1
|
Frappaolo A, Zaccagnini G, Giansanti MG. GOLPH3-mTOR Crosstalk and Glycosylation: A Molecular Driver of Cancer Progression. Cells 2025; 14:439. [PMID: 40136688 PMCID: PMC11941073 DOI: 10.3390/cells14060439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Originally identified in proteomic-based studies of the Golgi, Golgi phosphoprotein 3 (GOLPH3) is a highly conserved protein from yeast to humans. GOLPH3 localizes to the Golgi through the interaction with phosphatidylinositol-4-phosphate and is required for Golgi architecture and vesicular trafficking. Many studies revealed that the overexpression of GOLPH3 is associated with tumor metastasis and a poor prognosis in several cancer types, including breast cancer, glioblastoma multiforme, and colon cancer. The purpose of this review article is to provide the current progress of our understanding of GOLPH3 molecular and cellular functions, which may potentially reveal therapeutic avenues to inhibit its activity. Specifically, recent papers have demonstrated that GOLPH3 protein functions as a cargo adaptor for COP I-coated intra Golgi vesicles and impinges on Golgi glycosylation pathways. In turn, GOLPH3-dependent defects have been associated with malignant phenotypes in cancer cells. Additionally, the oncogenic activity of GOLPH3 has been linked with enhanced signaling downstream of mechanistic target of rapamycin (mTOR) in several cancer types. Consistent with these data, GOLPH3 controls organ growth in Drosophila by associating with mTOR signaling proteins. Finally, compelling evidence demonstrates that GOLPH3 is essential for cytokinesis, a process required for the maintenance of genomic stability.
Collapse
Affiliation(s)
| | | | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy; (A.F.); (G.Z.)
| |
Collapse
|
2
|
Tseng YH, Tran TTM, Tsai Chang J, Huang YT, Nguyen AT, Chang IYF, Chen YT, Hsieh HW, Juang YL, Chang PMH, Huang TY, Chang YC, Chen YM, Liu H, Huang CYF. Utilizing TP53 hotspot mutations as effective predictors of gemcitabine treatment outcome in non-small-cell lung cancer. Cell Death Discov 2025; 11:26. [PMID: 39870629 PMCID: PMC11772833 DOI: 10.1038/s41420-025-02300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/11/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis. In addition, clinical data from NSCLC patients were collected to evaluate both their TP53 status and their response to gemcitabine, thereby facilitating further validation. Subsequently, NSCLC cell lines with different TP53 status (A549 and H1299) were subjected to gemcitabine treatment to investigate the association between TP53 mutations and gemcitabine response. According to the dataset, NSCLC cell lines carrying TP53 mutations displayed heightened sensitivity to gemcitabine. From a clinical standpoint, patients exhibiting TP53 hotspot mutations demonstrated prolonged overall survival upon gemcitabine treatment. In vitro, overexpressing various hotspot TP53 mutations significantly sensitized H1299 cells to gemcitabine. Moreover, the knockdown of TP53 in A549 cells notably augmented sensitivity to gemcitabine treatment, as evidenced by cell viability and reproductive cell death assays. Conversely, the overexpression of wild-type TP53 in H1299 cells led to an increased resistance against gemcitabine. Gemcitabine is a treatment option for patients with non-small cell lung cancer (NSCLC) who carry TP53 hotspot mutations. This potential effectiveness might arise from its ability to disrupt DNA damage repair processes, leading to G2/M phase cell cycle arrest or an augmentation of mitotic abnormalities, eventually cause cell death. As a result, when planning treatment strategies for NSCLC patients possessing TP53 hotspot mutations, gemcitabine should be considered to incorporate into the indication.
Collapse
Affiliation(s)
- Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Trieu Thi My Tran
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jinghua Tsai Chang
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Yu-Tang Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Biomedical Industry Ph.D. Program, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Anh Thuc Nguyen
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Tung Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Wen Hsieh
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yue-Li Juang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Peter Mu-Hsin Chang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yi Huang
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Chong Hin Loon Memorial Cancer and Biotherapy Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Johnson JR, Martini RN, Yuan YC, Woods-Burnham L, Walker M, Ortiz-Hernandez GL, Kobeissy F, Galloway D, Gaddy A, Oguejiofor C, Allen B, Lewis D, Davis MB, Kimbro KS, Yates CC, Murphy AB, Kittles RA. 1,25-Dihydroxyvitamin D 3 Suppresses Prognostic Survival Biomarkers Associated with Cell Cycle and Actin Organization in a Non-Malignant African American Prostate Cell Line. BIOLOGY 2024; 13:346. [PMID: 38785827 PMCID: PMC11118023 DOI: 10.3390/biology13050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Vitamin D3 is a steroid hormone that confers anti-tumorigenic properties in prostate cells. Serum vitamin D3 deficiency has been associated with advanced prostate cancer (PCa), particularly affecting African American (AA) men. Therefore, elucidating the pleiotropic effects of vitamin D on signaling pathways, essential to maintaining non-malignancy, may provide additional drug targets to mitigate disparate outcomes for men with PCa, especially AA men. We conducted RNA sequencing on an AA non-malignant prostate cell line, RC-77N/E, comparing untreated cells to those treated with 10 nM of vitamin D3 metabolite, 1α,25(OH)2D3, at 24 h. Differential gene expression analysis revealed 1601 significant genes affected by 1α,25(OH)2D3 treatment. Pathway enrichment analysis predicted 1α,25(OH)2D3- mediated repression of prostate cancer, cell proliferation, actin cytoskeletal, and actin-related signaling pathways (p < 0.05). Prioritizing genes with vitamin D response elements and associating expression levels with overall survival (OS) in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA PRAD) cohort, we identified ANLN (Anillin) and ECT2 (Epithelial Cell Transforming 2) as potential prognostic PCa biomarkers. Both genes were strongly correlated and significantly downregulated by 1α,25(OH)2D3 treatment, where low expression was statistically associated with better overall survival outcomes in the TCGA PRAD public cohort. Increased ANLN and ECT2 mRNA gene expression was significantly associated with PCa, and Gleason scores using both the TCGA cohort (p < 0.05) and an AA non-malignant/tumor-matched cohort. Our findings suggest 1α,25(OH)2D3 regulation of these biomarkers may be significant for PCa prevention. In addition, 1α,25(OH)2D3 could be used as an adjuvant treatment targeting actin cytoskeleton signaling and actin cytoskeleton-related signaling pathways, particularly among AA men.
