1
|
Li Z, Quan B, Li X, Xiong W, Peng Z, Liu J, Wang Y. A proteomic and phosphoproteomic landscape of spinal cord injury. Neurosci Lett 2023; 814:137449. [PMID: 37597742 DOI: 10.1016/j.neulet.2023.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Spinal cord injury (SCI) is a devastating trauma of the central nervous system, with high levels of morbidity, disability, and mortality. To explore the underlying mechanism of SCI, we analyzed the proteome and phosphoproteome of rats at one week after SCI. We identified 465 up-regulated and 129 down-regulated differentially expressed proteins (DEPs), as well as 184 up-regulated and 40 down-regulated differentially expressed phosphoproteins (DEPPs). Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, we identified the biological characteristics of these proteins from the perspectives of cell component, biological process, and molecular function. We also found a lot of enriched functional pathways such as GABAergic synapse pathway, ErbB signaling pathway, tight junction, adherens junction. The integrated analysis of proteomics and phosphoproteomics yielded 22 differently expressed co-identified proteins of DEPs and DEPPs, which revealed strongly correlative patterns. These findings may help clarify the potential mechanisms of trauma and repair in SCI and may guide the development of novel treatments.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Bingxuan Quan
- The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiuyan Li
- The Fifth Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Wei Xiong
- Department of Orthopedic Surgery, Limin Hospital of Weihai High District, Weihai, China
| | - Zhibin Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingsong Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Bringuier CM, Noristani HN, Perez JC, Cardoso M, Goze-Bac C, Gerber YN, Perrin FE. Up-Regulation of Astrocytic Fgfr4 Expression in Adult Mice after Spinal Cord Injury. Cells 2023; 12:cells12040528. [PMID: 36831195 PMCID: PMC9954417 DOI: 10.3390/cells12040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Spinal cord injury (SCI) leads to persistent neurological deficits without available curative treatment. After SCI astrocytes within the lesion vicinity become reactive, these undergo major morphological, and molecular transformations. Previously, we reported that following SCI, over 10% of resident astrocytes surrounding the lesion spontaneously transdifferentiate towards a neuronal phenotype. Moreover, this conversion is associated with an increased expression of fibroblast growth factor receptor 4 (Fgfr4), a neural stem cell marker, in astrocytes. Here, we evaluate the therapeutic potential of gene therapy upon Fgfr4 over-expression in mature astrocytes following SCI in adult mice. We found that Fgfr4 over-expression in astrocytes immediately after SCI improves motor function recovery; however, it may display sexual dimorphism. Improved functional recovery is associated with a decrease in spinal cord lesion volume and reduced glial reactivity. Cell-specific transcriptomic profiling revealed concomitant downregulation of Notch signaling, and up-regulation of neurogenic pathways in converting astrocytes. Our findings suggest that gene therapy targeting Fgfr4 over-expression in astrocytes after injury is a feasible therapeutic approach to improve recovery following traumatism of the spinal cord. Moreover, we stress that a sex-dependent response to astrocytic modulation should be considered for the development of effective translational strategies in other neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Maida Cardoso
- UMR 5221, Univ. Montpellier, CNRS, 34095 Montpellier, France
| | | | | | - Florence Evelyne Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, 34095 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
3
|
Lou Y, Lv Y, Li Z, Kang Y, Hou M, Fu Z, Lu L, Liu L, Cai Z, Qi Z, Jian H, Shen W, Li X, Zhou H, Feng S. Identification of Differentially Expressed Proteins in Rats with Early Subacute Spinal Cord Injury using an iTRAQ-based Quantitative Analysis. Comb Chem High Throughput Screen 2023; 26:1960-1973. [PMID: 36642874 DOI: 10.2174/1386207326666230113152622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Injuries to the central nervous system (CNS), such as spinal cord injury (SCI), may devastate families and society. Subacute SCI may majorly impact secondary damage during the transitional period between the acute and subacute phases. A range of CNS illnesses has been linked to changes in the level of protein expression. However, the importance of proteins during the early subacute stage of SCI remains unknown. The role of proteins in the early subacute phase of SCI has not been established yet. METHODS SCI-induced damage in rats was studied using isobaric tagging for relative and absolute protein quantification (iTRAQ) to identify proteins that differed in expression 3 days after the injury, as well as proteins that did not alter in expression. Differentially expressed proteins (DEPs) were analyzed employing Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to discover the biological processes, cell components, and molecular functions of the proteins. We also performed Gene Set Enrichment Analysis (GSEA) software BP pathway and KEGG analysis on all proteins to further identify their functions. In addition, the first 15 key nodes of a protein-protein interaction (PPI) system were found. RESULTS During the early subacute stage of SCI, we identified 176 DEPs in total between the control and damage groups, with 114 (64.77%) being up-regulated and 62 (35.23%) being downregulated. As a result of this study, we discovered the most important cellular components and molecular activities, as well as biological processes and pathways, in the early subacute phase of SCI. The top 15 high-degree core nodes were Alb, Plg, F2, Serpina1, Fgg, Apoa1, Vim, Hpx, Apoe, Agt, Ambp, Pcna, Gc, F12, and Gfap. CONCLUSION Our study could provide new views on regulating the pathogenesis of proteins in the early subacute phase after SCI, which provides a theoretical basis for exploring more effective therapeutic targets for SCI in the future.
