PMCID: PMC8631631 DOI: 10.1371/journal.pntd.0009958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Trichinella spiralis is mammalian skeletal muscles parasite which may cause trichinellosis in animals and humans. Gamma interferon inducible lysosomal thiol reductase (GILT) is a widespread superfamily which plays key role in processing and presentation of MHC class II restricted antigen by catalyzing disulfide bond reduction. There are no reports about GILT in T. spiralis. In present study, GILT from T. spiralis (Tsp-GILT) was cloned, analyzed by multiple-sequence alignment, and predicted by 3D structure model. Recombinant Tsp-GILT (about 46 kDa) was efficiently expressed in Escherichia coli and thiol reductase activity suggested that in acidic environment the addition of a reducing agent is needed. Soaking method was used to knockdown expression of Tsp-GILT using small interference RNA (siRNA). Immunofluorescence assay confirmed the transformation of siRNA into muscle larva (ML) and new born larva (NBL). Quantitative real time-PCR (QRT-PCR) analysis revealed that transcription level of Tsp-GILT mRNA can be up-regulated by stimulation of mouse IFN-γ and down-regulated by siRNA2 in vitro. NBLs soaked with siRNA2 showed 32.3% reduction in the generation of MLs. MLs soaked with siRNA2 showed 26.2% reduction in the next generation of MLs, but no significant effect was observed on adult worms or NBLs. These findings concluded that GILT may play important roles in the development of T. spiralis parasite.
Collapse
Affiliation(s)
- Hong Fei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Aimulajiang K, Wen Z, Naqvi MAUH, Liang M, Tian X, Feng K, Muhammad Khand F, Memon MA, Xu L, Song X, Li X, Yan R. Characteristics of Biotin lipoyl attachment and 2-oxoacid dehydrogenase acyltransferase of the parasitic nematode Haemonchus contortus and its modulatory functions on goat PBMCs in vitro. Parasite Immunol 2021; 43:e12895. [PMID: 34674283 DOI: 10.1111/pim.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022]
Abstract
Biotin lipoyl attachment and 2-oxoacid dehydrogenase acyltransferase (BLAODA), as an essential excretion of Haemonchus contortus (HcESPs), was identified to have antigenic functions. T helper-9 (Th9) cells secrete interleukin (IL)-9, a signature cytokine associated with tumour immunology, allergy and autoimmunity. Nonetheless, the understanding of modulatory functions of BLAODA on Th9 and other immune cells is limited. In this study, the BLAODA gene was cloned, and the recombinant (r) protein of BLAODA (rHcBLAODA) was expressed and immunoblotting was performed. The results revealed that HcBLAODA gene was successfully cloned and rHcBLAODA protein was expressed. The localization of rHcBLAODA was confirmed on the surface of gut sections from adult H. contortus. The rHcBLAODA protein capability to react precisely with anti-H. contortus antibodies were confirmed by immunoblotting and immunofluorescence assay (IFA). Further functional analysis showed that interaction of rHcBLAODA with host cells significantly enhanced Th9 cells generation, IL-9 expression, nitric oxide production and cell apoptosis while suppressing the cells proliferation and cells migration depending on the concentration. Overall, these findings suggest that rHcBLAODA protein could modulate the host immune response by inducing Th9 cells to secrete IL-9 cytokine in vitro.
Collapse
Affiliation(s)
- Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Kangli Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Faiz Muhammad Khand
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Sindh, Pakistan
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Aimulajiang K, Wen Z, Tian X, Lakho SA, Zhang Y, Naqvi MAUH, Liang M, Song X, Xu L, Li X, Yan R. Unveiling the Immunomodulatory Characteristics of Haemonchus contortus Ephrin Domain Containing Protein in the Parasite-Host Interactions. Animals (Basel) 2020; 10:ani10112137. [PMID: 33213045 PMCID: PMC7698521 DOI: 10.3390/ani10112137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Haemonchus contortus excretory/secretory products (HcESPs) contain many proteins that can perform various functions including modulating the host immune response. Recent studies indicate that IL-9 can be secreted by a specialized population of T cells called Th9 cells, which mediate anti-parasite immunity. Furthermore, HcESPs could enhance goat peripheral blood mononuclear cells (PBMCs) derived Th9 cells production. Ephrin domain containing protein (EPH) was identified as one of the HcESPs that can be isolated from different stages of this helminth. Nonetheless, the understanding of immunomodulatory roles of EPH on Th9 and other immune cells remains limited. In this study, the correlation between recombinant H. contortus Ephrin domain containing protein(rHcEPH)and goat PBMCs significantly enhanced Th9 cells differentiation, IL-9 expression, cell apoptosis efficiency, and cell migration, whereas cell proliferation was suppressed significantly depending on the concentration. Our findings illustrated that rHcEPH protein is linked to modulate the host immune cells and could enhance protective immunity by inducing Th9 cells secreted IL-9 in vitro. Abstract Ephrin domain containing protein (EPH), a significant