Collapse
Affiliation(s)
- Jabril R. Johnson
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Rachel N. Martini
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Yate-Ching Yuan
- Department of Computational Quantitative Medicine, Center for Informatics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Leanne Woods-Burnham
- Department of Physiology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Mya Walker
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Greisha L. Ortiz-Hernandez
- Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA
| | - Dorothy Galloway
- Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Amani Gaddy
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Chidinma Oguejiofor
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Blake Allen
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Deyana Lewis
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Melissa B. Davis
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| | - Clayton C. Yates
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adam B. Murphy
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rick A. Kittles
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310, USA
| |
Collapse
|
4
|
Maw JJ, Coker JA, Arya T, Goins CM, Sonawane D, Han SH, Rees MG, Ronan MM, Roth JA, Wang NS, Heemers HV, Macdonald JD, Stauffer SR. Discovery and Characterization of Selective, First-in-Class Inhibitors of Citron Kinase. J Med Chem 2024; 67:2631-2666. [PMID: 38330278 DOI: 10.1021/acs.jmedchem.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Citron kinase (CITK) is an AGC-family serine/threonine kinase that regulates cytokinesis. Despite knockdown experiments implicating CITK as an anticancer target, no selective CITK inhibitors exist. We transformed a previously reported kinase inhibitor with weak off-target CITK activity into a first-in-class CITK chemical probe, C3TD879. C3TD879 is a Type I kinase inhibitor which potently inhibits CITK catalytic activity (biochemical IC50 = 12 nM), binds directly to full-length human CITK in cells (NanoBRET Kd < 10 nM), and demonstrates favorable DMPK properties for in vivo evaluation. We engineered exquisite selectivity for CITK (>17-fold versus 373 other human kinases), making C3TD879 the first chemical probe suitable for interrogating the complex biology of CITK. Our small-molecule CITK inhibitors could not phenocopy the effects of CITK knockdown in cell proliferation, cell cycle progression, or cytokinesis assays, providing preliminary evidence that the structural roles of CITK may be more important than its kinase activity.
Collapse
Affiliation(s)
- Joshua J Maw
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Tarun Arya
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Christopher M Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Dhiraj Sonawane
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Sang Hoon Han
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Nancy S Wang
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Jonathan D Macdonald
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| |
Collapse
|
5
|
Gluszek‐Kustusz A, Craske B, Legal T, McHugh T, Welburn JPI. Phosphorylation controls spatial and temporal activities of motor-PRC1 complexes to complete mitosis. EMBO J 2023; 42:e113647. [PMID: 37592895 PMCID: PMC10620760 DOI: 10.15252/embj.2023113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP-E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin-4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP-E slides antiparallel PRC1-crosslinked microtubules. We find that the regulation of CENP-E -PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1-microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor-PRC1 complexes to couple chromosome segregation and cytokinesis.
Collapse
Affiliation(s)
- Agata Gluszek‐Kustusz
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Benjamin Craske
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thibault Legal
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
- McGill UniversityMontrealQCCanada
| | - Toni McHugh
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Julie PI Welburn
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
da Silva MF, de Lima LVA, de Oliveira LM, Semprebon SC, Silva NDO, de Aguiar AP, Mantovani MS. Regulation of cytokinesis and necroptosis pathways by diosgenin inhibits the proliferation of NCI-H460 lung cancer cells. Life Sci 2023; 330:122033. [PMID: 37598976 DOI: 10.1016/j.lfs.2023.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Aim Overcoming resistance to apoptosis and antimitotic chemotherapy is crucial for effective treatment of lung cancer. Diosgenin (DG), a promising phytochemical, can regulate various molecular pathways implicated in tumor formation and progression. However, the precise biological activity of DG in lung cancer remains unclear. This study aimed to investigate the antiproliferative activity of DG in NCI-H460 lung carcinoma cells to explore the underlying antimitotic mechanisms and alternative cell death pathways. MATERIALS AND METHODS In a 2D culture system, we analyzed cell viability, multinucleated cell frequency, cell concentration, cell cycle changes, cell death induction, intracellular reactive oxygen species (ROS) production, and nuclear DNA damage, particularly in relation to target gene expression. We also evaluated the antiproliferative activity of DG in a 3D culture system of spheroids, assessing volume changes, cell death induction, and inhibition of proliferation recovery and clonogenic growth. KEY FINDINGS DG reduced cell viability and concentration while increasing the frequency of cells with multiple nuclei, particularly binucleated cells resulting from daughter cell fusion. This effect was associated with genes involved in cytokinesis regulation (RAB35, OCRL, BIRC5, and AURKB). Additionally, DG-induced cell death was linked to necroptosis, as evidenced by increased intracellular ROS production and RIPK3, MLKL, TRAF2, and HSPA5 gene expression. In tumor spheroids, DG increased spheroid volume, induced cell death, and inhibited proliferation recovery and clonogenic growth. SIGNIFICANCE Our study provides new insights into the biological activities of DG in lung cancer cells, contributing to the development of novel oncological therapies.