Collapse
Affiliation(s)
- Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Fu
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu Liu
- Department of Traumatic Orthopedics, Honghui Hospital, Xi'an Jiaotong University, 555 West Youyi Road, Xi'an, 710061, Shaanxi, China
| | - Zhiwei Cai
- Department of Burn and Plastic Surgery, Burns Institute, Burn & Plastic Hospital of PLA General Hospital, Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhangyang Qi
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenyuan Shen
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xueying Li
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Ban D, Yu P, Xiang Z, Liu Y. TNF-like weak inducer of apoptosis / nuclear factor κB axis feedback loop promotes spinal cord injury by inducing astrocyte activation. Bioengineered 2022; 13:11503-11516. [PMID: 35506163 PMCID: PMC9275888 DOI: 10.1080/21655979.2022.2068737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Non-canonical signaling pathways have been proved to act as potent sites of astrocytes osmotic expanding or proliferation, which promotes the regeneration of axons in areas with non-neural spinal cord injury (SCI). However, the relevant signal pathway that induces autophagic cell death in astrocytes and its function relative to the TNF-like weak inducer of apoptosis/nuclear factor κB (TWEAK/NF-κB) axis remains elusive. The SCI model was established by vertically striking the spinal cord according to Allen’s model. Astrocytes and neuronal cells were prepared from spinal cells extracted from spinal cord tissues of SCI or normal C57BL/6 newborn mice. After co-culturing astrocytes and neurons, cell viability and autophagy were determined by CCK-8, transmission electron microscopy (TEM), and western blot. The expression of TWEAK, NF-κB and inflammatory cytokines was confirmed by qRT-PCR, western blot, Immunofluorescence and ELISA assay. Chromatin immunoprecipitation (CHIP) was used to evaluate the interaction between TWEAK and NF-κB. Our results demonstrated that knockdown of TWEAK and NF-κB inhibited secretion of high levels of TNF-α/IL-1β, partially counteracted by adding Rap. TWEAK/NF-κB was the positive correlation feedback loop regulating the proliferation and autophagy of astrocytes involved in SCI. Moreover, restraining the excess growth of astrocytes was beneficial to the growth of neurons. Collectively, our findings illustrated that the TWEAK/NF-κB pathway might act as a positive modulator of SCI by inducing astrocyte activation, shedding new insights for SCI treatment.
Collapse
Affiliation(s)
- Dexiang Ban
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Yu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyang Xiang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Perez JC, Gerber YN, Perrin FE. Dynamic Diversity of Glial Response Among Species in Spinal Cord Injury. Front Aging Neurosci 2021; 13:769548. [PMID: 34899275 PMCID: PMC8662749 DOI: 10.3389/fnagi.2021.769548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The glial scar that forms after traumatic spinal cord injury (SCI) is mostly composed of microglia, NG2 glia, and astrocytes and plays dual roles in pathophysiological processes induced by the injury. On one hand, the glial scar acts as a chemical and physical obstacle to spontaneous axonal regeneration, thus preventing functional recovery, and, on the other hand, it partly limits lesion extension. The complex activation pattern of glial cells is associated with cellular and molecular crosstalk and interactions with immune cells. Interestingly, response to SCI is diverse among species: from amphibians and fishes that display rather limited (if any) glial scarring to mammals that exhibit a well-identifiable scar. Additionally, kinetics of glial activation varies among species. In rodents, microglia become activated before astrocytes, and both glial cell populations undergo activation processes reflected amongst others by proliferation and migration toward the injury site. In primates, glial cell activation is delayed as compared to rodents. Here, we compare the spatial and temporal diversity of the glial response, following SCI amongst species. A better understanding of mechanisms underlying glial activation and scar formation is a prerequisite to develop timely glial cell-specific therapeutic strategies that aim to increase functional recovery.
