1
|
Ter-Ovanesyan I, Tashjian M, Escruceria S, Fernandez R, Estadella B, Mayrovitz HN. An Update on the Role of Lymphatic Function in Skin Inflammatory Disorders: A Scoping Review. Cureus 2025; 17:e77981. [PMID: 39996178 PMCID: PMC11849753 DOI: 10.7759/cureus.77981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
The lymphatic system is essential in maintaining skin health through coordinated immunological actions. This review explores the relationship between lymphatic function and skin health, as well as the impact of lymphatic dysfunction in the development and progression of inflammatory skin disorders. A systemic search was conducted in the Web of Science, Embase, and Ovid MEDLINE databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. Included studies were peer-reviewed human or animal research published in English from 2014 to 2024, focusing on inflammatory skin disorders, including skin cancer, autoimmune skin diseases, and infectious skin diseases. A total of 1232 citations were identified, with 37 studies meeting the eligibility criteria after assessment and critical appraisal. The review's findings highlight the essential role of lymphatics in maintaining skin health, mitigating inflammatory, infectious, and skin cancer-related processes, and delaying the effects of skin aging. The mechanisms underlying lymphatic function in these processes are complex, with some aspects needing further investigation. However, the evidence indicates that a well-functioning skin lymphatic system, supported by various cytokines, aids in reducing the inflammatory state, reduces inflammation, alleviates lymphedema, and prevents lymphatic stasis, which can increase infection risk. Several studies demonstrated that restoring lymphatic function through improved neutrophil migration and cytokine responses reduces the spread of infectious diseases.
Collapse
Affiliation(s)
- Irina Ter-Ovanesyan
- Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Michelle Tashjian
- Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Stephanie Escruceria
- Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Richard Fernandez
- Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Bryant Estadella
- Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Harvey N Mayrovitz
- Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| |
Collapse
|
2
|
Hernández‐Bustos A, Bolos B, Astakhova K. Biomarkers in skin autoimmunity-An update on localised scleroderma. SKIN HEALTH AND DISEASE 2024; 4:e335. [PMID: 38577035 PMCID: PMC10988679 DOI: 10.1002/ski2.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 04/06/2024]
Abstract
Human autoimmune diseases are complex and highly diverse conditions that can be of localised or systemic nature. Understanding the basic biology of autoimmune diseases goes hand in hand with providing the clinics with valuable biomarkers for managing these diseases. The focus of this review is paid to localised scleroderma, an autoimmune disease affecting skin and subcutaneous tissue. Localised scleroderma has very few serological biomarkers for clinical analyses distinguishing it from main differentials, and yet noneffective prognostic biomarkers. With this regard, the review covers well-established and new biomarkers such as cell surface proteins, autoantibodies and cytokines. In recent few years, several new biomarkers have been suggested, many provided with modern genomic studies. This includes epigenetic regulation of DNA, RNA transcriptomics and regulatory RNA such as microRNA and long non-coding RNA. These findings can for the first time shed light on the genetic mechanisms behind the disease and contribute to improved diagnosis and treatment.
Collapse
Affiliation(s)
| | - Begona Bolos
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDenmark
| | - Kira Astakhova
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDenmark
| |
Collapse
|
3
|
Li XF, Zhang XJ, Hao FR, Dong XT, Xu GD, Zhang YX. The pathological roles and potential mechanisms of vascular endothelial growth factor receptor-3 in gastric cancer. J Int Med Res 2024; 52:3000605241234558. [PMID: 38518198 PMCID: PMC10960338 DOI: 10.1177/03000605241234558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/01/2024] [Indexed: 03/24/2024] Open
Abstract
OBJECTIVE To investigate the roles and underlying mechanisms of vascular endothelial growth factor receptor-3 (VEGFR-3) in gastric cancer (GC). METHODS VEGFR-3 gene expression profiles in human gastric adenocarcinoma (GAC) tissues were analysed using The Cancer Genome Atlas database. Human GC cell lines and were used for in vitro studies. Mouse models of GC and distant metastasis were used for in vivo studies. Silencing of VEGFR-3 gene expression was achieved using small interfering RNA. RESULTS VEGFR-3 gene expression was significantly elevated in GAC tissues and GC cells. Higher VEGFR-3 expression was positively correlated with more advanced stages and a greater number of metastatic lymph nodes. In vitro studies in GC cells showed that knockdown of VEGFR-3 gene expression significantly suppressed cell proliferation and migration, but promoted apoptosis. In vivo investigations revealed that silencing of VEGFR-3 gene expression exhibited significant inhibition on tumour growth and metastasis. Further mechanistic studies showed that VEGFR-3 exerted its pathological roles by affecting the key molecules in the apoptotic and epithelial-mesenchymal transition pathways. CONCLUSION The molecular pathways associated with VEGFR-3-mediated pathological effects could be targets in the development of novel approaches for the diagnosis, prognosis and treatment of GC.
Collapse
Affiliation(s)
- Xiu-Feng Li
- Department of Pathology, Weifang People’s Hospital, the First Affiliated Hospital of Weifang Medical College, Weifang, Shandong Province, China
| | - Xiu-Juan Zhang
- Department of Gynaecology and Obstetrics, the Affiliated Hospital of Maternal and Child Health, Weifang Medical College, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong Province, China
| | - Fu-Rong Hao
- Department of Radiation Oncology, Weifang People’s Hospital, the First Affiliated Hospital of Weifang Medical College, Weifang, Shandong Province, China
| | - Xiao-Tong Dong
- Department of Pathology, Weifang People’s Hospital, the First Affiliated Hospital of Weifang Medical College, Weifang, Shandong Province, China
| | - Guo-Dong Xu
- Department of Pathology, Weifang People’s Hospital, the First Affiliated Hospital of Weifang Medical College, Weifang, Shandong Province, China
| | - Yun-Xiang Zhang
- Department of Pathology, Weifang People’s Hospital, the First Affiliated Hospital of Weifang Medical College, Weifang, Shandong Province, China
| |
Collapse
|
4
|
Liang J, Lei P, Su X, Gao J, Ren B, Zhang Y, Ma X, Ma W. Dauricine Inhibits Non-small Cell Lung Cancer Development by Regulating PTEN/AKT/mTOR and Ras/MEK1/2/ERK1/2 Pathways in a FLT4-dependent Manner. Curr Cancer Drug Targets 2024; 24:1157-1168. [PMID: 38321898 DOI: 10.2174/0115680096282997240101192452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) is still a solid tumor with high malignancy and poor prognosis. Vascular endothelial growth factor receptor 3 (FLT4, VEGFR3) is overexpressed in NSCLC cells, making it a potential target for NSCLC treatment. In this study, we aimed to explore the anti-cancer effects of dauricine on NSCLC cells and its mechanism targeting FLT4. METHODS We found that dauricine inhibited the growth of NCI-H1299 cells by blocking the cycle in the G2/M phase through flow cytometry analysis. In addition, dauricine also inhibited the migration of NCI-H1299 cells by wound healing assay and transwell migration assay. More importantly, our empirical analysis found the anti-cancer effect of dauricine on NCI-H1299 cells and the protein level of FLT4 had a distinctly positive correlation, and this effect was weakened after FLT4 knockdown. RESULTS It is suggested that dauricine suppressed the growth and migration of NCI-H1299 cells by targeting FLT4. Furthermore, dauricine inhibited FLT4 downstream pathways, such as PTEN/AKT/mTOR and Ras/MEK1/2/ERK1/2, thereby regulating cell migration-related molecule MMP3 and cell cycle-related molecules (CDK1, pCDK1-T161, and cyclin B1). CONCLUSION Dauricine may be a promising FLT4 inhibitor for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jinna Liang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Panpan Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Xinyue Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Jiapan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Bingxi Ren
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Yuxiu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Xiaoyu Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| |
Collapse
|
5
|
Babaei Z, Panjehpour M, Parsian H, Aghaei M. SAR131675 exhibits anticancer activity on human ovarian cancer cells through inhibition of VEGFR-3/ERK1/2/AKT signaling pathway. Cell Signal 2023; 111:110856. [PMID: 37598918 DOI: 10.1016/j.cellsig.2023.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Vascular endothelial growth factor receptor-3 (VEGFR-3) is known to participate in tumorigenesis and lymphangiogenesis, and as such, has the potential to serve as a molecular target for cancer therapy. SAR131675 is a highly selective VEGFR-3 antagonist that has an inhibitive effect on lymphatic cell growth. However, the anticancer effects and underlying mechanisms of SAR131675 in ovarian cancer remain poorly understood. In this study, we investigated the pathological role of VEGFR-3, and the effects of SAR131675 on proliferation, cell cycle, migration, and apoptosis in ovarian cancer cells. Our results showed that the mRNA and protein of VEGFR-3 were expressed in OVCAR3 and SKOV3 ovarian cancer cells, and this receptor was activated following stimulation with 50 ng/ml VEGF-C Cys156Ser (VEGF-CS), a selective ligand for VEGFR-3. Enhancing VEGFR-3 phosphorylation by treatment of ovarian cancer cells with VEGF-CS resulted in increased levels of phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT. Moreover, our data demonstrated that SAR131675 inhibited VEGF-CS-mediated proliferation, colony formation, and migration of cancer cells in a dose-dependent manner. In addition, inhibition of VEGFR-3 activation with SAR131675 significantly increased cell cycle arrest and promoted apoptosis in both OVCAR3 and SKOV3 cells. Mechanistically, SAR131675 effectively suppressed the VEGF-CS-induced phosphorylation of VEGFR-3 and its downstream effectors including activated ERK1/2 and AKT in ovarian cancer cells. Our results reveal an anticancer activity of SAR131675 on the growth and migration of ovarian cancer cells, which may be through inhibiting VEGFR-3/ERK1/2/AKT pathway. SAR131675 may serve as an effective targeted drug for ovarian cancer.