Collapse
|
7
|
Mucke HA. Patent highlights October-November 2022. Pharm Pat Anal 2023; 12:95-102. [PMID: 37477491 DOI: 10.4155/ppa-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A snapshot of recent noteworthy developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
8
|
Minor Kinases with Major Roles in Cytokinesis Regulation. Cells 2022; 11:cells11223639. [PMID: 36429067 PMCID: PMC9688779 DOI: 10.3390/cells11223639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis. Several kinases have been described in the literature, such as cyclin-dependent kinase, polo-like kinase 1, and Aurora B, regulating both furrow ingression and/or abscission. However, others exist, with well-established roles in cell-cycle progression but whose specific role in cytokinesis has been poorly investigated, leading to considering these kinases as "minor" actors in this process. Yet, they deserve additional attention, as they might disclose unexpected routes of cell division regulation. Here, we summarize the role of multifunctional kinases in cytokinesis with a special focus on those with a still scarcely defined function during cell cleavage. Moreover, we discuss their implication in cancer.
Collapse
|
9
|
Iegiani G, Di Cunto F, Pallavicini G. Inhibiting microcephaly genes as alternative to microtubule targeting agents to treat brain tumors. Cell Death Dis 2021; 12:956. [PMID: 34663805 PMCID: PMC8523548 DOI: 10.1038/s41419-021-04259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
Medulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy.
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy.
| |
Collapse
|
10
|
Neuroblastoma Cells Depend on CSB for Faithful Execution of Cytokinesis and Survival. Int J Mol Sci 2021; 22:ijms221810070. [PMID: 34576232 PMCID: PMC8465547 DOI: 10.3390/ijms221810070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma, the most common extra-cranial solid tumor of early childhood, is one of the major therapeutic challenges in child oncology: it is highly heterogenic at a genetic, biological, and clinical level. The high-risk cases have one of the least favorable outcomes amongst pediatric tumors, and the mortality rate is still high, regardless of the use of intensive multimodality therapies. Here, we observed that neuroblastoma cells display an increased expression of Cockayne Syndrome group B (CSB), a pleiotropic protein involved in multiple functions such as DNA repair, transcription, mitochondrial homeostasis, and cell division, and were recently found to confer cell robustness when they are up-regulated. In this study, we demonstrated that RNAi-mediated suppression of CSB drastically impairs tumorigenicity of neuroblastoma cells by hampering their proliferative, clonogenic, and invasive capabilities. In particular, we observed that CSB ablation induces cytokinesis failure, leading to caspases 9 and 3 activation and, subsequently, to massive apoptotic cell death. Worthy of note, a new frontier in cancer treatment, already proved to be successful, is cytokinesis-failure-induced cell death. In this context, CSB ablation seems to be a new and promising anticancer strategy for neuroblastoma therapy.
Collapse
|
11
|
Lu W, Dong Y, Cui Q, Wang Y, Yang X, Cai X, Zhang M. High Expression of Citron Kinase Contributes to the Development of Esophageal Squamous Cell Carcinoma. Front Genet 2021; 12:628547. [PMID: 34305997 PMCID: PMC8292831 DOI: 10.3389/fgene.2021.628547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/14/2021] [Indexed: 01/16/2023] Open
Abstract
Objective This study aimed to investigate the role and potential regulatory mechanism of citron kinase (CIT) in esophageal squamous cell carcinoma (ESCC). Methods Citron kinase (CIT) expression in ESCC tissues was analyzed based on the microarray dataset GSE20347, and CIT expression in ESCC cell lines was analyzed. Eca-109 cells were lentivirally transfected with shRNA-CIT (LV-shCIT) to knock down CIT, followed by investigation of cell proliferation and apoptosis. Nude mouse xenograft experiments were performed to evaluate the tumorigenicity of CIT-knockdown Eca-109 cells. Microarray analysis of Eca-109 cells transfected with LV-shCIT or LV-shNC and subsequent Ingenuity Pathway Analysis (IPA) were performed to identify CIT-related differentially expressed genes (DEGs) and signaling pathways. Furthermore, the expression of key DEGs was validated using the clinical samples of ESCC. Results Citron kinase (CIT) was highly expressed in ESCC tissues and cell lines. Knockdown of CIT suppressed Eca-109 cell proliferation and promoted apoptosis in vitro. Moreover, CIT knockdown significantly reduced tumorigenicity of Eca-109 cells in vivo. Microarray and IPA analysis showed that signaling by the Rho family GTPases pathway was significantly activated, and CIT intrinsically interacted with the protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), sequestosome 1 (SQSTM1), and interleukin 6 (IL6). Notably, the expression levels of PRKAA1 and SQSTM1 were upregulated in ESCC tissues, while the IL6 expression was downregulated. Conclusion Our findings confirm that CIT functions as an oncogene in ESCC. CIT may contribute to ESCC development by upregulating PRKAA1 and SQSTM1 as well as downregulating IL6. Citron kinase may serve as a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Wenfeng Lu
- Department of Integrative Medicine, Zhongshan Hospital and Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yun Dong
- Department of Integrative Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Cui
- Department of Integrative Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhan Wang
- Department of Integrative Medicine, Zhongshan Hospital and Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiwen Yang
- Department of Integrative Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyue Cai
- Department of Integrative Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- Department of Integrative Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Pejskova P, Reilly ML, Bino L, Bernatik O, Dolanska L, Ganji RS, Zdrahal Z, Benmerah A, Cajanek L. KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling. J Cell Biol 2021; 219:151721. [PMID: 32348467 PMCID: PMC7265313 DOI: 10.1083/jcb.201904107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/20/2019] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Primary cilia play critical roles in development and disease. Their assembly and disassembly are tightly coupled to cell cycle progression. Here, we present data identifying KIF14 as a regulator of cilia formation and Hedgehog (HH) signaling. We show that RNAi depletion of KIF14 specifically leads to defects in ciliogenesis and basal body (BB) biogenesis, as its absence hampers the efficiency of primary cilium formation and the dynamics of primary cilium elongation, and disrupts the localization of the distal appendage proteins SCLT1 and FBF1 and components of the IFT-B complex. We identify deregulated Aurora A activity as a mechanism contributing to the primary cilium and BB formation defects seen after KIF14 depletion. In addition, we show that primary cilia in KIF14-depleted cells are defective in response to HH pathway activation, independently of the effects of Aurora A. In sum, our data point to KIF14 as a critical node connecting cell cycle machinery, effective ciliogenesis, and HH signaling.