excreted and secreted product (ESPs) of Haemonchus contortus, has been identified to have antigenic functions. Over the past years, a new subset of CD4 + T named as T helper 9 cells that secrete interleukin-9 (IL-9) as a signature cytokine is associated with tumor immunity and allergy. Nonetheless, the understanding of immunomodulatory roles of EPH on goat Th9 and other immune cells remains limited. Herein, EPH from H. contortus (HcEPH) was cloned and expressed in pET-28a. Immunofluorescence assay (IFA) was carried-out to localize rHcEPH within H. contortus adult worms and to bind with goat peripheral blood mononuclear cells (PBMCs). Besides, the impact of rHcEPH on signature cytokine IL-9 expression in goat PBMCs was evaluated. Flow cytometry was employed to examine Th9 cells production and cell apoptosis. The results revealed success in the expression and localization of rHcEPH in surface of adult H. contortus gut sections. According to IFA analysis, the rHcEPH protein was capable to react precisely with anti-H. contortus antibodies. Further functional analysis showed that correlation between rHcEPH and host PBMCs significantly enhanced Th9 cell differentiation, IL-9 expression, cell apoptosis efficiency, and cell migration, whereas cell proliferation was suppressed significantly depending on the concentration. Our observations indicated that rHcEPH protein is linked to modulate the host immune cells and could enhance protective immunity by inducing Th9 responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ruofeng Yan
- Correspondence: ; Tel.: +86-25-84395904; Fax: +86-25-84399000
| |
Collapse
|
11
|
Ehsan M, Hu RS, Liang QL, Hou JL, Song X, Yan R, Zhu XQ, Li X. Advances in the Development of Anti- Haemonchus contortus Vaccines: Challenges, Opportunities, and Perspectives. Vaccines (Basel) 2020; 8:vaccines8030555. [PMID: 32971770 PMCID: PMC7565421 DOI: 10.3390/vaccines8030555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal nematode parasite Haemonchus contortus (H. contortus) is a resident of tropical and subtropical regions worldwide that imposes significant production losses, economic losses, and animal health issues in the small ruminant industry, particularly sheep and goats. Considerable efforts have been made to understand how immunity is elicited against H. contortus infection. Various potential vaccine antigens have been tested by different methods and strategies applied in animal models, and significant progress has been made in the development of vaccines against H. contortus. This review highlighted and shared the knowledge about the current understanding of host immune responses to H. contortus and ongoing challenges in the development of a protective, effective, and long-lasting vaccine against H. contortus infection. We have also pinpointed some achievements and failures in the development and testing of vaccines, which will establish a road map for future research directions to explore new effective vaccine candidates for controlling and preventing H. contortus infection.
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (R.Y.); (X.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (R.Y.); (X.L.)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (M.E.); (R.-S.H.); (Q.-L.L.); (J.-L.H.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
- Correspondence: or ; Tel.: +86-354-628-8993
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (R.Y.); (X.L.)
| |
Collapse
|
12
|
Naranjo-Lucena A, García-Campos A, Garza-Cuartero L, Britton L, Blanco A, Zintl A, Mulcahy G. Fasciola hepatica products can alter the response of bovine immune cells to Mycobacterium avium subsp. paratuberculosis. Parasite Immunol 2020; 42:e12779. [PMID: 32725900 PMCID: PMC8365740 DOI: 10.1111/pim.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fasciola hepatica causes economically important disease in livestock worldwide. The relevance of this parasitic infection extends beyond its direct consequences due to its immunoregulatory properties. OBJECTIVES Given the importance of the T helper 1 (Th1) immune response in controlling infections with Mycobacterium avium subspecies paratuberculosis (MAP) in cattle, we aimed to establish the immunological consequences that co-infection with F. hepatica might have on the course of Johne's disease (JD). METHODS This study compared the in vitro response of bovine immune cells to infection with MAP or exposure to MAP antigens following F. hepatica infection or stimulation with F. hepatica products. RESULTS We found a decreased proliferation of peripheral blood mononuclear cells (PBMCs) after infection with F. hepatica. This reduction was inversely correlated with fluke burden. Pre-stimulation with F. hepatica molecules produced a significant reduction of ileocaecal lymph node leucocyte proliferation in response to MAP antigens. Additionally,F. hepatica products reduced expression of the CD14 receptor by macrophages and increased levels of apoptosis and bacterial (MAP) uptake. CONCLUSIONS Overall, F. hepatica infection had little impact on the in vitro response of immune cells to MAP, whereas in vitro co-stimulation with F. hepatica molecules had a measurable effect. Whether this is likely to affect JD progression during in vivo chronic conditions remains unclear.