Collapse
Affiliation(s)
- Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mojtaba Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Mondal DK, Xie C, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555187. [PMID: 37693608 PMCID: PMC10491239 DOI: 10.1101/2023.08.28.555187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a pro-survival program and to sustain a pro-angiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we discovered that decorin downregulated a cluster of tumor-associated genes involved in lymphatic vessel development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of lymphatic vessels, were markedly suppressed at both the mRNA and protein levels and this suppression correlated with a significant reduction in tumor lymphatic vessels. We further discovered that soluble decorin, but not its homologous proteoglycan biglycan, inhibited lymphatic vessel sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with VEGFR3, the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we discovered that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a new biological factor with anti-lymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
|
7
|
Oeurn K, Jusakul A, Jaidee R, Kukongviriyapan V, Senggunprai L, Prawan A, Kongpetch S. FGF10/FGFR2 Signaling: Therapeutically Targetable Vulnerability in Ligand-responsive Cholangiocarcinoma Cells. In Vivo 2023; 37:1628-1637. [PMID: 37369494 PMCID: PMC10347910 DOI: 10.21873/invivo.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND/AIM Increasing evidence has revealed FGFR2 as an attractive therapeutic target for cancer including cholangiocarcinoma (CCA). The present study investigated the oncogenic mechanisms by which FGF10 ligand activates FGFR2 in CCA cells and determined whether FGFR inhibitors could suppress FGF10-mediated migration of CCA cells. MATERIALS AND METHODS Effects of FGF10 on the proliferation, migration, and invasion of KKU-M213A cells were assessed using clonogenic and transwell assays. Protein expression levels of FGFR2 and pro-angiogenic factors were determined via immunoblotting and antibody array analysis. FGFR2 knockdown using a small interfering RNA was used to validate the role of FGF10 in promoting cell migration via FGFR2. The effects of infigratinib (FGFR inhibitor) on cell viability, were determined in KKU-100, KKU-M213A, KKU-452 cells. Moreover, the efficacy of the FGFR inhibitor in suppressing migration via FGF10/FGFR2 stimulation was assessed in KKU-M213A cells. RESULTS FGF10 significantly increased the expression of phospho-FGFR/FGFR2 and promoted the proliferation, migration, and invasion of KKU-M213A cells. FGF10 increased the expression levels of p-Akt, p-mTOR, VEGF, Slug, and pro-angiogenic proteins related to metastasis. Cell migration mediated by FGF10 was markedly decreased in FGFR2-knockdown cells. Moreover, FGF10/FGFR2 promoted the migration of cells, which was suppressed by the FGFR inhibitor. CONCLUSION FGF10/FGFR2 activates the Akt/mTOR and VEGF/Slug pathways, which are associated with the stimulation of migration and invasion in CCA. Moreover, the FGF10/FGFR2 signaling was inhibited by an FGFR inhibitor resulting suppression of cell migration, which warrants further studies on their clinical utility for CCA treatment.
Collapse
Affiliation(s)
- Kimyeun Oeurn
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Rattanaporn Jaidee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Xu Z, Goel HL, Burkart C, Burman L, Chong YE, Barber AG, Geng Y, Zhai L, Wang M, Kumar A, Menefee A, Polizzi C, Eide L, Rauch K, Rahman J, Hamel K, Fogassy Z, Klopp-Savino S, Paz S, Zhang M, Cubitt A, Nangle LA, Mercurio AM. Inhibition of VEGF binding to neuropilin-2 enhances chemosensitivity and inhibits metastasis in triple-negative breast cancer. Sci Transl Med 2023; 15:eadf1128. [PMID: 37134152 PMCID: PMC10583499 DOI: 10.1126/scitranslmed.adf1128] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
Although blocking the binding of vascular endothelial growth factor (VEGF) to neuropilin-2 (NRP2) on tumor cells is a potential strategy to treat aggressive carcinomas, a lack of effective reagents that can be used clinically has hampered this potential therapy. Here, we describe the generation of a fully humanized, high-affinity monoclonal antibody (aNRP2-10) that specifically inhibits the binding of VEGF to NRP2, conferring antitumor activity without causing toxicity. Using triple-negative breast cancer as a model, we demonstrated that aNRP2-10 could be used to isolate cancer stem cells (CSCs) from heterogeneous tumor populations and inhibit CSC function and epithelial-to-mesenchymal transition. aNRP2-10 sensitized cell lines, organoids, and xenografts to chemotherapy and inhibited metastasis by promoting the differentiation of CSCs to a state that is more responsive to chemotherapy and less prone to metastasis. These data provide justification for the initiation of clinical trials designed to improve the response of patients with aggressive tumors to chemotherapy using this monoclonal antibody.