Collapse
Affiliation(s)
| | - Yannick N Gerber
- MMDN, Université de Montpellier, EPHE, INSERM, Montpellier, France
| | - Florence E Perrin
- MMDN, Université de Montpellier, EPHE, INSERM, Montpellier, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
6
|
Liu S, Kang Y, Zhang C, Lou Y, Li X, Lu L, Qi Z, Jian H, Zhou H. Isobaric Tagging for Relative and Absolute Protein Quantification (iTRAQ)-Based Quantitative Proteomics Analysis of Differentially Expressed Proteins 1 Week After Spinal Cord Injury in a Rat Model. Med Sci Monit 2020; 26:e924266. [PMID: 33144554 PMCID: PMC7650090 DOI: 10.12659/msm.924266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Spinal cord injury (SCI) is a devastating trauma of the central nervous system (CNS), with high levels of morbidity, disability, and mortality. One week after SCI may be a critical time for treatment. Changes in protein expression have crucial functions in nervous system diseases, although the effects of changes occurring 1 week after SCI on patient outcomes are unclear. Material/Methods Protein expression was examined in a rat contusive SCI model 1 week after SCI. Differentially expressed proteins (DEPs) were identified by isobaric tagging for relative and absolute protein quantification (iTRAQ)-coupled liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomics analysis. Gene Ontology (GO) analysis was performed to identify the biological processes, molecular functions, and cellular component terms of the identified DEPs, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to identify key enriched pathways. Protein–protein interaction (PPI) networks were analyzed to identify the top 10 high-degree core proteins. Results Of the 295 DEPs identified, 204 (69.15%) were upregulated and 91 (30.85%) were downregulated 1 week after injury. The main cellular components, molecular functions, biological processes, and pathways identified may be crucial mechanisms involved in SCI. The top 10 high-degree core proteins were complement component C3 (C3), alpha-2-HS-glycoprotein (Ahsg), T-kininogen 1 (Kng1), Serpinc1 protein (Serpinc1), apolipoprotein A-I (Apoa1), serum albumin (Alb), disulfide-isomerase protein (P4hb), transport protein Sec61 subunit alpha isoform 1 (Sec61a1), serotransferrin (Tf), and 60S ribosomal protein L15 (Rpl15). Conclusions The proteins identified in this study may provide potential targets for diagnosis and treatment 1 week after SCI.
Collapse
Affiliation(s)
- Shen Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Chi Zhang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, China (mainland)
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Zhangyang Qi
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| |
Collapse
|
7
|
Kato K, Orihara-Ono M, Awasaki T. Multiple lineages enable robust development of the neuropil-glia architecture in adult Drosophila. Development 2020; 147:dev184085. [PMID: 32051172 DOI: 10.1242/dev.184085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Neural remodeling is essential for the development of a functional nervous system and has been extensively studied in the metamorphosis of Drosophila Despite the crucial roles of glial cells in brain functions, including learning and behavior, little is known of how adult glial cells develop in the context of neural remodeling. Here, we show that the architecture of neuropil-glia in the adult Drosophila brain, which is composed of astrocyte-like glia (ALG) and ensheathing glia (EG), robustly develops from two different populations in the larva: the larval EG and glial cell missing-positive (gcm+ ) cells. Whereas gcm+ cells proliferate and generate adult ALG and EG, larval EG dedifferentiate, proliferate and redifferentiate into the same glial subtypes. Each glial lineage occupies a certain brain area complementary to the other, and together they form the adult neuropil-glia architecture. Both lineages require the FGF receptor Heartless to proliferate, and the homeoprotein Prospero to differentiate into ALG. Lineage-specific inhibition of gliogenesis revealed that each lineage compensates for deficiency in the proliferation of the other. Together, the lineages ensure the robust development of adult neuropil-glia, thereby ensuring a functional brain.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| | - Minako Orihara-Ono
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| | - Takeshi Awasaki
- Department of Biology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka 181-8611, Tokyo, Japan
| |
Collapse
|
8
|
Identification of differentially expressed proteins in rats with spinal cord injury during the transitional phase using an iTRAQ-based quantitative analysis. Gene 2018; 677:66-76. [PMID: 30036659 DOI: 10.1016/j.gene.2018.07.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a disease associated with high disability and mortality rates. The transitional phase from subacute phase to intermediate phase may play a major role in the process of secondary injury. Changes in protein expression levels have been shown to play key roles in many central nervous system (CNS) diseases. Nevertheless, the roles of proteins in the transitional phase of SCI are not clear. METHODS We examined protein expression in a rat model 2 weeks after SCI and identified differentially expressed proteins (DEPs) using isobaric tagging for relative and absolute protein quantification (iTRAQ). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEPs were performed. Furthermore, we constructed a protein-protein interaction (PPI) network, and the top 10 high-degree core nodes were identified. Meanwhile, we validated protein level changes of five high-degree core regulated proteins using Western blots. RESULTS A total of 162 DEPs were identified between the injury group and the control, of which 101 (62.35%) were up-regulated and 61 (37.65%) were down-regulated in the transitional phase of SCI. Key molecular function, cellular components, biological process terms and pathways were identified and may be important mechanisms in the transitional phase of SCI. Alb, Calm1, Vim, Apoe, Syp, P4hb, Cd68, Eef1a2, Rab3a and Lgals3 were the top 10 high-degree core nodes. Western blot analysis performed on five of these proteins showed the same trend as iTRAQ results. CONCLUSION The current study may provide novel insights into how proteins regulate the pathogenesis of the transitional phase after SCI.