Collapse
Affiliation(s)
- Amalia Naranjo-Lucena
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Andrés García-Campos
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laura Garza-Cuartero
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Louise Britton
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Annetta Zintl
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Ehsan M, Gadahi JA, Liu T, Lu M, Wang Y, Hasan MW, Haseeb M, Yan R, Xu L, Song X, Zhu XQ, Li X. Identification of a novel methyltransferase-type 12 protein from Haemonchus contortus and its effects on functions of goat PBMCs. Parasit Vectors 2020; 13:154. [PMID: 32228657 PMCID: PMC7106832 DOI: 10.1186/s13071-020-04028-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Background Methyltransferases (MTFs) are broad range of enzymes, which are ubiquitously expressed in diverse organisms ranging from bacteria to animals. MTFs proteins have been associated with various biological/cellular processes including transcriptional regulation, subcellular protein and RNA localization, signal transduction and DNA-damage repair. However, the role of MTFs in immune mechanism during host–parasite interaction has not been addressed yet. Results An open reading frame (764 bp) of methyltransferase-type 12 gene of H. contortus denoted as HcMTF-12, was successfully cloned using reverse transcriptase-polymerase chain reaction (RT-PCR) followed by prokaryotic expression in Escherichia coli BL21 (DE3 strain). The recombinant HcMTF-12 protein (rHcMTF-12) was about 47 kDa along with a fusion vector protein of 18 kDa. Immunoblot results identified the native protein MTF-12 with antibodies produced in rats against rHcMT-12, whereas rHcMTF-12 protein was recognized with sera of goat experimentally infected with H. contortus. Immunohistochemical analysis revealed that the native MTF-12 protein was mainly located in the periphery (cuticle) of parasite sections as well as within the pharynx and intestinal region. An immunofluorescence assay validated that rHcMTF-12 attached to the surface of goat PBMCs. Furthermore, the cytokines transcription of IL-2, IFN-γ and IL-4 transcripts of PBMCs incubated with rHcMTF-12 were enhanced in a dose-dependent manner. The secretion of TGF-β1 and IL-10 was significantly decreased. However, IL-6 production was not significantly different as compared to the control groups. Moreover, the migration activity and nitric oxide (NO) production by PBMCs were induced considerably, whereas the proliferation of PBMCs cells was negatively affected when incubated with the rHcMTF-12 protein. Conclusions Our findings suggest that HcMTF-12 significantly mediated the functions of PBMCs, and it might be a potential candidate for therapeutic interventions against haemonchosis.![]()
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Javaid A Gadahi
- Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Tingqi Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yujian Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad W Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Naqvi MAUH, Li H, Gao W, Naqvi SZ, Jamil T, Aimulajiang K, Xu L, Song X, Li X, Yan R. Haemonchus contortus: siRNA mediated knockdown of matrix metalloproteinase 12A (MMP-12) results in reduction of infectivity. Parasit Vectors 2020; 13:151. [PMID: 32204731 PMCID: PMC7092576 DOI: 10.1186/s13071-020-04025-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is an important tool to determine the role of genes. RNAi has been widely used to downregulate target molecules, resulting in the reduction of mRNA for protein expression. Matrix metalloprotease 12A (MMP-12) is known to have important roles during embryonic development, organ morphogenesis and pathological processes in animals. However, MMP-12 from Haemonchus contortus has not been characterized. METHODS Haemonchus contortus MMP-12 gene was cloned and recombinant protein of MMP-12 (rHc-MMP-12) was expressed. Binding activities of rHc-MMP-12 to goat peripheral blood mononuclear cells (PBMCs) were assessed by immunofluorescence assay (IFA) and the immuno-regulatory effects of rHc-MMP-12 on cell proliferation and nitric oxide production were observed by co-incubation of rHc-MMP-12 with goat PBMCs. Furthermore, a soaking method was used to knockdown the expression of Hc-MMP12 gene using three siRNA, targeting different regions of the gene and infectivity of effective siRNA on the development of H. contortus was evaluated in goat. RESULTS rHc-MMP-12 was successfully expressed in an expression vector as well as the tissues of the cuticle of adult H. contortus worms and a successful binding with PBMCs surface were observed. Increased cellular proliferation and nitric oxide production by goat PBMCs was observed in a dose-dependent manner. Quantitative real time PCR (qRT-PCR) results confirmed the successful silencing of Hc-MMP-12 gene in siRNA of 1, 2 and 3 treated third-stage larvae (L3) of H. contortus in vitro. The most efficient qRT-PCR-identified siRNA template was siRNA-2, with a 69% suppression rate compared to the control groups. Moreover, in an in vivo study, silencing of the Hc-MMP-12 gene by siRNA-2 reduced the number of eggs (54.02%), hatchability (16.84%) and worm burden (51.47%) as compared to snRNA-treated control group. In addition, a shorter length of worms in siRNA-2-treated group was observed as compared to control groups. CONCLUSIONS Our results indicate that siRNA-mediated silencing of Hc-MMP-12 gene in H. contortus significantly reduce the egg counts, larval hatchability, and adult worm counts and sizes. The findings of the present study demonstrate important roles of Hc-MMP-12 in the development of H. contortus.