Collapse
Affiliation(s)
- Zhiwen Xu
- aTyr Pharma, San Diego, CA 92121, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | | | | | | | - Yanyan Geng
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, 26th Floor, Three Exchange Square, 8 Connaught Place, Central, Hong Kong, China
| | - Liting Zhai
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, 26th Floor, Three Exchange Square, 8 Connaught Place, Central, Hong Kong, China
| | - Mengdie Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | | | - Lisa Eide
- aTyr Pharma, San Diego, CA 92121, USA
| | | | | | | | | | | | | | - Mingjie Zhang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | - Arthur M. Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Chen G, Liu J, Wang H, Wang M, Wang G, Hu T. SYP-3343 drives abnormal vascularization in zebrafish through regulating endothelial cell behavior. Food Chem Toxicol 2023; 174:113671. [PMID: 36796616 DOI: 10.1016/j.fct.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
SYP-3343 is a novel strobilurin fungicide with excellent and broad-spectrum antifungal activity, and its potential toxicity raises public health concerns. However, the vascular toxicity of SYP-3343 to zebrafish embryos is still not well understood. In the present study, we investigated the effects of SYP-3343 on vascular growth and its potential mechanism of action. SYP-3343 inhibited zebrafish endothelial cell (zEC) migration, altered nuclear morphology, and triggered abnormal vasculogenesis and zEC sprouting angiogenesis, resulting in angiodysplasia. RNA sequencing showed that SYP-3343 exposure altered the transcriptional levels of vascular development-related biological processes in zebrafish embryos including angiogenesis, sprouting angiogenesis, blood vessel morphogenesis, blood vessel development, and vasculature development. Whereas, the addition of NAC exerted an improvement effect on zebrafish vascular defects owing to SYP-3343 exposure. Additionally, SYP-3343 altered cell cytoskeleton and morphology, obstructed migration and viability, disrupted cell cycle progression, and depolarized mitochondrial membrane potential, as well as promoted apoptosis and reactive oxygen species (ROS) in HUVEC. SYP-3343 also caused an imbalance of the oxidation and antioxidant systems and irritated the alterations in the cell cycle- and apoptosis-related genes in HUVECs. Collectively, SYP-3343 has high cytotoxicity, possibly by up-regulating p53 and caspase3 expressions and bax/bcl-2 ratio via ROS, leading to malformed vascular development.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
10
|
Babaei Z, Panjehpour M, Ghorbanhosseini SS, Parsian H, Khademi M, Aghaei M. VEGFR3 suppression through miR-1236 inhibits proliferation and induces apoptosis in ovarian cancer via ERK1/2 and AKT signaling pathways. J Cell Biochem 2023; 124:674-686. [PMID: 36922713 DOI: 10.1002/jcb.30395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/24/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023]
Abstract
Vascular endothelial growth factor receptor 3 (VEGFR3) is expressed in cancer cell lines and exerts a critical role in cancer progression. However, the signaling pathways of VEGFR3 in ovarian cancer cell proliferation remain unclear. This study aimed to demonstrate the signaling pathways of VEGFR3 through the upregulated expression of miR-1236 in ovarian cancer cells. We found that the messenger RNA and protein of VEGFR3 were expressed in the ovarian cancer cell lines, but downregulated after microRNA-1236 (miR-1236) transfection. The inhibition of VEGFR3, using miR-1236, significantly reduced cell proliferation, clonogenic survival, migration, and invasion ability in SKOV3 and OVCAR3 cells (p < 0.01). The flow cytometry results indicated that the rate of apoptotic cells in SKOV3 (38.65%) and OVCAR3 (41.95%) cells increased following VEGFR3 inhibition. Moreover, VEGFR3 stimulation (using a specific ligand, VEGF-CS) significantly increased extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation (p < 0.01), whereas VEGFR3 suppression reduced p-ERK1/2 (67.94% in SKOV3 and 93.52% in OVCAR3) and p-AKT (59.56% in SKOV3 and 78.73% in OVCAR3) compared to the VEGF-CS treated group. This finding demonstrated that miR-1236 may act as an endogenous regulator of ERK1/2 and AKT signaling by blocking the upstream regulator of VEGFR3. Overall, we demonstrated the important role of the miR-1236/VEGFR3 axis in ovarian cancer cell proliferation by regulating the ERK1/2 and AKT signaling that might be an effective strategy against ovarian cancer.
Collapse
Affiliation(s)
- Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Parsian
- Department of Biochemistry, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahsa Khademi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Hlophe YN, Joubert AM. Vascular endothelial growth
factor‐C
in activating vascular endothelial growth factor receptor‐3 and chemokine receptor‐4 in melanoma adhesion. J Cell Mol Med 2022; 26:5743-5754. [DOI: 10.1111/jcmm.17571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yvette N. Hlophe
- Department of Physiology University of Pretoria Pretoria South Africa
| | - Anna M. Joubert
- Department of Physiology University of Pretoria Pretoria South Africa
| |
Collapse
|
12
|
Chang TM, Chu PY, Lin HY, Huang KW, Hung WC, Shan YS, Chen LT, Tsai HJ. PTEN regulates invasiveness in pancreatic neuroendocrine tumors through DUSP19-mediated VEGFR3 dephosphorylation. J Biomed Sci 2022; 29:92. [PMID: 36336681 PMCID: PMC9639322 DOI: 10.1186/s12929-022-00875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) is a tumor suppressor. Low PTEN expression has been observed in pancreatic neuroendocrine tumors (pNETs) and is associated with increased liver metastasis and poor survival. Vascular endothelial growth factor receptor 3 (VEGFR3) is a receptor tyrosine kinase and is usually activated by binding with vascular endothelial growth factor C (VEGFC). VEGFR3 has been demonstrated with lymphangiogenesis and cancer invasiveness. PTEN is also a phosphatase to dephosphorylate both lipid and protein substrates and VEGFR3 is hypothesized to be a substrate of PTEN. Dual-specificity phosphatase 19 (DUSP19) is an atypical DUSP and can interact with VEGFR3. In this study, we investigated the function of PTEN on regulation of pNET invasiveness and its association with VEGFR3 and DUSP19. Methods PTEN was knocked down or overexpressed in pNET cells to evaluate its effect on invasiveness and its association with VEGFR3 phosphorylation. In vitro phosphatase assay was performed to identify the regulatory molecule on the regulation of VEGFR3 phosphorylation. In addition, immunoprecipitation, and immunofluorescence staining were performed to evaluate the molecule with direct interaction on VEGFR3 phosphorylation. The animal study was performed to validate the results of the in vitro study. Results The invasion and migration capabilities of pNETs were enhanced by PTEN knockdown accompanied with increased VEGFR3 phosphorylation, ERK phosphorylation, and increased expression of epithelial–mesenchymal transition molecules in the cells. The enhanced invasion and migration abilities of pNET cells with PTEN knockdown were suppressed by addition of the VEGFR3 inhibitor MAZ51, but not by the VEGFR3-Fc chimeric protein to neutralize VEGFC. VEGFR3 phosphorylation is responsible for pNET cell invasiveness and is VEGFC-independent. However, an in vitro phosphatase assay failed to show VEGFR3 as a substrate of PTEN. In contrast, DUSP19 was transcriptionally upregulated by PTEN and was shown to dephosphorylate VEGFR3 via direct interaction with VEGFR3 by an in vitro phosphatase assay, immunoprecipitation, and immunofluorescence staining. Increased tumor invasion into peripheral tissues was validated in xenograft mouse model. Tumor invasion was suppressed by treatment with VEGFR3 or MEK inhibitors. Conclusions PTEN regulates pNET invasiveness via DUSP19-mediated VEGFR3 dephosphorylation. VEGFR3 and DUSP19 are potential therapeutic targets for pNET treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00875-2.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.411447.30000 0004 0637 1806Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Yi Chu
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.452796.b0000 0004 0634 3637Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan ,grid.256105.50000 0004 1937 1063School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan ,grid.260542.70000 0004 0532 3749Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-You Lin
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Kuo-Wei Huang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Wen-Chun Hung
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Yan-Shen Shan
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Tzong Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Internal Medicine, Kaohsiung Medical University Hospital, and Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Jen Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. J Control Release 2022; 351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
14
|
Nurlaila I, Roh K, Yeom CH, Kang H, Lee S. Acquired lymphedema: Molecular contributors and future directions for developing intervention strategies. Front Pharmacol 2022; 13:873650. [PMID: 36386144 PMCID: PMC9640931 DOI: 10.3389/fphar.2022.873650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/13/2022] [Indexed: 08/05/2023] Open
Abstract
Lymphedema is a debilitating chronic disease that mostly develops as an adverse reaction to cancer treatment modalities such as chemotherapy, surgery, and radiotherapy. Lymphedema also appears to be a deteriorating consequence of roundworm infections, as best represented by filariasis. According to its origin, lymphedema is classified as primary lymphedema and acquired lymphedema. The latter is an acquired condition that, hitherto, received a considerably low attention owing to the less number of fatal cases been reported. Notably, despite the low mortality rate in lymphedema, it has been widely reported to reduce the disease-free survival and thus the quality of life of affected patients. Hence, in this review, we focused on acquired lymphedema and orchestration of molecular interplays associated with either stimulation or inhibition of lymphedema development that were, in vast majority, clearly depicted in animal models with their specific and distinct technical approaches. We also discussed some recent progress made in phytochemical-based anti-lymphedema intervention strategies and the specific mechanisms underlying their anti-lymphedema properties. This review is crucial to understand not only the comprehensive aspects of the disease but also the future directions of the intervention strategies that can address the quality of life of affected patients rather than alleviating apparent symptoms only.