Collapse
Affiliation(s)
- Petra Pejskova
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris University, Imagine Institute, Paris, France.,Paris Diderot University, Paris, France
| | - Lucia Bino
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Ondrej Bernatik
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Linda Dolanska
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | | | - Zbynek Zdrahal
- Central European Institute of Technology, Brno, Czech Republic
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris University, Imagine Institute, Paris, France
| | - Lukas Cajanek
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
13
|
CITK Loss Inhibits Growth of Group 3 and Group 4 Medulloblastoma Cells and Sensitizes Them to DNA-Damaging Agents. Cancers (Basel) 2020; 12:cancers12030542. [PMID: 32111106 PMCID: PMC7139701 DOI: 10.3390/cancers12030542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/15/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, and it is classified into four biological subgroups: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. The current treatment is surgery, followed by irradiation and chemotherapy. Unfortunately, these therapies are only partially effective. Citron kinase protein (CITK) has been proposed as a promising target for SHH MB, whose inactivation leads to DNA damage and apoptosis. D283 and D341 cell lines (Group 3/Group 4 MB) were silenced with established siRNA sequences against CITK, to assess the direct effects of its loss. Next, D283, D341, ONS-76 and DAOY cells were treated with ionizing radiation (IR) or cisplatin in combination with CITK knockdown. CITK depletion impaired proliferation and induced cytokinesis failure and apoptosis of G3/G4 MB cell lines. Furthermore, CITK knockdown produced an accumulation of DNA damage, with reduced RAD51 nuclear levels. Association of IR or cisplatin with CITK depletion strongly impaired the growth potential of all tested MB cells. These results indicate that CITK inactivation could prevent the expansion of G3/G4 MB and increase their sensitivity to DNA-damaging agents, by impairing homologous recombination. We suggest that CITK inhibition could be broadly associated with IR and adjuvant therapy in MB treatment.
Collapse
|
14
|
Oncogenic Roles of GOLPH3 in the Physiopathology of Cancer. Int J Mol Sci 2020; 21:ijms21030933. [PMID: 32023813 PMCID: PMC7037725 DOI: 10.3390/ijms21030933] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3), a Phosphatidylinositol 4-Phosphate [PI(4)P] effector at the Golgi, is required for Golgi ribbon structure maintenance, vesicle trafficking and Golgi glycosylation. GOLPH3 has been validated as an oncoprotein through combining integrative genomics with clinopathological and functional analyses. It is frequently amplified in several solid tumor types including melanoma, lung cancer, breast cancer, glioma, and colorectal cancer. Overexpression of GOLPH3 correlates with poor prognosis in multiple tumor types including 52% of breast cancers and 41% to 53% of glioblastoma. Roles of GOLPH3 in tumorigenesis may correlate with several cellular activities including: (i) regulating Golgi-to-plasma membrane trafficking and contributing to malignant secretory phenotypes; (ii) controlling the internalization and recycling of key signaling molecules or increasing the glycosylation of cancer relevant glycoproteins; and (iii) influencing the DNA damage response and maintenance of genomic stability. Here we summarize current knowledge on the oncogenic pathways involving GOLPH3 in human cancer, GOLPH3 influence on tumor metabolism and surrounding stroma, and its possible role in tumor metastasis formation.
Collapse
|
15
|
Liu J, Dou J, Wang W, Liu H, Qin Y, Yang Q, Jiang W, Liang Y, Liu Y, He J, Mai L, Li Y, Wang D. High expression of citron kinase predicts poor prognosis of prostate cancer. Oncol Lett 2020; 19:1815-1823. [PMID: 32194675 PMCID: PMC7038927 DOI: 10.3892/ol.2020.11254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Citron kinase (CIT) is a Rho-effector protein kinase that is associated with several types of cancer. However, the role of CIT in prostate cancer (PCa) is unclear. The current study utilized microarray data obtained from The Cancer Genome Atlas, which was analyzed via Biometric Research Program array tools. Additionally, reverse transcription-quantitative (RT-q)PCR was performed to compare the mRNA expression of CIT in PCa tissue and in benign prostatic hyperplasia. The protein expression of CIT was detected in a consecutive cohort via immunochemistry and CIT was screened as a potential oncogene in PCa. The results of RT-qPCR demonstrated that the mRNA expression of CIT was increased in PCa tissues. Furthermore, immunochemistry revealed that CIT protein expression was positively associated with age at diagnosis, Gleason grade, serum PSA, clinical T stage, risk group, lymph node invasion and metastasis. When compared with the low expression group, patients with a high CIT expression exhibited shorter survival rates, cancer specific mortalities (CSM) and biochemical recurrence (BCR). In addition, multivariate analysis revealed that CIT was a potential predictor of CSM and BCR. The results revealed that CIT is overexpressed during the malignant progression of PCa and may be a predictor of a poor patient prognosis.