Collapse
Affiliation(s)
- Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenxiang Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tahseen Jamil
- Sindh Agriculture University, Tandojam, Sindh 70050 Pakistan
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
15
|
Ehsan M, Haseeb M, Hu R, Ali H, Memon MA, Yan R, Xu L, Song X, Zhu X, Li X. Tropomyosin: An Excretory/Secretory Protein from Haemonchus contortus Mediates the Immuno-Suppressive Potential of Goat Peripheral Blood Mononuclear Cells In Vitro. Vaccines (Basel) 2020; 8:vaccines8010109. [PMID: 32121527 PMCID: PMC7157511 DOI: 10.3390/vaccines8010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
During host-parasite interactions, binding of excretory/secretory proteins (ESPs) on the host immune cells is considered the fundamental phase for regulation of immune responses. In this study, gene encoding Haemonchus contortus tropomyosin (Hc-TpMy), was successfully cloned and expressed, and the recombinant protein after host cell surface attachment was evaluated for immune functional analysis with goat peripheral blood mononuclear cells (PBMCs) in vitro. The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant protein was successfully recognized by the sera of rat experimentally infected with rHc-TpMy. The immunofluorescence assay detected attachment of rHc-TpMy on the surface of host PBMCs. Furthermore, immunoregulatory roles of rHc-TpMy on cytokines expression, PBMC proliferation, migration, nitric oxide (NO) production, apoptosis and monocytes phagocytosis were observed. The results showed that expression of IL-4 and IFN-γ cytokines, cell proliferation, NO production and PBMC migration were significantly suppressed by goat PBMCs after co-incubation with rHc-TpMy protein. However, the productions of IL-10, IL-17 and TGF-β1 cytokines, PBMCs apoptosis and monocytes phagocytosis were elevated at dose dependent manner. Our findings indicated that rHc-TpMy is an important ES binding protein exhibit distinct immuno-suppressive roles on goat PBMCs which might be a potential molecular target to control haemonchosis in future.
Collapse
Affiliation(s)
- Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China; (R.H.); (X.Z.)
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Ruisi Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China; (R.H.); (X.Z.)
| | - Haider Ali
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
| | - Xingquan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, China; (R.H.); (X.Z.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; (M.E.); (M.H.); (H.A.); (M.A.M.); (R.Y.); (L.X.); (X.S.)
- Correspondence: ; Tel.: +86-25-8439-9000; Fax: +86-25-8439-9000
| |
Collapse
|
16
|
Ehsan M, Gadahi JA, Lu M, Yan R, Xu L, Song X, Zhu XQ, Du A, Hu M, Li X. Recombinant elongation factor 1 alpha of Haemonchus contortus affects the functions of goat PBMCs. Parasite Immunol 2020; 42:e12703. [PMID: 32043596 PMCID: PMC7187238 DOI: 10.1111/pim.12703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Excretory/secretory proteins of Haemonchus contortus (HcESPs) intermingle comprehensively with host immune cells and modulate host immune responses. In this study, H contortus ES antigen named as elongation factor 1 alpha (HcEF‐1α) was cloned and expressed. The influences of recombinant HcEF‐1α on multiple functions of goat peripheral blood mononuclear cells (PBMCs) were observed in vitro. Immunoblot analysis revealed that rHcEF‐1α was recognized by the serum of goat infected with H contortus. Immunofluorescence analysis indicated that rHcEF‐1α was bound on surface of PBMCs. Moreover, the productions of IL‐4, TGF‐β1, IFN‐γ and IL‐17 of cells were significantly modulated by the incubation with rHcEF‐1α. The production of interleukin IL‐10 was decreased. Cell migration, cell proliferation and cell apoptosis were significantly increased; however, nitric oxide production (NO) was significantly decreased. The MHC II molecule expression of cells incubated with rHcEF‐1α was increased significantly, whereas MHC‐I was not changed as compared to the control groups (PBS control and pET32a). These findings indicated that rHcEF‐1α protein might play essential roles in functional regulations of HcESPs on goat PBMC and mediate the immune responses of the host during host‐parasite relationship.