Collapse
Affiliation(s)
- Ika Nurlaila
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Vaccine and Drugs, The National Research and Innovation Agency, Jakarta, Indonesia
| | - Kangsan Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Cardiology and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
15
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
McCright J, Naiknavare R, Yarmovsky J, Maisel K. Targeting Lymphatics for Nanoparticle Drug Delivery. Front Pharmacol 2022; 13:887402. [PMID: 35721179 PMCID: PMC9203826 DOI: 10.3389/fphar.2022.887402] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022] Open
Abstract
The lymphatics transport material from peripheral tissues to lymph nodes, where immune responses are formed, before being transported into systemic circulation. With key roles in transport and fluid homeostasis, lymphatic dysregulation is linked to diseases, including lymphedema. Fluid within the interstitium passes into initial lymphatic vessels where a valve system prevents fluid backflow. Additionally, lymphatic endothelial cells produce key chemokines, such as CCL21, that direct the migration of dendritic cells and lymphocytes. As a result, lymphatics are an attractive delivery route for transporting immune modulatory treatments to lymph nodes where immunotherapies are potentiated in addition to being an alternative method of reaching systemic circulation. In this review, we discuss the physiology of lymphatic vessels and mechanisms used in the transport of materials from peripheral tissues to lymph nodes. We then summarize nanomaterial-based strategies to take advantage of lymphatic transport functions for delivering therapeutics to lymph nodes or systemic circulation. We also describe opportunities for targeting lymphatic endothelial cells to modulate transport and immune functions.
Collapse
Affiliation(s)
| | | | | | - Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, MD, United States
| |
Collapse
|
17
|
Kciuk M, Gielecińska A, Budzinska A, Mojzych M, Kontek R. Metastasis and MAPK Pathways. Int J Mol Sci 2022; 23:ijms23073847. [PMID: 35409206 PMCID: PMC8998814 DOI: 10.3390/ijms23073847] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide. In many cases, the treatment of the disease is limited due to the metastasis of cells to distant locations of the body through the blood and lymphatic drainage. Most of the anticancer therapeutic options focus mainly on the inhibition of tumor cell growth or the induction of cell death, and do not consider the molecular basis of metastasis. The aim of this work is to provide a comprehensive review focusing on cancer metastasis and the mitogen-activated protein kinase (MAPK) pathway (ERK/JNK/P38 signaling) as a crucial modulator of this process.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
- Correspondence:
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| | - Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (A.G.); (R.K.)
| |
Collapse
|
18
|
Wang C, Chu M. Advances in Drugs Targeting Lymphangiogenesis for Preventing Tumor Progression and Metastasis. Front Oncol 2022; 11:783309. [PMID: 35087755 PMCID: PMC8787832 DOI: 10.3389/fonc.2021.783309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis of cancer cells from the primary tumor to other organs and tissues in the body is the leading cause of death in patients with malignancies. One of the principal ways cancer cells travel is through lymphatic vessels, and tumor invasion into the regional lymph nodes is a hallmark of early metastasis; thus, the formation of especially peritumoral lymphatic vessels is essential for tumor transportation that gives rise to further progression. In the past few decades, tumor-induced lymphangiogenesis has been testified to its tight correlation with lymphatic metastasis and poor clinical outcomes in multiple types of human malignancies, which warrants novel potential therapeutic targets for cancer treatment. As the understanding of underlying molecular mechanisms has grown tremendously over the years, an inexorable march of anti-lymphangiogenic therapy also aroused terrific interest. As a result, a great number of drugs have entered clinical trials, and some of them exhibited predominant contributions in cancer management. Herein, this review provides an updated summary of the current advances in therapies preventing lymphatic metastasis and discusses the validity of different applications.
Collapse
Affiliation(s)
- Chuqi Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
19
|
Advances in 3D Vascularized Tumor-on-a-Chip Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:231-256. [DOI: 10.1007/978-3-031-04039-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Xia M, Duan LJ, Lu BN, Pang YZ, Pang ZR. LncRNA AFAP1-AS1/miR-27b-3p/VEGF-C axis modulates stemness characteristics in cervical cancer cells. Chin Med J (Engl) 2021; 134:2091-2101. [PMID: 34334630 PMCID: PMC8440026 DOI: 10.1097/cm9.0000000000001665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) functions as a competing endogenous RNA to regulate target genes expression by sponging microRNAs (miRs) to play cancer-promoting roles in cancer stem cells. However, the regulatory mechanism of AFAP1-AS1 in cervical cancer (CC) stem cells is unknown. The present study aimed to provide a new therapeutic target for the clinical treatment of CC. Methods: Hyaluronic acid receptor cluster of differentiation 44 variant exon 6 (CD44v6)(+) CC cells were isolated by flow cytometry (FCM). Small interfering RNAs of AFAP1-AS1 (siAFAP1-AS1) were transfected into the (CD44v6)(+) cells. The levels of AFAP1-AS1 were measured by quantitative real-time PCR (qRT-PCR). Sphere formation assay, cell cycle analysis, and Western blotting were used to detect the effect of siAFAP1-AS1. RNA pull-down and luciferase reporter assay were used to verify the relationship between miR-27b-3p and AFAP1-AS1 or vascular endothelial growth factor (VEGF)-C. Results: CD44v6(+) CC cells had remarkable stemness and a high level of AFAP1-AS1. However, AFAP1-AS1 knockdown with siAFAP1-AS1 suppressed the cell cycle transition of G(1)/S phase and inhibited self-renewal of CD44v6(+) CC cells, the levels of the stemness markers octamer-binding transcription factor 4 (OCT4), osteopontin (OPN), and cluster of differentiation 133 (CD133), and the epithelial-mesenchymal transition (EMT)-related proteins Twist1, matrix metalloprotease (MMP)-9, and VEGF-C. In the mechanism study, miR-27b-3p/VEGF-C signaling was demonstrated to be a key downstream of AFAP1-AS1 in the CD44v6(+) CC cells. Conclusions: LncRNA AFAP1-AS1 knockdown inhibits the CC cell stemness by upregulating miR-27b-3p to suppress VEGF-C.
Collapse
Affiliation(s)
- Meng Xia
- School of Pharmacy, Minzu University of China, Beijing 100081, China Department of Orthopedics, Bayannaoer City Hospital, Bayannaoer, Inner Mongolia 015000, China Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing 100081, China
| | | | | | | | | |
Collapse
|
21
|
Abstract
The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.
Collapse
Affiliation(s)
- Boksik Cha
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sungjin Moon
- Department of Biological Science, Kangwon National University, Chuncheon 24341, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
22
|
Kusumoto S, Kurashige M, Ohshima K, Tahara S, Matsui T, Nojima S, Hattori S, Morii E. An immature inhibin-α-expressing subpopulation of ovarian clear cell carcinoma cells is related to an unfavorable prognosis. Cancer Med 2021; 10:1485-1500. [PMID: 33611864 PMCID: PMC7940216 DOI: 10.1002/cam4.3801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 02/05/2021] [Indexed: 11/20/2022] Open
Abstract
Inhibin‐α, a member of transforming growth factor‐β, is elevated in multiple tumors, but its specific roles are poorly understood. Here, we examined the feature of inhibin‐α‐expressing cells in ovarian tumors. Immunohistochemically, inhibin‐α‐expressing tumor cells were detected only in ovarian clear cell carcinoma (OCCC) among various types of ovarian tumors. By comparing the expression of inhibin‐α and Ki‐67, inhibin‐α‐expressing tumor cells were revealed to be less proliferative. When spheroids and chemoresistant cells were derived from OCCC cell lines, the expression level of inhibin‐α was elevated, and that of an immature marker, aldehyde dehydrogenase, was also elevated. In consistent with this, inhibin‐α expression was correlated with other immature markers, such as OCT3/4 and SOX2, and inversely correlated with proliferative marker MKI67 in public database on OCCC. Knockdown of inhibin‐α in OCCC cell decreased chemoresistance. Moreover, prognostic analysis with 69 surgically resected OCCC cases revealed that the increased inhibin‐α expression was an independent unfavorable prognostic factor. These findings suggested that inhibin‐α‐expressing subpopulation of OCCC tumor cells appeared to be less proliferative, immature, and angiogenic and to be related to acceleration of malignant progression.