Collapse
|
9
|
Noristani HN, Saint-Martin GP, Cardoso M, Sidiboulenouar R, Catteau M, Coillot C, Goze-Bac C, Perrin FE. Longitudinal Magnetic Resonance Imaging Analysis and Histological Characterization after Spinal Cord Injury in Two Mouse Strains with Different Functional Recovery: Gliosis as a Key Factor. J Neurotrauma 2018; 35:2924-2940. [PMID: 29877129 DOI: 10.1089/neu.2017.5613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injuries (SCI) are disastrous neuropathologies causing permanent disabilities. The availability of different strains of mice is valuable for studying the pathophysiological mechanisms involved in SCI. However, strain differences have a profound effect on spontaneous functional recovery after SCI. CX3CR1+/eGFP and Aldh1l1-EGFP mice that express green fluorescent protein in microglia/monocytes and astrocytes, respectively, are particularly useful to study glial reactivity. Whereas CX3CR1+/eGFP mice have C57BL/6 background, Aldh1l1-EGFP are in Swiss Webster background. We first assessed spontaneous functional recovery in CX3CR1+/eGFP and Aldh1l1-EGFP mice over 6 weeks after lateral spinal cord hemisection. Second, we carried out a longitudinal follow-up of lesion evolution using in vivo T2-weighted magnetic resonance imaging (MRI). Finally, we performed in-depth analysis of the spinal cord tissue using ex vivo T2-weighted MRI as well as detailed histology. We demonstrate that CX3CR1+/eGFP mice have improved functional recovery and reduced anxiety after SCI compared with Aldh1l1-EGFP mice. We also found a strong correlation between in vivo MRI, ex vivo MRI, and histological analyses of the injured spinal cord in both strain of mice. All three modalities revealed no difference in lesion extension and volume between the two strains of mice. Importantly, histopathological analysis identified decreased gliosis and increased serotonergic axons in CX3CR1+/eGFP compared with Aldh1l1-EGFP mice following SCI. These results thus suggest that the strain-dependent improved functional recovery after SCI may be linked with reduced gliosis and increased serotonergic innervation.
Collapse
Affiliation(s)
- Harun N Noristani
- 1 INSERM U1198, University of Montpellier, Montpellier, France.,2 INSERM U1051, University of Montpellier, Montpellier, France
| | - Guillaume P Saint-Martin
- 1 INSERM U1198, University of Montpellier, Montpellier, France.,3 UMR 5221 CNRS, University of Montpellier, Montpellier, France
| | - Maïda Cardoso
- 2 INSERM U1051, University of Montpellier, Montpellier, France.,3 UMR 5221 CNRS, University of Montpellier, Montpellier, France
| | | | | | | | | | - Florence E Perrin
- 1 INSERM U1198, University of Montpellier, Montpellier, France.,2 INSERM U1051, University of Montpellier, Montpellier, France.,3 UMR 5221 CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
10
|
Noristani HN, They L, Perrin FE. C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury. Front Cell Neurosci 2018; 12:173. [PMID: 29977191 PMCID: PMC6021489 DOI: 10.3389/fncel.2018.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord.