Collapse
Affiliation(s)
- Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Javaid Ali Gadahi
- Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - MingMin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - AiFang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Characterization of Haemonchus contortus Excretory/Secretory Antigen (ES-15) and Its Modulatory Functions on Goat Immune Cells In Vitro. Pathogens 2020; 9:pathogens9030162. [PMID: 32120801 PMCID: PMC7157690 DOI: 10.3390/pathogens9030162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/11/2023] Open
Abstract
Small size excretory/secretory (ES) antigens of the Haemonchus contortus parasite have intense interest among researchers for understanding the molecular basis of helminths immune regulation in term of control strategies. Immunomodulatory roles of H. contortus ES-15 kDa (HcES-15) on host immune cells during host–parasite interactions are unknown. In this study, the HcES-15 gene was cloned and expression of recombinant protein (rHcES-15) was induced by isopropyl-ß-d-thiogalactopyranoside (IPTG). Binding activity of rHcES-15 to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immunofluorescence assay (IFA) and immunohistochemical analysis showed that H. contortus 15 kDa protein localized in the outer and inner structure of the adult worm, clearly indicated as the parasite’s ES antigen. The immunoregulatory role on cytokines production, cell proliferation, cell migration, nitric oxide (NO) production, apoptosis, and phagocytosis were observed by co-incubation of rHcES-15 with goat PBMCs. The results showed that cytokines IL-4, IL-10, IL-17, the production of nitric oxide (NO), PBMCs apoptosis, and monocytes phagocytosis were all elevated after cells incubated with rHcES-15 at differential protein concentrations. We also found that IFN-γ, TGF-β1, cells proliferation and migration were significantly suppressed with the interaction of rHcES-15 protein. Our findings indicated that low molecular ES antigens of H. contortus possessed discrete immunoregulatory roles, which will help to understand the mechanisms involved in immune evasion by the parasite during host–parasite interactions.
Collapse
|
18
|
Naqvi MAUH, Memon MA, Jamil T, Naqvi SZ, Aimulajiang K, Gadahi JA, Xu L, Song X, Li X, Yan R. Galectin Domain Containing Protein from Haemonchus contortus Modulates the Immune Functions of Goat PBMCs and Regulates CD4+ T-Helper Cells In Vitro. Biomolecules 2020; 10:E116. [PMID: 31936604 PMCID: PMC7022894 DOI: 10.3390/biom10010116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 02/08/2023] Open
Abstract
Galectins are glycan-binding proteins that are widely expressed and distributed in mammalian tissues as well as cells of innate and adaptive immune responses. CD4+ T-helper cells differentiate into effector subsets in response to cytokines. T helper 9 cells are one of the recently described subsets of effector T cells that are relatively new and less studied. In this study, galectin domain containing protein from Haemonchus contortus (Hc-GDC) was cloned, expressed in pET32a, and immunoblotting was performed. Localization of recombinant (r)Hc-GDC on outer and inner surface of H. contortus worm and binding with goat Peripheral Blood Mononuclear cells (PBMCs) were performed using immunofluorescence assay. Moreover, effects of rHc-GDC on proliferation, apoptosis, cell migration, and the nitric oxide production in goat PBMCs were evaluated. Furthermore, modulatory effects of rHc-GDC on production of Th1, Th2, and Th9 cells were evaluated by flowcytometry and on interferon gamma, interleukin (IL)-4 and IL-9 were evaluated by quantitative real-time polymerase chain reaction. The results demonstrated that rHc-GDC was successfully cloned, expressed in expression vector as well as in the gut surface of adult H. contortus worm and successful binding with PBMCs surface were observed. Immunoblotting results revealed that rHc-GDC is an important active protein of H. contortus excretory and secretory products. Moreover, the interaction of rHc-GDC with host cells increased the production of Th2, Th9 cells, IL4, IL-9, PBMC proliferation, nitric oxide, and cell migration. No effects of rHc-GDC were observed on PMBC apoptosis, production of Th1 cells, and secretions of IFN- and IL-10 cytokines. These findings indicate that recombinant GDC protein from H. contortus modulates the immune functions of goat PBMCs and has the potential to enhance protective immunity by inducing T helper-9-derived IL-9 in vitro.
Collapse
Affiliation(s)
- Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Tahseen Jamil
- Sindh Agriculture University, Tandojam 70050, Sindh, Pakistan; (T.J.); (J.A.G.)