Collapse
Affiliation(s)
- Shinya Kusumoto
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masako Kurashige
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Ohshima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Matsui
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Hattori
- Division of Biomedical Statistics, Department of Integrated Medicine, Graduate School of Medicine, and Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
23
|
Kong D, Zhou H, Neelakantan D, Hughes CJ, Hsu JY, Srinivasan RR, Lewis MT, Ford HL. VEGF-C mediates tumor growth and metastasis through promoting EMT-epithelial breast cancer cell crosstalk. Oncogene 2021; 40:964-979. [PMID: 33299122 PMCID: PMC7867573 DOI: 10.1038/s41388-020-01539-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
It is well established that a subset of cells within primary breast cancers can undergo an epithelial-to-mesenchymal transition (EMT), although the role of EMT in metastasis remains controversial. We previously demonstrated that breast cancer cells that had undergone an oncogenic EMT could increase metastasis of neighboring cancer cells via non-canonical paracrine-mediated activation of GLI activity that is dependent on SIX1 expression in the EMT cancer cells. However, the mechanism by which these SIX1-expressing EMT cells activate GLI signaling remained unclear. In this study, we demonstrate a novel mechanism for activation of GLI-mediated signaling in epithelial breast tumor cells via EMT cell-induced production and secretion of VEGF-C. We show that VEGF-C, secreted by breast cancer cells that have undergone an EMT, promotes paracrine-mediated increases in proliferation, migration, and invasion of epithelial breast cancer cells, via non-canonical activation of GLI-signaling. We further show that the aggressive phenotypes, including metastasis, imparted by EMT cells on adjacent epithelial cancer cells can be disrupted by either inhibiting VEGF-C in EMT cells or by knocking down NRP2, a receptor which interacts with VEGF-C, in neighboring epithelial cancer cells. Interrogation of TCGA and GEO public datasets supports the relevance of this pathway in human breast cancer, demonstrating that VEGF-C strongly correlates with activation of Hedgehog signaling and EMT in the human disease. Our study suggests that the VEGF-C/NRP2/GLI axis is a novel and conserved paracrine means by which EMT cells enhance metastasis, and provides potential targets for therapeutic intervention in this heterogeneous disease.
Collapse
Affiliation(s)
- Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepika Neelakantan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Connor J Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Program in Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
24
|
Zeng YZ, Zhang YQ, Lin XQ, Chen JY, Zhang F, Zhu JL, Wei XL. Co-expression of VEGF-C and survivin predicts poor prognosis in esophageal squamous cell carcinoma. Transl Cancer Res 2021; 10:210-222. [PMID: 35116253 PMCID: PMC8799162 DOI: 10.21037/tcr-20-2498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/16/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Lymphatic metastasis is one of the main factors affecting prognosis in esophageal squamous cell carcinoma (ESCC). Vascular endothelial growth factor-C (VEGF-C) is an important factor that promotes lymphangiogenesis. Survivin also plays a significant role in lymphatic invasion. However, the role and mechanism of their co-expression are still unclear in ESCC. The purpose of this study was to investigate whether the co-expression of VEGF-C and survivin could be a potential marker to predict patient prognosis and survival in ESCC. METHODS The levels of VEGF-C, vascular endothelial growth factor receptor 3 (VEGFR-3), survivin, and Ki-67 were determined by immunohistochemistry (IHC) in 97 ESCC patient tumors. The correlations of co-expression of VEGF-C and survivin with pathological features and survival results were also assessed. RESULTS High VEGF-C expression was observed in 64.9% of the patients and significantly correlated with T stage (P=0.024), node status (P=0.038), and lymph node metastasis (P=0.015). High survivin expression was significantly associated with T stage (P=0.013), N stage (P=0.016), lymph node metastasis (P=0.005), and differentiation (P=0.044) in 67.0% of the patients. Co-expression of VEGF-C and survivin (V+S+) was significantly associated with T stage (P<0.001), N stage (P=0.015), lymph node metastasis (P=0.003), differentiation (P=0.0045), and Ki-67 levels (P=0.024). High expression of VEGF-C or survivin was associated significantly with worse disease-free survival (DFS) and overall survival (OS) (P<0.05). Moreover, the V+S+ group had a worse DFS (P<0.001) and OS (P=0.001) than any other group (i.e., V-S-, V+S-, V-S+). Furthermore, multivariate DFS analyses (95% CI: 1.147-2.220, P=0.006) and multivariate OS analyses (95% CI: 1.080-2.193, P=0.017) revealed that co-expression of VEGF-C and survivin was an independent prognostic factor in ESCC patients. CONCLUSIONS Co-expression of VEGF-C and survivin was predictive of poor prognosis in ESCC. Combined detection of VEGF-C and survivin could represent a feasible and effective marker to predict the prognosis and survival of ESCC patients.
Collapse
Affiliation(s)
- Yun-Zhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xue-Qiong Lin
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jiong-Yu Chen
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jian-Ling Zhu
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
25
|
Koul A, Bansal MP, Aniqa A, Chaudhary H, Chugh NA. Lycopene enriched tomato extract suppresses chemically induced skin tumorigenesis in mice. INT J VITAM NUTR RES 2020; 90:493-513. [DOI: 10.1024/0300-9831/a000597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract. The present study revealed the effects of Lycopene enriched tomato extract (LycT) on chemically induced skin cancer in mice. Skin tumors were induced by topical application of 7,12-Dimethylbenz(a)anthracene (DMBA) [500 nmol/100 ul of acetone, twice a week for two weeks] and 12-O-tetradecanoyl phorbol-13-acetate (TPA) [1.7 nmol/100 ul of acetone, twice a week for eighteen weeks] and LycT (5 mg/kg b.w.) was administered orally. Male Balb/c mice were divided into four groups (n = 15 per group): control, DMBA/TPA, LycT and LycT + DMBA/TPA. The chemopreventive response of LycT to skin tumorigenesis was evident by inhibition in tumor incidence, number, size, burden and volume in LycT + DMBA/TPA group when compared to DMBA/TPA group. This was associated with inhibition of cell proliferation in LycT + DMBA/TPA group as observed by the decrease in epidermal morphometric parameters and mRNA and protein expression of proliferating cell nuclear antigen when compared to DMBA/TPA group (p ≤ 0.05). LycT decreased (p ≤ 0.05) the mRNA and protein expression of angiogenic genes (vascular endothelial growth factor, angiopoietin-2, basic fibroblast growth factor) in LycT + DMBA/TPA group, suggesting its anti-angiogenic effects. The increase (p ≤ 0.05) in protein expression of connexin-32 and 43 in LycT + DMBA/TPA group suggests improved inter cellular communication when compared to DMBA/TPA group. Histochemical studies demonstrated that the components of extracellular matrix (fibrous proteins and mucopolysaccharides) were also modulated during skin carcinogenesis and its chemoprevention by LycT. The decrease in cell proliferation parameters and expression of angiogenesis associated genes, modulation of ECM components and increase in expression of connexins suggest that LycT improved multiple dysregulated processes during chemoprevention of skin cancer.