Collapse
Affiliation(s)
- Harun Najib Noristani
- INSERM U1198, University of Montpellier, EPHE, Montpellier, France.,INSERM U1051, Montpellier, France
| | | | - Florence Evelyne Perrin
- INSERM U1198, University of Montpellier, EPHE, Montpellier, France.,INSERM U1051, Montpellier, France
| |
Collapse
|
11
|
Zhou H, Shi Z, Kang Y, Wang Y, Lu L, Pan B, Liu J, Li X, Liu L, Wei Z, Kong X, Feng S. Investigation of candidate long noncoding RNAs and messenger RNAs in the immediate phase of spinal cord injury based on gene expression profiles. Gene 2018; 661:119-125. [PMID: 29580899 DOI: 10.1016/j.gene.2018.03.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Spinal cord injury (SCI) is a serious devastating condition and it has a high mortality rate and morbidity rate. The early pathological changes in the immediate phase of SCI may play a major part in the development of secondary injury. Alterations in the expression of many long noncoding RNAs (lncRNAs) have been shown to play fundamental roles in the diseases of the central nervous system. However, the roles of lncRNAs and messenger RNAs (mRNAs) in the immediate phase of SCI are not clear. We examined the expression of mRNAs and lncRNAs in a rat model at 2 h after SCI and identified the differentially expressed lncRNAs (DE lncRNAs) and differentially expressed mRNAs (DE mRNAs) using microarray analysis. 772 DE lncRNAs and 992 DE mRNAs were identified in spinal cord samples in the immediate phase following SCI compared with control samples. Moreover, Gene Ontology (GO) term annotation results showed that CXCR chemokine receptor binding, neutrophil apoptotic process, neutrophil migration, neutrophil extravasation, macrophage differentiation, monocyte chemotaxis and cellular response to interleukin-1 (IL-1) were the main significantly enriched GO terms. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were enriched in toll-like receptor signaling pathway, p53 signaling pathway, MAPK signaling pathway and Jak-STAT signaling pathway. IL6, MBOAT4, FOS, TNF, JUN, STAT3, CSF2, MYC, CCL2 and FGF2 were the top 10 high-degree hub nodes and may be important targets in the immediate phase of SCI. The current study on provides novel insights into how lncRNAs and mRNAs regulate the pathogenesis of the immediate phase after SCI.
Collapse
Affiliation(s)
- Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Bin Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, PR China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin, PR China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
12
|
Noristani HN, Gerber YN, Sabourin JC, Le Corre M, Lonjon N, Mestre-Frances N, Hirbec HE, Perrin FE. RNA-Seq Analysis of Microglia Reveals Time-Dependent Activation of Specific Genetic Programs following Spinal Cord Injury. Front Mol Neurosci 2017; 10:90. [PMID: 28420963 PMCID: PMC5376598 DOI: 10.3389/fnmol.2017.00090] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Neurons have inherent competence to regrow following injury, although not spontaneously. Spinal cord injury (SCI) induces a pronounced neuroinflammation driven by resident microglia and infiltrating peripheral macrophages. Microglia are the first reactive glial population after SCI and participate in recruitment of monocyte-derived macrophages to the lesion site. Both positive and negative influence of microglia and macrophages on axonal regeneration had been reported after SCI, raising the issue whether their response depends on time post-lesion or different lesion severity. We analyzed molecular alterations in microglia at several time-points after different SCI severities using RNA-sequencing. We demonstrate that activation of microglia is time-dependent post-injury but is independent of lesion severity. Early transcriptomic response of microglia after SCI involves proliferation and neuroprotection, which is then switched to neuroinflammation at later stages. Moreover, SCI induces an autologous microglial expression of astrocytic markers with over 6% of microglia expressing glial fibrillary acidic protein and vimentin from as early as 72 h post-lesion and up to 6 weeks after injury. We also identified the potential involvement of DNA damage and in particular tumor suppressor gene breast cancer susceptibility gene 1 (Brca1) in microglia after SCI. Finally, we established that BRCA1 protein is specifically expressed in non-human primate spinal microglia and is upregulated after SCI. Our data provide the first transcriptomic analysis of microglia at multiple stages after different SCI severities. Injury-induced microglia expression of astrocytic markers at RNA and protein levels demonstrates novel insights into microglia plasticity. Finally, increased microglia expression of BRCA1 in rodents and non-human primate model of SCI, suggests the involvement of oncogenic proteins after CNS lesion.
Collapse
Affiliation(s)
- Harun N Noristani
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France
| | - Yannick N Gerber
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France.,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque CountryBilbao, Spain
| | - Jean-Charles Sabourin
- "Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque CountryBilbao, Spain
| | - Marine Le Corre
- Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France.,Department of Neurosurgery, Gui de Chauliac HospitalMontpellier, France
| | - Nicolas Lonjon
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Department of Neurosurgery, Gui de Chauliac HospitalMontpellier, France
| | - Nadine Mestre-Frances
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France
| | - Hélène E Hirbec
- Institute for Functional Genomics, CNRS UMR5203, Institut National de la Santé et de la Recherche Médicale U1191Montpellier, France
| | - Florence E Perrin
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France.,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque CountryBilbao, Spain
| |
Collapse
|