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Javaid Ali Gadahi
- Sindh Agriculture University, Tandojam 70050, Sindh, Pakistan; (T.J.); (J.A.G.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| |
Collapse
|
19
|
Sun X, Li Y, Naqvi MAUH, Naqvi SZ, Chu W, Xu L, Song X, Li X, Yan R. Succinate Coenzyme A Ligase Beta-Like Protein from Trichinella spiralis Suppresses the Immune Functions of Rat PBMCs in Vitro and Inhibits the Secretions of Interleukin-17 in Vivo. Vaccines (Basel) 2019; 7:vaccines7040167. [PMID: 31684056 PMCID: PMC6963543 DOI: 10.3390/vaccines7040167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Succinate Coenzyme A ligase beta-like protein (SUCLA-β) is a subunit of Succinyl-coenzyme A synthetase, which is involved in substrate synergism, unusual kinetic reaction in which the presence of SUCLA-β for one partial reaction stimulates another partial reaction. Trichinella spiralis is a parasitic nematode, which may hinder the development of autoimmune diseases. Immunomodulatory effects of SUCLA-β from Trichinella spiralis in the parasite-host interaction are unidentified. In this study the gene encoding T. spiralis SUCLA-β was cloned and expressed. Binding activities of recombinant T. spiralis SUCLA-β (rTs-SUCLA-β) to rat peripheral blood mononuclear cells (PBMCs) were checked by immunofluorescence assay (IFA) and the immuno-regulatory effects of rTs-SUCLA-β on cell migration, cell proliferation, nitric oxide (NO) production and apoptosis were observed by co-incubation of rTs-SUCLA-β with rat PBMCs in vitro, while cytokine secretions in rTs-SUCLA-β treated rats were evaluated in vivo. Furthermore, phagocytosis of monocytes was detected by flow cytometry and effects of rTs-SUCLA-β-induced protective immunity on T. spiralis adult worms and muscle larva were evaluated in rats. The IFA results revealed that rTs-SUCLA-β could bind to rat PBMCs. Treatment of PBMCs with rTs-SUCLA-β significantly decreased the monocyte phagocytosis, cell migration and cell proliferation, while NO production and apoptosis of PBMCs were unaffected. Results of the in vivo study showed that the IL-17 secretion decreased significantly after rTs-SUCLA-β administration in rats, while no significant effects were observed on the secretions of IFN-γ, IL-9, TGF-β and IL-4. Moreover, significant reduction of T. spiralis muscle larvae burden and significant increase in anti-rTs-SUCLA-β immunoglobulin level of IgG, IgG1 and IgG2a was observed in rTs-SUCLA-β-administered rats. The results indicated that rTs-SUCLA-β may be a potential target for controlling T. spiralis infection by suppressing the immune functions of the rat PBMCs and by reducing the parasite burden. Additionally it may also contribute to the treatment of autoimmune diseases and graft rejection by suppressing IL-17 immune response in the host.
Collapse
Affiliation(s)
- Xiaoke Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen Chu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Excreted and secreted products (72/60 kDa) from Haemonchus placei larvae induce in vitro peripheral blood mononuclear cell proliferation and activate the expression of cytokines and FCεR1A receptor. Exp Parasitol 2019; 206:107755. [DOI: 10.1016/j.exppara.2019.107755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
|
21
|
Combined Use of Indirect ELISA and Western Blotting with Recombinant Hepatocellular Carcinoma-Associated Antigen 59 Is a Potential Immunodiagnostic Tool for the Detection of Prepatent Haemonchus contortus Infection in Goat. Animals (Basel) 2019; 9:ani9080548. [PMID: 31412573 PMCID: PMC6721135 DOI: 10.3390/ani9080548] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The accurate and early diagnosis of Haemonchus contortus infection is crucial for effective control. Early stage detection of H. contortus infection has not been attempted in goat, even though both immature worm and fourth larval stage are blood sucking. This study was carried out to detect the H. contortus infection during early stage in goat. The results of this study assessed that rHc-HCA59 could detect the antibody in H. contortus infected goats’ sera during early period with good sensitivity and specificity using immunodiagnostic techniques. Our findings illustrated that combined use of ELISA and western blotting based on rHc-HCA59 is a powerful tool for early detection of H. contortus infection in goats. Abstract Haemonchus contortus is recognized as one of the important health problems in small ruminants, leading to reduced production and economic loss for farmers worldwide. Prepatent diagnosis of H. contortus infection is crucial to improve control strategies as this helminth may remove up to one-fifth of total erythrocytes and may cause anemia, edema, diarrhea, and ultimately death in young animals. In this study, one of the excretory and secretory products, rHc-HCA59, was purified and used as antigen to detect specific antibodies in H. contortus infected goats during prepatent stage of infection using indirect enzyme linked immunosorbent assay (ELISA) as screening test. All goats (n = 38) were housed indoor, experimentally infected with 8000 infective larvae (L3) of H. contortus, and serum samples were collected prior to infection and at 14th day of infection. Immunoblotting was performed to confirm the results of indirect ELISA, evaluate the cross reactivity against rHc-HCA59 in sera of most common co-infecting parasites and rectify the false negative samples. Furthermore, three different batches of rHc-HCA59 were produced to evaluate the repeatability of ELISA. No eggs were detected in feces of all goats collected at 7th and 14th day of infection but, H. contortus eggs were detected at 21 days post infection in the feces. Indirect ELISA performed in this study showed 87% sensitivity and 100% specificity. The western blot analysis confirmed immunoreactivity in serum samples which scored positive in indirect ELISA and recognized the samples as negative which had OD450 lower than negative cut-off value in indirect ELISA. Furthermore, all false negative sera (n = 5) that had OD450 value between positive and negative cut-off value in rHc-HCA59 based ELISA were clearly positive in western blot. Moreover, no cross-reactivity was detected in ELISA and western blotting against rHc-HCA59 in positive sera of Toxoplasma gondii, Fasciola hepatica, and Trichinella spiralis. The results of this study concluded that combined use of indirect ELISA and western blotting with rHc-HCA59 is a potential immunodiagnostic tool for the detection of H. contortus infection during prepatent period in goats.