Collapse
Affiliation(s)
- Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, India
| | | | - Aniqa Aniqa
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Harsh Chaudhary
- Department of Biophysics, Panjab University, Chandigarh, India
| | | |
Collapse
|
26
|
Nagl L, Horvath L, Pircher A, Wolf D. Tumor Endothelial Cells (TECs) as Potential Immune Directors of the Tumor Microenvironment - New Findings and Future Perspectives. Front Cell Dev Biol 2020; 8:766. [PMID: 32974337 PMCID: PMC7466447 DOI: 10.3389/fcell.2020.00766] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in cancer development and progression. It represents a complex network of cancer cell (sub-)clones and a variety of stromal cell types. Recently, new technology platforms shed light on the cellular composition of the TME at very high resolution and identified a complex landscape of multi-lineage immune cells (e.g., T and B lymphocytes, myeloid cells, and dendritic cells), cancer associated fibroblasts (CAF) and tumor endothelial cells (TECs). A growing body of evidence suggests that metabolically, genetically and on their transcriptomic profile TECs exhibit unique phenotypic and functional characteristics when compared to normal endothelial cells (NECs). Furthermore, the functional role of TECs is multifaceted as they are not only relevant for promoting tumor angiogenesis but have also evolved as key mediators of immune regulation in the TME. Regulatory mechanisms are complex and profoundly impact peripheral immune cell trafficking into the tumor compartment by acting as major gatekeepers of cellular transmigration. Moreover, TECs are associated with T cell priming, activation and proliferation by acting as antigen-presenting cells themselves. TECs are also essential for the formation of tertiary lymphoid structures (TLS) within the tumor, which have recently been associated with treatment response to checkpoint antibody therapy. Further essential characteristics of TECs compared to NECs are their high proliferative potential as well as greatly altered gene expression profile (e.g., upregulation of pro-angiogenic, extracellular matrix remodeling, and stemness genes), which results in enhanced secretion of immunomodulatory cytokines and altered cell-surface receptors [e.g., major histocompatibility complex (MHC) and immune checkpoints]. The TEC phenotype may be rooted in an aggressive tumor micro-milieu based on cellular stress via hypoxia and reactive oxygen species (ROS). Vice versa TECs might modulate TME immunogenicity thereby fostering cancer-associated immune suppression. This review aims to elucidate the currently emergent pathophysiological aspects of TECs with a particular focus on their potential role as regulators of immune cell function in the TME. It is a main future challenge to deeply characterize the phenotypic and functional profile of TECs to illuminate their complex role within the TME. The ultimate goal is the identification of TEC-specific drug targets to improve cancer (immuno-)therapy.
Collapse
Affiliation(s)
- Laurenz Nagl
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Horvath
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria.,Department of Oncology, Hematology, Rheumatology and Immunoncology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
27
|
MiR-182-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-C. Cancer Lett 2020; 488:18-26. [PMID: 32473243 DOI: 10.1016/j.canlet.2020.04.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/21/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are gene modulators essential for biological processes. However, the precise functions of miRNAs in growth and development of colon cancer are still elusive. To clarify their role, here we analyzed a miRNA microarray of colon cancer. MiR-182-5p was found markedly downregulated in colon cancer tissues and cells, and strongly correlated with pathological stage, differentiation, and lymphatic metastasis. In vitro, miR-182-5p overexpression repressed colon cancer cell proliferation, colony formation, migration, and invasion, and triggered G1 arrest and apoptosis. MiR-182-5p overexpression also downregulated vascular endothelial growth factor (VEGF)-C and inhibited the activity of a luciferase reporter containing the VEGF-C 3'-untranslated region. Moreover, miR-182-5p overexpression in colon cancer cells and human umbilical vein endothelial cells (HUVECs) downregulated VEGF-A as well as VEGF receptor (VEGFR)-2 and VEGFR-3, thereby inhibiting the phosphorylation of ERK and AKT. In vivo, miR-182-5p overexpression strikingly suppressed oncogenicity of SW620 cells as well as angiogenesis and lymphangiogenesis of xenograft tumors in nude mice. These data indicate that miR-182-5p regulates colon cancer tumorigenesis partially through modulating angiogenesis and lymphangiogenesis by targeting VEGF-C, and inhibiting ERK and AKT signaling pathways.
Collapse
|
28
|
Yan M, Ye L, Feng X, Shi R, Sun Z, Li Z, Liu T. MicroRNA-590-3p inhibits invasion and metastasis in triple-negative breast cancer by targeting Slug. Am J Cancer Res 2020; 10:965-974. [PMID: 32266103 PMCID: PMC7136920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023] Open
Abstract
miR-590-3p acts as a tumor suppressor in glioblastoma multiform, medulloblastoma, hepatocellular carcinoma, and nephroblastoma. Here, we studied the role of miR-590-3p in triple-negative breast cancer (TNBC). The miR-590-3p levels in TNBC specimens were significantly lower than those in non-TNBC specimens. Overexpression of miR-590-3p significantly inhibited migration and invasion of TNBC cells and lung metastasis in vivo. Interestingly, miR-590-3p decreased the Slug mRNA and protein levels in TNBC cells, and luciferase reporter assay showed that miR-590-3p directly targeted 3'-UTR of Slug in TNBC cells. Importantly, overexpression of Slug reversed the inhibitory effect of miR-590-3p on migration and invasion of TNBC cells. Taken together, miR-590-3p inhibits TNBC migration and invasion by directly targeting Slug, suggesting a potential therapeutic effect of miR-590-3p for TNBC.
Collapse
Affiliation(s)
- Meisi Yan
- Department of Pathology, Harbin Medical UniversityHarbin 150081, China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterTX 77030, United States
| | - Leiguang Ye
- Department of Oncology, Harbin Medical University Cancer HospitalHarbin 150000, China
| | - Xinxin Feng
- Department of Pathology, Harbin Medical UniversityHarbin 150081, China
| | - Runze Shi
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin 150000, China
| | - Zhen Sun
- Department of Molecular and Cellular Biology, Baylor College of MedicalTX 77030, United States
| | - Zhigao Li
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin 150000, China
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin 150000, China
- Department of Pathology, The University of Texas MD Anderson Cancer CenterTX 77030, United States
| |
Collapse
|
29
|
Momeny M, Alishahi Z, Eyvani H, Esmaeili F, Zaghal A, Ghaffari P, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Anti-tumor activity of cediranib, a pan-vascular endothelial growth factor receptor inhibitor, in pancreatic ductal adenocarcinoma cells. Cell Oncol (Dordr) 2020; 43:81-93. [DOI: 10.1007/s13402-019-00473-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
|
30
|
Michaelsen SR, Staberg M, Pedersen H, Jensen KE, Majewski W, Broholm H, Nedergaard MK, Meulengracht C, Urup T, Villingshøj M, Lukacova S, Skjøth-Rasmussen J, Brennum J, Kjær A, Lassen U, Stockhausen MT, Poulsen HS, Hamerlik P. VEGF-C sustains VEGFR2 activation under bevacizumab therapy and promotes glioblastoma maintenance. Neuro Oncol 2019; 20:1462-1474. [PMID: 29939339 PMCID: PMC6176801 DOI: 10.1093/neuonc/noy103] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Glioblastoma ranks among the most lethal cancers, with current therapies offering only palliation. Paracrine vascular endothelial growth factor (VEGF) signaling has been targeted using anti-angiogenic agents, whereas autocrine VEGF/VEGF receptor 2 (VEGFR2) signaling is poorly understood. Bevacizumab resistance of VEGFR2-expressing glioblastoma cells prompted interrogation of autocrine VEGF-C/VEGFR2 signaling in glioblastoma. Methods Autocrine VEGF-C/VEGFR2 signaling was functionally investigated using RNA interference and exogenous ligands in patient-derived xenograft lines and primary glioblastoma cell cultures in vitro and in vivo. VEGF-C expression and interaction with VEGFR2 in a matched pre- and post-bevacizumab treatment cohort were analyzed by immunohistochemistry and proximity ligation assay. Results VEGF-C was expressed by patient-derived xenograft glioblastoma lines, primary cells, and matched surgical specimens before and after bevacizumab treatment. VEGF-C activated autocrine VEGFR2 signaling to promote cell survival, whereas targeting VEGF-C expression reprogrammed cellular transcription to attenuate survival and cell cycle progression. Supporting potential translational significance, targeting VEGF-C impaired tumor growth in vivo, with superiority to bevacizumab treatment. Conclusions Our results demonstrate VEGF-C serves as both a paracrine and an autocrine pro-survival cytokine in glioblastoma, promoting tumor cell survival and tumorigenesis. VEGF-C permits sustained VEGFR2 activation and tumor growth, where its inhibition appears superior to bevacizumab therapy in improving tumor control.