Collapse
Affiliation(s)
- Junnan Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jianguo Dou
- Department of Urology, The People's Hospital of Dazu, Chongqing 400016, P.R. China
| | - Wujiao Wang
- First Clinical Institute, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hengchuan Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yunlang Qin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qixin Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wencheng Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yong Liang
- Department of Urology, The Zigong No. 4 People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yuejiang Liu
- Department of Urology, The Zigong No. 1 People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Jiang He
- Gastroenterology and Neurology Center, University-Town Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Mai
- College of Life Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Li
- College of Life Science, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Delin Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
16
|
The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis. Nat Commun 2019; 10:4513. [PMID: 31586073 PMCID: PMC6778137 DOI: 10.1038/s41467-019-12507-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
The midbody is an organelle assembled at the intercellular bridge between the two daughter cells at the end of mitosis. It controls the final separation of the daughter cells and has been involved in cell fate, polarity, tissue organization, and cilium and lumen formation. Here, we report the characterization of the intricate midbody protein-protein interaction network (interactome), which identifies many previously unknown interactions and provides an extremely valuable resource for dissecting the multiple roles of the midbody. Initial analysis of this interactome revealed that PP1β-MYPT1 phosphatase regulates microtubule dynamics in late cytokinesis and de-phosphorylates the kinesin component MKLP1/KIF23 of the centralspindlin complex. This de-phosphorylation antagonizes Aurora B kinase to modify the functions and interactions of centralspindlin in late cytokinesis. Our findings expand the repertoire of PP1 functions during mitosis and indicate that spatiotemporal changes in the distribution of kinases and counteracting phosphatases finely tune the activity of cytokinesis proteins. The midbody is an organelle present at the bridge connecting two cells at the end of cell division. Here, the authors use mass spectrometry to define the midbody interactome and uncover a role for PP1 phosphatases in microtubule dynamics and regulation of cytokinesis.
Collapse
|
17
|
Yao J, Chen Y, Nguyen DT, Thompson ZJ, Eroshkin AM, Nerlakanti N, Patel AK, Agarwal N, Teer JK, Dhillon J, Coppola D, Zhang J, Perera R, Kim Y, Mahajan K. The Homeobox gene, HOXB13, Regulates a Mitotic Protein-Kinase Interaction Network in Metastatic Prostate Cancers. Sci Rep 2019; 9:9715. [PMID: 31273254 PMCID: PMC6609629 DOI: 10.1038/s41598-019-46064-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
HOXB13, a homeodomain transcription factor, is linked to recurrence following radical prostatectomy. While HOXB13 regulates Androgen Receptor (AR) functions in a context dependent manner, its critical effectors in prostate cancer (PC) metastasis remain largely unknown. To identify HOXB13 transcriptional targets in metastatic PCs, we performed integrative bioinformatics analysis of differentially expressed genes (DEGs) in the proximity of the human prostate tumor-specific AR binding sites. Unsupervised Principal Component Analysis (PCA) led to a focused core HOXB13 target gene-set referred to as HOTPAM9 (HOXB13 Targets separating Primary And Metastatic PCs). HOTPAM9 comprised 7 mitotic kinase genes overexpressed in metastatic PCs, TRPM8, and the heat shock protein HSPB8, whose levels were significantly lower in metastatic PCs compared to the primary disease. The expression of a two-gene set, CIT and HSPB8 with an overall balanced accuracy of 98.8% and a threshold value of 0.2347, was sufficient to classify metastasis. HSPB8 mRNA expression was significantly increased following HOXB13 depletion in multiple metastatic CRPC models. Increased expression of HSPB8 by the microtubule inhibitor Colchicine or by exogenous means suppressed migration of mCRPC cells. Collectively, our results indicate that HOXB13 promotes metastasis of PCs by coordinated regulation of mitotic kinases and blockade of a putative tumor suppressor gene.
Collapse
Affiliation(s)
- Jiqiang Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Yunyun Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Duy T Nguyen
- Department of Surgery, Washington University in St. Louis, MO, USA
| | - Zachary J Thompson
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Alexey M Eroshkin
- Bioinformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Niveditha Nerlakanti
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ami K Patel
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Neha Agarwal
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jasreman Dhillon
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ranjan Perera
- Analytical Genomics and Bioinformatics, Sanford Burnham Prebys Discovery Institute, Orlando, FL, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St. Louis, MO, USA.
| |
Collapse
|
18
|
Pallavicini G, Berto GE, Di Cunto F. Precision Revisited: Targeting Microcephaly Kinases in Brain Tumors. Int J Mol Sci 2019; 20:ijms20092098. [PMID: 31035417 PMCID: PMC6539168 DOI: 10.3390/ijms20092098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme and medulloblastoma are the most frequent high-grade brain tumors in adults and children, respectively. Standard therapies for these cancers are mainly based on surgical resection, radiotherapy, and chemotherapy. However, intrinsic or acquired resistance to treatment occurs almost invariably in the first case, and side effects are unacceptable in the second. Therefore, the development of new, effective drugs is a very important unmet medical need. A critical requirement for developing such agents is to identify druggable targets required for the proliferation or survival of tumor cells, but not of other cell types. Under this perspective, genes mutated in congenital microcephaly represent interesting candidates. Congenital microcephaly comprises a heterogeneous group of disorders in which brain volume is reduced, in the absence or presence of variable syndromic features. Genetic studies have clarified that most microcephaly genes encode ubiquitous proteins involved in mitosis and in maintenance of genomic stability, but the effects of their inactivation are particularly strong in neural progenitors. It is therefore conceivable that the inhibition of the function of these genes may specifically affect the proliferation and survival of brain tumor cells. Microcephaly genes encode for a few kinases, including CITK, PLK4, AKT3, DYRK1A, and TRIO. In this review, we summarize the evidence indicating that the inhibition of these molecules could exert beneficial effects on different aspects of brain cancer treatment.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Neuroscience Institute of Turin (NIT), 10126 Turin, Italy.