Collapse
|
22
|
Wang Q, Wu L, Hasan MW, Lu M, Wang W, Yan R, Xu L, Song X, Li X. Hepatocellular carcinoma-associated antigen 59 of Haemonchus contortus modulates the functions of PBMCs and the differentiation and maturation of monocyte-derived dendritic cells of goats in vitro. Parasit Vectors 2019; 12:105. [PMID: 30871600 PMCID: PMC6416944 DOI: 10.1186/s13071-019-3375-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma-associated antigen 59 (HCA59), which is one of the most important excretory/secretory products of Haemonchus contortus (HcESPs), is known to have antigenic functions. However, its immunomodulatory effects on host cells are poorly understood. METHODS Here, we cloned the HCA59 gene and expressed the recombinant protein of HCA59 (rHCA59). Binding activities of rHCA59 to goat peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs) were checked by immunofluorescence assay (IFA) and the immunoregulatory effects of rHCA59 on cytokine secretions, cell migration, cell proliferation, nitric oxide production, and changes in expression of genes in related pathways were observed by co-incubation of rHCA59 with goat PBMCs and DCs. Monocyte phagocytosis and characterization of goat blood DC subsets were detected by flow cytometry. RESULTS The IFA results revealed that rHCA59 could bind to PBMCs and DCs. Treatment of PBMCs with rHCA59 significantly increased cellular proliferation and NO production in a dose-dependent manner, while cell migration was vigorously blocked. Treatment with rHCA59 significantly suppressed monocytes phagocytosis. The quantity of surface marker CD80 on DCs increased significantly after rHCA59 treatment. In addition, the expression of genes included in the WNT pathway was related to the differentiation and maturation of DCs, and the production of IL-10 and IL-17 produced by PBMCs was altered. CONCLUSIONS Our findings illustrated that rHCA59 could enhance host immune responses by regulating the functions of goat PBMCs and DCs, which would benefit our understanding of HCA59 from parasitic nematodes contributing to the mechanism of parasitic immune evasion.
Collapse
Affiliation(s)
- QiangQiang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - LingYan Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - MingMin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - WenJuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
23
|
Effect of norepinephrine treatment on Haemonchus contortus and its excretory products. Parasitol Res 2019; 118:1239-1248. [DOI: 10.1007/s00436-019-06230-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
|
24
|
Ehsan M, Wang W, Gadahi JA, Hasan MW, Lu M, Wang Y, Liu X, Haseeb M, Yan R, Xu L, Song X, Li X. The Serine/Threonine-Protein Phosphatase 1 From Haemonchus contortus Is Actively Involved in Suppressive Regulatory Roles on Immune Functions of Goat Peripheral Blood Mononuclear Cells. Front Immunol 2018; 9:1627. [PMID: 30061894 PMCID: PMC6054924 DOI: 10.3389/fimmu.2018.01627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Serine/threonine-protein phosphatases (STPs), as integral constituents of parasitic excretory/secretory proteins, are assumed to be released during the host–parasite interactions. However, knowledge about these phosphatases and their immunoregulatory and immune protective efficiencies with host peripheral blood mononuclear cells (PBMCs) is scant. In this study, an open reading frame of STP from Haemonchus contortus designated as HcSTP-1 was amplified and cloned using reverse-transcription-polymerase chain reaction (RT-PCR) method. The 951-bp nucleotides sequence was encoded to a protein of 316 amino acid residues, conserved in characteristics motifs GDXHG, GDYVDRG, GNHE, HGG, RG, and H. The HcSTP-1 protein was detected at approximately 35 kDa as recombinant protein fused in an expression vector system and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunohistochemically, HcSTP-1 was found to be localized in both male and female adult worm sections. Using immunofluorescence assay, the binding activity of rHcSTP-1 was confirmed on surface of goat PBMCs, which resulted in expression of multiple cytokines and various immunoregulatory activities in vitro. The RT-PCR results showed that mRNA level of interleukin-2, TGF-β1, IFN-γ, and IL-17 (with 10 µg/ml) was upregulated and IL-10 was decreased. However, IL-6 showed no change after PBMCs incubated with rHcSTP-1 protein. Further functional analysis showed that migratory activity of cells, intracellular nitrite production (NO), and apoptotic efficiency of PBMCs were elevated at significant level, whereas the proliferation of goat PBMCs and monocytes-associated major histocompatibility complex (MHC)-I and MHC-II expressions were decreased significantly at concentration-dependent fashion. Our results showed that the HcSTP-1 protein engaged in vital suppressive regulatory roles on host immune cells, which might represent a potential molecular target for controlling H. contortus infection in future.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - WenJuan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Javaid Ali Gadahi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Waqqas Hasan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - MingMin Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - YuJian Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XinChao Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Haseeb