Collapse
Affiliation(s)
- Signe R Michaelsen
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mikkel Staberg
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | | | - Wiktor Majewski
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle Broholm
- Department of Neuropathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette K Nedergaard
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Thomas Urup
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Villingshøj
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Slávka Lukacova
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jannick Brennum
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Hans S Poulsen
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Petra Hamerlik
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark.,Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
31
|
Kuciauskas D, Dreize N, Ger M, Kaupinis A, Zemaitis K, Stankevicius V, Suziedelis K, Cicenas J, Graves LM, Valius M. Proteomic Analysis of Breast Cancer Resistance to the Anticancer Drug RH1 Reveals the Importance of Cancer Stem Cells. Cancers (Basel) 2019; 11:E972. [PMID: 31336714 PMCID: PMC6678540 DOI: 10.3390/cancers11070972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Antitumor drug resistance remains a major challenge in cancer chemotherapy. Here we investigated the mechanism of acquired resistance to a novel anticancer agent RH1 designed to be activated in cancer cells by the NQO1 enzyme. Data show that in some cancer cells RH1 may act in an NQO1-independent way. Differential proteomic analysis of breast cancer cells with acquired resistance to RH1 revealed changes in cell energy, amino acid metabolism and G2/M cell cycle transition regulation. Analysis of phosphoproteomics and protein kinase activity by multiplexed kinase inhibitor beads showed an increase in the activity of protein kinases involved in the cell cycle and stemness regulation and downregulation of proapoptotic kinases such as JNK in RH1-resistant cells. Suppression of JNK leads to the increase of cancer cell resistance to RH1. Moreover, resistant cells have enhanced expression of stem cell factor (SCF) and stem cell markers. Inhibition of SCF receptor c-KIT resulted in the attenuation of cancer stem cell enrichment and decreased amounts of tumor-initiating cells. RH1-resistant cells also acquire resistance to conventional therapeutics while remaining susceptible to c-KIT-targeted therapy. Data show that RH1 can be useful to treat cancers in the NQO1-independent way, and targeting of the cancer stem cells might be an effective approach for combating resistance to RH1 therapy.
Collapse
Affiliation(s)
- Dalius Kuciauskas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Nadezda Dreize
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Marija Ger
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Kristijonas Zemaitis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
| | - Vaidotas Stankevicius
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Kestutis Suziedelis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania
- MAP Kinase Resource, 3027 Bern, Switzerland
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, 10223 Vilnius, Lithuania.
| |
Collapse
|
32
|
Hsu MC, Pan MR, Hung WC. Two Birds, One Stone: Double Hits on Tumor Growth and Lymphangiogenesis by Targeting Vascular Endothelial Growth Factor Receptor 3. Cells 2019; 8:cells8030270. [PMID: 30901976 PMCID: PMC6468620 DOI: 10.3390/cells8030270] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor receptor 3 (VEGFR3) has been known for its involvement in tumor-associated lymphangiogenesis and lymphatic metastasis. The VEGFR3 signaling is stimulated by its main cognate ligand, vascular endothelial growth factor C (VEGF-C), which in turn promotes tumor progression. Activation of VEGF-C/VEGFR3 signaling in lymphatic endothelial cells (LECs) was shown to enhance the proliferation of LECs and the formation of lymphatic vessels, leading to increased lymphatic metastasis of tumor cells. In the past decade, the expression and pathological roles of VEGFR3 in tumor cells have been described. Moreover, the VEGF-C/VEGFR3 axis has been implicated in regulating immune tolerance and suppression. Therefore, the inhibition of the VEGF-C/VEGFR3 axis has emerged as an important therapeutic strategy for the treatment of cancer. In this review, we discuss the current findings related to VEGF-C/VEGFR3 signaling in cancer progression and recent advances in the development of therapeutic drugs targeting VEGF-C/VEGFR3.
Collapse
Affiliation(s)
- Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
33
|
Calvo N, Carriere P, Martín MJ, Gigola G, Gentili C. PTHrP treatment of colon cancer cells promotes tumor associated-angiogenesis by the effect of VEGF. Mol Cell Endocrinol 2019; 483:50-63. [PMID: 30639585 DOI: 10.1016/j.mce.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
We showed that Parathyroid Hormone-related Peptide (PTHrP) induces proliferation, migration, survival and chemoresistance via MAPKs and PI3K/AKT pathways in colorectal cancer (CRC) cells. The objective of this study was to investigate if PTHrP is also involved in tumor angiogenesis. PTHrP increased VEGF expression and the number of structures with characteristics of neoformed vessels in xenografts tumor. Also, PTHrP increased mRNA levels of VEGF, HIF-1α and MMP-9 via ERK1/2 and PI3K/Akt pathways in Caco-2 and HCT116 cells. Tumor conditioned media (TCMs) from both cell lines treated with PTHrP increases the number of cells, the migration and the tube formation in the endothelial HMEC-1 cells, whereas the neutralizing antibody against VEGF diminished this response. In contrast, PTHrP by direct treatment only increased ERK1/2 phosphorylation and the HMEC-1 cells number. These results provide the first evidence related to the mode of action of PTHrP that leads to its proangiogenic effects in the CRC.
Collapse
Affiliation(s)
- Natalia Calvo
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Pedro Carriere
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Julia Martín
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Graciela Gigola
- Dept. Biología Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Claudia Gentili
- Dept. Biología Bioquímica y Farmacia-INBIOSUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
34
|
Ndiaye PD, Dufies M, Giuliano S, Douguet L, Grépin R, Durivault J, Lenormand P, Glisse N, Mintcheva J, Vouret-Craviari V, Mograbi B, Wurmser M, Ambrosetti D, Rioux-Leclercq N, Maire P, Pagès G. VEGFC acts as a double-edged sword in renal cell carcinoma aggressiveness. Am J Cancer Res 2019; 9:661-675. [PMID: 30809300 PMCID: PMC6376471 DOI: 10.7150/thno.27794] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxic zones are common features of metastatic tumors. Due to inactivation of the von Hippel-Lindau gene (VHL), renal cell carcinomas (RCC) show constitutive stabilization of the alpha subunit of the hypoxia-inducible factor (HIF). Thus, RCC represents a model of chronic hypoxia. Development of the lymphatic network is dependent on vascular endothelial growth factor C (VEGFC) and lies at the front line of metastatic spreading. Here, we addressed the role of VEGFC in RCC aggressiveness and the regulation of its expression in hypoxia. Methods: Transcriptional and post transcriptional regulation of VEGFC expression was evaluated by qPCR and with reporter genes. The involvement of HIF was evaluated using a siRNA approach. Experimental RCC were performed with immuno-competent/deficient mice using human and mouse cells knocked-out for the VEGFC gene by a CRISPR/Cas9 method. The VEGFC axis was analyzed with an online available data base (TCGA) and using an independent cohort of patients. Results: Hypoxia induced VEGFC protein expression but down-regulated VEGFC gene transcription and mRNA stability. Increased proliferation, migration, over-activation of the AKT signaling pathway and enhanced expression of mesenchymal markers characterized VEGFC-/- cells. VEGFC-/- cells did not form tumors in immuno-deficient mice but developed aggressive tumors in immuno-competent mice. These tumors showed down-regulation of markers of activated lymphocytes and M1 macrophages, and up-regulation of M2 macrophages markers and programmed death ligand 1 (PDL1). Over-expression of lymphangiogenic genes including VEGFC was linked to increased disease-free and overall survival in patients with non-metastatic tumors, whereas its over-expression correlated with decreased progression-free and overall survival of metastatic patients. Conclusion: Our study revisited the admitted dogma linking VEGFC to tumor aggressiveness. We conclude that targeting VEGFC for therapy must be considered with caution.