| |
Collapse
|
19
|
Sahin I, Kawano Y, Sklavenitis-Pistofidis R, Moschetta M, Mishima Y, Manier S, Sacco A, Carrasco R, Fonseca R, Roccaro AM, Witzig T, Ghobrial IM. Citron Rho-interacting kinase silencing causes cytokinesis failure and reduces tumor growth in multiple myeloma. Blood Adv 2019; 3:995-1002. [PMID: 30940634 PMCID: PMC6457230 DOI: 10.1182/bloodadvances.2018028456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/21/2019] [Indexed: 11/20/2022] Open
Abstract
Citron Rho-interacting serine/threonine kinase (CIT) is a serine/threonine kinase that acts as a key component of the midbody and is essential for cytokinesis. CIT has been reported to be highly expressed in some tumor tissues and to play a role in cancer proliferation; however, the significance of CIT has not been investigated in multiple myeloma (MM). Here, we identified, by protein microarray and immunohistochemistry, that CIT is 1 of the upregulated proteins in the plasma cells of MM patients compared with healthy controls. Analysis of a gene expression profile data set showed that MM patients with high CIT gene expression had significantly worse overall survival compared with MM patients with low CIT gene expression. CIT silencing in MM cell lines induced cytokinesis failure and resulted in decreased MM cell proliferation in vitro and in vivo. TP53 expression was found to be an independent predictor of CIT dependency, with low-TP53 cell lines exhibiting a strong dependency on CIT. This study provides the rationale for CIT being a potential therapeutic target in MM in future trials.
Collapse
Affiliation(s)
- Ilyas Sahin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Hematology-Oncology, Lifespan Cancer Institute, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Hematology, Kumamoto University Hospital, Kumamoto, Japan
| | | | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- ASST Spedali Civili di Brescia Clinical Research Development and Phase I Unit-CREA Laboratory, Brescia, Italy
| | - Ruben Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Rafael Fonseca
- Division of Hematology, Mayo Clinic, Scottsdale, AZ; and
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- ASST Spedali Civili di Brescia Clinical Research Development and Phase I Unit-CREA Laboratory, Brescia, Italy
| | | | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Abstract
Whole-genome and centrosome duplication as a consequence of cytokinesis failure can drive tumorigenesis in experimental model systems. However, whether cytokinesis failure is in fact an important cause of human cancers has remained unclear. In this Review, we summarize evidence that whole-genome-doubling events are frequently observed in human cancers and discuss the contribution that cytokinesis defects can make to tumorigenesis. We provide an overview of the potential causes of cytokinesis failure and discuss how tetraploid cells that are generated through cytokinesis defects are used in cancer as a transitory state on the route to aneuploidy. Finally, we discuss how cytokinesis defects can facilitate genetic diversification within the tumour to promote cancer development and could constitute the path of least resistance in tumour evolution.
Collapse
Affiliation(s)
- Susanne M A Lens
- Oncode Institute, Utrecht, Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| | - René H Medema
- Oncode Institute, Utrecht, Netherlands.
- Division of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| |
Collapse
|
21
|
Meng D, Yu Q, Feng L, Luo M, Shao S, Huang S, Wang G, Jing X, Tong Z, Zhao X, Liu R. Citron kinase (CIT-K) promotes aggressiveness and tumorigenesis of breast cancer cells in vitro and in vivo: preliminary study of the underlying mechanism. Clin Transl Oncol 2018; 21:910-923. [DOI: 10.1007/s12094-018-02003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022]
|
22
|
Zhang S, Zhu H. Cytokinesis and the Hippo Pathway: New Molecular Links Between Intimate Partners. Gastroenterology 2018; 155:976-978. [PMID: 30201365 DOI: 10.1053/j.gastro.2018.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Shuyuan Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
23
|
Yang XM, Cao XY, He P, Li J, Feng MX, Zhang YL, Zhang XL, Wang YH, Yang Q, Zhu L, Nie HZ, Jiang SH, Tian GA, Zhang XX, Liu Q, Ji J, Zhu X, Xia Q, Zhang ZG. Overexpression of Rac GTPase Activating Protein 1 Contributes to Proliferation of Cancer Cells by Reducing Hippo Signaling to Promote Cytokinesis. Gastroenterology 2018; 155:1233-1249.e22. [PMID: 30009820 DOI: 10.1053/j.gastro.2018.07.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Agents designed to block or alter cytokinesis can kill or stop proliferation of cancer cells. We aimed to identify cytokinesis-related proteins that are overexpressed in hepatocellular carcinoma (HCC) cells and might be targeted to slow liver tumor growth. METHODS Using the Oncomine database, we compared the gene expression patterns in 16 cancer microarray datasets and assessed gene enrichment sets using gene ontology. We performed immunohistochemical analysis of an HCC tissue microarray and identified changes in protein levels that are associated with patient survival times. Candidate genes were overexpressed or knocked down with small hairpin RNAs in SMMC7721, MHCC97H, or HCCLM3 cell lines; we analyzed their proliferation, viability, and clone-formation ability and their growth as subcutaneous or orthotopic xenograft tumors in mice. We performed microarray analyses to identify alterations in signaling pathways and immunoblot and immunofluorescence assays to detect and localize proteins in tissues. Yeast 2-hybrid screens and mass spectrometry combined with co-immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation and proximity ligation assays. Chromatin immunoprecipitation, promoter luciferase activity, and quantitative real-time polymerase chain reaction analyses were used to identify factors that regulate transcription of specific genes. RESULTS The genes that were most frequently overexpressed in different types of cancer cells were involved in cell division processes. We identified 3 cytokinesis-regulatory proteins among the 10 genes most frequently overexpressed by all cancer cell types. Rac GTPase activating protein 1 (RACGAP1) was the cytokinesis-regulatory protein that