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiangRui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Wang C, Li F, Zhang Z, Yang X, Ahmad AA, Li X, Du A, Hu M. Recent Research Progress in China on Haemonchus contortus. Front Microbiol 2017; 8:1509. [PMID: 28883809 PMCID: PMC5574212 DOI: 10.3389/fmicb.2017.01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/27/2017] [Indexed: 11/23/2022] Open
Abstract
Haemonchus contortus is one of the most important parasites of ruminants with worldwide distribution that can bring huge economic losses to the breeding industry of cattle, sheep, and goats. In recent 20 years, studies on H. contortus in China mainly focused on the epidemiology, population genetics, anthelmintic resistance, structural and functional studies of important genes regulating the development of this parasite, interaction between parasite molecules and host cells and vaccine development against haemonchosis, and achieved good progress. However, there is no systematic review about the studies by Chinese researchers on H. contortus in China. The purpose of this review is to bring together the findings from the studies on H. contortus in China in order to obtain the knowledge gained from the recent studies in China and provide foundation for identifying future research directions to establish novel diagnostic methods, discover new drug targets and vaccine candidates for use in preventing and controlling H. contortus in China.
Collapse
Affiliation(s)
- Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Fangfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zongze Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Awais A. Ahmad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang UniversityHangzhou, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
26
|
Ehsan M, Gao W, Gadahi JA, Lu M, Liu X, Wang Y, Yan R, Xu L, Song X, Li X. Arginine kinase from Haemonchus contortus decreased the proliferation and increased the apoptosis of goat PBMCs in vitro. Parasit Vectors 2017. [PMID: 28651566 PMCID: PMC5485575 DOI: 10.1186/s13071-017-2244-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arginine kinase (AK), an important member of phosphagen kinase family has been extensively studied in various vertebrates and invertebrates. Immunologically, AKs are important constituents of different body parts, involved in various biological and cellular functions, and considered as immune-modulator and effector for pro-inflammatory cytokines. However, immunoregulatory changes of host cells triggered by AK protein of Haemonchus contortus, a parasitic nematode of ruminants, are still unknown. The current study was focused on cloning and characterisation of Hc-AK, and its regulatory effects on cytokines level, cell migration, cell proliferation, nitric oxide production and apoptosis of goat peripheral blood mononuclear cells (PBMCs) were observed. METHODS The full-length sequence of the Hc-AK gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sub-cloned into the prokaryotic expression vector pET-32a. The biochemical characteristics of recombinant protein Hc-AK, which was purified by affinity chromatography, were performed based on the enzymatic assay. Binding of rHc-AK with PBMCs was confirmed by immunofluorescence assay (IFA). Immunohistochemical analysis was used to detect localisation of Hc-AK within adult worms sections. The immunoregulatory effects of rHc-AK on cytokine secretions, cell proliferation, cell migration, nitric oxide production and apoptosis were determined by co-incubation of rHc-AK with goat PBMCs. RESULTS The full-length ORF (1080 bp) of the Hc-AK gene was successfully cloned, and His-tagged AK protein was expressed in the Escherichia coli strain BL21. The recombinant protein of Hc-AK (rHc-AK) was about 58.5 kDa together with the fused vector protein of 18 kDa. The biochemical assay showed that the protein encoded by the Hc-ak exhibited enzymatic activity. Western blot analysis confirmed that the rHc-AK was recognised by the sera from rat (rat-antiHc-AK). The IFA results showed that rHc-AK could bind on the surface of goat PBMCs. Immunohistochemically, Hc-AK was localised at the inner and outer membrane as well as in the gut region of adult worms. The binding of rHc-AK to host cells increased the levels of IL-4, IL-10, IL-17, IFN-γ, nitric oxide (NO) production and cell apoptosis of goat PBMCs, whereas, TGF-β1 levels, cell proliferation and PBMCs migration were significantly decreased in a dose dependent manner. CONCLUSIONS Our findings suggested that rHc-AK is an important excretory and secretory (ES) protein involved in host immune responses and exhibit distinct immunomodulatory properties during interaction with goat PBMCs.
Collapse
Affiliation(s)
- Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - WenXiang Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XinChao Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|