Collapse
|
35
|
Su CM, Tang CH, Chi MJ, Lin CY, Fong YC, Liu YC, Chen WC, Wang SW. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells. Biochem Pharmacol 2018; 154:234-242. [PMID: 29730230 DOI: 10.1016/j.bcp.2018.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
Chondrosarcoma is a common primary malignant tumor of the bone that can metastasize through the vascular system to other organs. A key step in the metastatic process, lymphangiogenesis, involves vascular endothelial growth factor-C (VEGF-C). However, the effects of lymphangiogenesis in chondrosarcoma metastasis remain to be clarified. Accumulating evidence shows that resistin, a cytokine secreted from adipocytes and monocytes, also promotes tumor pathogenesis. Notably, chondrosarcoma can easily metastasize. In this study, we demonstrate that resistin enhances VEGF-C expression and lymphatic endothelial cells (LECs)-associated lymphangiogenesis in human chondrosarcoma cells. We also show that resistin triggers VEGF-C-dependent lymphangiogenesis via the c-Src signaling pathway and down-regulating micro RNA (miR)-186. Overexpression of resistin in chondrosarcoma cells significantly enhanced VEGF-C production and LECs-associated lymphangiogenesis in vitro and tumor-related lymphangiogenesis in vivo. Resistin levels were positively correlated with VEGF-C-dependent lymphangiogenesis via the down-regulation of miR-186 expression in clinical samples from chondrosarcoma tissue. This study is the first to evaluate the mechanism underlying resistin-induced promotion of LECs-associated lymphangiogenesis via the upregulation of VEGF-C expression in human chondrosarcomas. We suggest that resistin may represent a molecular target in VEGF-C-associated tumor lymphangiogenesis in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Meng-Ju Chi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Chin Fong
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan; Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yueh-Ching Liu
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Cheng Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
36
|
Deng Y, Yang Y, Yao B, Ma L, Wu Q, Yang Z, Zhang L, Liu B. RETRACTED: Paracrine signaling by VEGF-C promotes non-small cell lung cancer cell metastasis via recruitment of tumor-associated macrophages. Exp Cell Res 2018; 364:208-216. [DOI: 10.1016/j.yexcr.2018.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/06/2023]
|
37
|
Men X, Ma J, Wu T, Pu J, Wen S, Shen J, Wang X, Wang Y, Chen C, Dai P. Transcriptome profiling identified differentially expressed genes and pathways associated with tamoxifen resistance in human breast cancer. Oncotarget 2017; 9:4074-4089. [PMID: 29423105 PMCID: PMC5790522 DOI: 10.18632/oncotarget.23694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
Tamoxifen (TAM) resistance is an important clinical problem in the treatment of breast cancer. In order to identify the mechanism of TAM resistance for estrogen receptor (ER)-positive breast cancer, we screened the transcriptome using RNA-seq and compared the gene expression profiles between the MCF-7 mamma carcinoma cell line and the TAM-resistant cell line TAMR/MCF-7, 52 significant differential expression genes (DEGs) were identified including SLIT2, ROBO, LHX, KLF, VEGFC, BAMBI, LAMA1, FLT4, PNMT, DHRS2, MAOA and ALDH. The DEGs were annotated in the GO, COG and KEGG databases. Annotation of the function of the DEGs in the KEGG database revealed the top three pathways enriched with the most DEGs, including pathways in cancer, the PI3K-AKT pathway, and focal adhesion. Then we compared the gene expression profiles between the Clinical progressive disease (PD) and the complete response (CR) from the cancer genome altas (TCGA). 10 common DEGs were identified through combining the clinical and cellular analysis results. Protein-protein interaction network was applied to analyze the association of ER signal pathway with the 10 DEGs. 3 significant genes (GFRA3, NPY1R and PTPRN2) were closely related to ER related pathway. These significant DEGs regulated many biological activities such as cell proliferation and survival, motility and migration, and tumor cell invasion. The interactions between these DEGs and drug resistance phenomenon need to be further elucidated at a functional level in further studies. Based on our findings, we believed that these DEGs could be therapeutic targets, which can be explored to develop new treatment options.
Collapse
Affiliation(s)
- Xin Men
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Jun Ma
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Tong Wu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Junyi Pu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Shaojia Wen
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Jianfeng Shen
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Xun Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Yamin Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Chao Chen
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| |
Collapse
|
38
|
Mu L, Huang K, Hu Y, Yan C, Li X, Tao D, Gong J, Qin J. Small-sized colorectal cancer cells harbor metastatic tumor-initiating cells. Oncotarget 2017; 8:107907-107919. [PMID: 29296212 PMCID: PMC5746114 DOI: 10.18632/oncotarget.22392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/26/2017] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is heterogeneous and contains different-sized cells. Recent studies have shown that tumor-initiating cells (TICs) are involved in cancer initiation, recurrence and metastasis. However, connections between cancer cell size and stem-like properties are largely unknown. Here we purified large- and small-sized CRC cells by fluorescence-activated cell sorting (FACS) based on forward scatter (FSC), and demonstrated that small CRC cells possess higher holoclone- and sphere-forming capacity in vitro, tumor-initiating capacity in vivo and form more lung metastases compared with large CRC cells. Furthermore, we found that down-regulated YAP1 (yes-associated protein 1) decreased tumor-initiating and metastatic capacity in small CRC cells but not in large CRC cells. More importantly, our results showed that the expression of YAP1 positively correlated with the poor prognosis in CRCs. Collectively, our findings suggest that small CRC cells enrich for metastatic TICs, and YAP1 is one of the potential therapeutic targets of metastatic TICs, the small CRC cells.
Collapse
Affiliation(s)
- Lei Mu
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kaiyu Huang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yibing Hu
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Yan
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Deding Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianping Gong
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jichao Qin
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
39
|
Liu F, Gao H, Zhao Y, Zhu Z. Transducin (β)-like 1 X-linked receptor 1 correlates with clinical prognosis and clinicopathological characteristics in human solid carcinomas. Oncotarget 2017; 8:61626-61636. [PMID: 28977891 PMCID: PMC5617451 DOI: 10.18632/oncotarget.18650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022] Open
Abstract
Transducin (β)-like 1 X-linked receptor 1(TBL1XR1) has been reported to be overexpressed in various human cancers, as well as contributing to carcinogenesis and progression. This synthetic analysis was performed to assess whether TBL1XR1 protein could act as a potential prognostic molecular marker for human cancers. Several online databases (PubMed, Web of Science, Embase together with Wanfang and China National Knowledge Internet database) were retrieved to identify TBL1XR1-related publications. A total of ten studies with 1837 cancer patients were included in this meta-analysis. Hazard ratios (HR) with 95% confidence intervals (CI) were applied to assess the association between TBL1XR1 expression and cancer prognosis. Odds ratios (OR) were calculated to determine the relationship between TBL1XR1 expression and clinicopathological characteristics. The overall results revealed that the overexpression of TBL1XR1 was correlated with poorer overall survival (OS) (HR: 1.77, 95% CI: 1.49–2.06, p < 0.001) and worse disease-free survival (DFS) (HR: 1.51, 95% CI: 1.19–1.84, p < 0.001) in human solid cancers. Statistical significance for OS was also found in subgroup analysis stratified by the cancer type, analysis method and follow-up time. Furthermore, elevated TBL1XR1 was associated with unfavorable clinicopathological characteristics including tumor size, depth of invasion, lymph node metastasis and TNM stage. Our meta-analysis suggested that TBL1XR1 might be served as a novel and promising biomarker to predict prognosis and clinicopathologic characteristic for cancer patients.
Collapse
Affiliation(s)
- Fangteng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, P. R. China
| | - Hui Gao
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, P. R. China
| | - Yang Zhao
- Nanchang University School of Public Health, Nanchang 330031, Jiangxi Province, P. R. China
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, P. R. China
| |
Collapse
|
40
|
Dalla Pozza E, Forciniti S, Palmieri M, Dando I. Secreted molecules inducing epithelial-to-mesenchymal transition in cancer development. Semin Cell Dev Biol 2017; 78:62-72. [PMID: 28673679 DOI: 10.1016/j.semcdb.2017.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a biologic process that allows a polarized epithelial cell to undergo multiple biochemical changes that enable it to assume a mesenchymal cell phenotype. EMT is involved in embryo development, wound healing, tissue regeneration, organ fibrosis and has also been proposed as the critical mechanism for the acquisition of malignant phenotypes by epithelial cancer cells. These cells have been shown to acquire a mesenchymal phenotype when localized at the invasive front of primary tumours increasing aggressiveness, invasiveness, metastatic potential and resistance to chemotherapy. There is now increasing evidence demonstrating that a crucial role in the development of this process is played by factors secreted by cells of the tumour microenvironment or by the tumour cells themselves. This review summarises the current knowledge of EMT induction in cancer by paracrine or autocrine mechanisms, by exosomes or free proteins and miRNAs.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Stefania Forciniti
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Palmieri
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|