was most highly overexpressed in multiple cancers. Increased expression of RACGAP1 in tumor tissues was associated with shorter survival times of patients with cancer. Knockdown of RACGAP1 in HCC cells induced cytokinesis failure and cell apoptosis. In microarray analyses, we found knockdown of RACGAP1 in SMMC7721 cells to reduce expression of genes regulated by yes-associated protein (YAP) and WW domain containing transcription regulator 1 (WWTR1 or TAZ). RACGAP1 reduced activation of the Hippo pathway in HCC cells by increasing activity of RhoA and polymerization of filamentous actin. Knockdown of YAP reduced phosphorylation of RACGAP1 and redistribution at the anaphase central spindle. We found transcription of the translocated promoter region, nuclear basket protein (TPR) to be regulated by YAP and coordinately expressed with RACGAP1 to promote proliferation of HCC cells. TPR redistributed upon nuclear envelope breakdown and formed complexes with RACGAP1 during mitosis. Knockdown of TPR in HCC cells reduced phosphorylation of RACGAP1 by aurora kinase B and impaired their redistribution at the central spindle during cytokinesis. STAT3 activated transcription of RACGAP in HCC cells. CONCLUSIONS In an analysis of gene expression patterns of multiple tumor types, we found RACGAP1 to be frequently overexpressed, which is associated with shorter survival times of patients. RACGAP1 promotes proliferation of HCC cells by reducing activation of the Hippo and YAP pathways and promoting cytokinesis in coordination with TPR.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yan Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping He
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Xuan Feng
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Ang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University Jan Waldenströms gata 35 Skåne University Hospital, Malmö, Sweden
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
24
|
Pallavicini G, Sgrò F, Garello F, Falcone M, Bitonto V, Berto GE, Bianchi FT, Gai M, Chiotto AM, Filippi M, Cutrin JC, Ala U, Terreno E, Turco E, Cunto FD. Inactivation of Citron Kinase Inhibits Medulloblastoma Progression by Inducing Apoptosis and Cell Senescence. Cancer Res 2018; 78:4599-4612. [DOI: 10.1158/0008-5472.can-17-4060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/01/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
|
25
|
Ling ZA, Zhang LJ, Ye ZH, Dang YW, Chen G, Li RL, Zeng JJ. Immunohistochemical distribution of FOXP3+ regulatory T cells in colorectal cancer patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1841-1854. [PMID: 31938291 PMCID: PMC6958190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/22/2018] [Indexed: 06/10/2023]
Abstract
Background: Recent studies have focused on less invasive methods for diagnosing and predicting survival outcomes for colorectal cancer (CRC) patients. Objective: We studied the role of the transcription factor forkhead box P3 (FOXP3) in the tumorigenesis of CRC and investigated its prognostic value in survival outcome estimates. Methods: FOXP3+ regulatory T (Treg) cell levels in CRC and adjacent tissues were measured by immunohistochemistry (IHC) and compared statistically. A literature search was conducted on FOXP3+ Treg cell density and survival rates, including overall survival, disease-free survival, and cancer-specific survival. Meta-analyses were then performed to determine the prognostic value of FOXP3+ Treg cell levels in CRC patients. Results: FOXP3+ Treg cells were increased in CRC tissues over adjacent controls according to the IHC results (t = 14.321; P < 0.001) and cell densities in cases with metastases were higher than those without metastasis (P < 0.05). Cases with serosal infiltration showed higher FOXP3+ Treg cell densities compared to cases without infiltration (P < 0.05) and cell densities in cases differentiated to a lower degree than in cases showing a medium to high degree of differentiation (P < 0.05). Moreover, meta-analysis found a high FOXP3+ Treg cells density in CRC tissues (standardized mean differences = 0.30 [95% CI: 0.03-0.57]), which was correlated with better overall patient survival outcome (hazard ratio = 0.749 [95% CI: 0.648-0.867]). Conclusions: Increased FOXP3+ Treg cells may be an effective marker for tumorigenesis and clinical prognostic evaluation for CRC patients.
Collapse
Affiliation(s)
- Zhi-An Ling
- Department of Emergency, Second Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, China
| | - Li-Jie Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Hua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Ruo-Lin Li
- Department of Scientific Research, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
26
|
Hanselmann S, Wolter P, Malkmus J, Gaubatz S. The microtubule-associated protein PRC1 is a potential therapeutic target for lung cancer. Oncotarget 2017; 9:4985-4997. [PMID: 29435157 PMCID: PMC5797028 DOI: 10.18632/oncotarget.23577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated whether proteins that are involved in cytokinesis are potential targets for therapy of lung cancer. We find that the microtubule-associated protein PRC1 (protein required for cytokinesis 1), which plays a key role in organizing anti-parallel microtubule in the central spindle in cytokinesis, is overexpressed in lung cancer cell lines compared to normal cells. Increased expression of PRC1 is correlated with a poor prognosis of human lung adenocarcinoma patients. Lentiviral delivered, inducible RNAi of PRC1 demonstrated that proliferation of lung cancer cell lines strongly depends on PRC1. Significantly, we also show that PRC1 is required for tumorigenesis in vivo using a mouse model for non-small cell lung cancer driven by oncogenic K-RAS and loss of p53. When PRC1 is depleted by in vivo RNA interference, lung tumor formation is significantly reduced. Although PRC1 has been suggested to regulate Wnt/ß-catenin signaling in cancer cells, we find no evidence for a role of PRC1 in this pathway in lung cancer. Instead, we show that the depletion of PRC1 results in a strong increase in bi- and multinuclear cells due to defects in cytokinesis. This ultimately leads to apoptosis and senescence. Together these data establish PRC1 as a potential target for therapy of lung cancer.
Collapse
Affiliation(s)
- Steffen Hanselmann
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Patrick Wolter
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Jonas Malkmus
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
27
|
Bianchi FT, Gai M, Berto GE, Di Cunto F. Of rings and spines: The multiple facets of Citron proteins in neural development. Small GTPases 2017; 11:122-130. [PMID: 29185861 PMCID: PMC7053930 DOI: 10.1080/21541248.2017.1374325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Citron protein was originally identified for its capability to specifically bind the active form of RhoA small GTPase, leading to the simplistic hypothesis that it may work as a RhoA downstream effector in actin remodeling. More than two decades later, a much more complex picture has emerged. In particular, it has become clear that in animals, and especially in mammals, the functions of the Citron gene (CIT) are intimately linked to many aspects of central nervous system (CNS) development and function, although the gene is broadly expressed. More specifically, CIT encodes two main isoforms, Citron-kinase (CIT-K) and Citron-N (CIT-N), characterized by complementary expression pattern and different functions. Moreover, in many of their activities, CIT proteins act more as upstream regulators than as downstream effectors of RhoA. Finally it has been found that, besides working through actin, CIT proteins have many crucial functional interactions with the microtubule cytoskeleton and may directly affect genome stability. In this review, we will summarize these advances and illustrate their actual or potential relevance for CNS diseases, including microcephaly and psychiatric disorders.
Collapse
Affiliation(s)
- Federico T Bianchi
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Bianchi FT, Tocco C, Pallavicini G, Liu Y, Vernì F, Merigliano C, Bonaccorsi S, El-Assawy N, Priano L, Gai M, Berto GE, Chiotto AMA, Sgrò F, Caramello A, Tasca L, Ala U, Neri F, Oliviero S, Mauro A, Geley S, Gatti M, Di Cunto F. Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly. Cell Rep 2017; 18:1674-1686. [PMID: 28199840 PMCID: PMC5318669 DOI: 10.1016/j.celrep.2017.01.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/16/2016] [Accepted: 01/22/2017] [Indexed: 11/16/2022] Open
Abstract
Mutations in citron (CIT), leading to loss or inactivation of the citron kinase protein (CITK), cause primary microcephaly in humans and rodents, associated with cytokinesis failure and apoptosis in neural progenitors. We show that CITK loss induces DNA damage accumulation and chromosomal instability in both mammals and Drosophila. CITK-deficient cells display "spontaneous" DNA damage, increased sensitivity to ionizing radiation, and defective recovery from radiation-induced DNA lesions. In CITK-deficient cells, DNA double-strand breaks increase independently of cytokinesis failure. Recruitment of RAD51 to DNA damage foci is compromised by CITK loss, and CITK physically interacts with RAD51, suggesting an involvement of CITK in homologous recombination. Consistent with this scenario, in doubly CitK and Trp53 mutant mice, neural progenitor cell death is dramatically reduced; moreover, clinical and neuroanatomical phenotypes are remarkably improved. Our results underscore a crucial role of CIT in the maintenance of genomic integrity during brain development.
Collapse
Affiliation(s)
- Federico Tommaso Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy.
| | - Chiara Tocco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Gianmarco Pallavicini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Yifan Liu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy
| | - Chiara Merigliano
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy
| | - Silvia Bonaccorsi
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy
| | - Nadia El-Assawy
- Department of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo (VB), Italy
| | - Lorenzo Priano
- Department of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo (VB), Italy; Department of Neuroscience, University of Torino, 10126 Torino, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Gaia Elena Berto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Alessandra Maria Adelaide Chiotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Alessia Caramello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Laura Tasca
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Francesco Neri
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | | | - Alessandro Mauro
- Department of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo (VB), Italy; Department of Neuroscience, University of Torino, 10126 Torino, Italy
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maurizio Gatti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy; Institute of Molecular Biology and Pathology (IBPM), CNR, 00185 Rome, Italy
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy.
| |
Collapse
|
29
|
Abstract
ABSTRACT
Cell division controls the faithful segregation of genomic and cytoplasmic materials between the two nascent daughter cells. Members of the Aurora, Polo and cyclin-dependent (Cdk) kinase families are known to regulate multiple events throughout cell division, whereas another kinase, citron kinase (CIT-K), for a long time has been considered to function solely during cytokinesis, the last phase of cell division. CIT-K was originally proposed to regulate the ingression of the cleavage furrow that forms at the equatorial cortex of the dividing cell after chromosome segregation. However, studies in the last decade have clarified that this kinase is, instead, required for the organization of the midbody in late cytokinesis, and also revealed novel functions of CIT-K earlier in mitosis and in DNA damage control. Moreover, CIT-K mutations have recently been linked to the development of human microcephaly, and CIT-K has been identified as a potential target in cancer therapy. In this Commentary, I describe and re-evaluate the functions and regulation of CIT-K during cell division and its involvement in human disease. Finally, I offer my perspectives on the open questions and future challenges that are necessary to address, in order to fully understand this important and yet unjustly neglected mitotic kinase.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|