1
|
Farahani M, Ghazimoradi MH. Dissecting the roles of exosomal cancer-associated fibroblasts-derived non-coding RNAs in tumor progression: A complete guide. Pathol Res Pract 2024; 262:155576. [PMID: 39232286 DOI: 10.1016/j.prp.2024.155576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.
Collapse
Affiliation(s)
- Mahnaz Farahani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram, General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Peeples ES. MicroRNA therapeutic targets in neonatal hypoxic-ischemic brain injury: a narrative review. Pediatr Res 2023; 93:780-788. [PMID: 35854090 DOI: 10.1038/s41390-022-02196-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) is a devastating injury resulting from impaired blood flow and oxygen delivery to the brain at or around the time of birth. Despite the use of therapeutic hypothermia, more than one in four survivors suffer from major developmental disabilities-an indication of the critical need for more effective therapies. MicroRNAs (miRNA) have the potential to act as biomarkers and/or therapeutic targets in neonatal HIBI as a step toward improving outcomes in this high-risk population. This review summarizes the current literature around the use of cord blood and postnatal circulating blood miRNA expression for diagnosis or prognosis in human infants with hypoxic-ischemic encephalopathy, as well as animal studies assessing endogenous brain miRNA expression and potential for therapeutic targeting of miRNA expression for neuroprotection. Ultimately, the lack of knowledge regarding brain specificity of circulating miRNAs and the temporal variability in expression currently limit the use of miRNAs as biomarkers. However, given their broad effect profile, ease of administration, and small size allowing for effective blood-brain barrier crossing, miRNAs represent promising therapeutic targets for improving brain injury and reducing developmental impairments in neonates after HIBI. IMPACT: The high morbidity and mortality of neonatal hypoxic-ischemic brain injury (HIBI) despite current therapies demonstrates a need for developing more sensitive biomarkers and superior therapeutic options. MicroRNAs have been evaluated both as biomarkers and therapeutic options after neonatal HIBI. The limited knowledge regarding brain specificity of circulating microRNAs and temporal variability in expression currently limit the use of microRNAs as biomarkers. Future studies comparing the neuroprotective effects of modulating microRNA expression must consider temporal changes in the endogenous expression to determine appropriate timing of therapy, while also optimizing techniques for delivery.
Collapse
Affiliation(s)
- Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
- Children's Hospital & Medical Center, Omaha, NE, USA.
- Child Health Research Institute, Omaha, NE, USA.
| |
Collapse
|
3
|
Exploring the Expression of Pro-Inflammatory and Hypoxia-Related MicroRNA-20a, MicroRNA-30e, and MicroRNA-93 in Periodontitis and Gingival Mesenchymal Stem Cells under Hypoxia. Int J Mol Sci 2022; 23:ijms231810310. [PMID: 36142220 PMCID: PMC9499533 DOI: 10.3390/ijms231810310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia associated with inflammation are common hallmarks observed in several diseases, and it plays a major role in the expression of non-coding RNAs, including microRNAs (miRNAs). In addition, the miRNA target genes for hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T cells-5 (NFAT5) modulate the adaptation to hypoxia. The objective of the present study was to explore hypoxia-related miRNA target genes for HIF-1α and NFAT5, as well as miRNA-20a, miRNA-30e, and miRNA-93 expression in periodontitis versus healthy gingival tissues and gingival mesenchymal stem cells (GMSCs) cultured under hypoxic conditions. Thus, a case-control study was conducted, including healthy and periodontitis subjects. Clinical data and gingival tissue biopsies were collected to analyze the expression of miRNA-20a, miRNA-30e, miRNA-93, HIF-1α, and NFAT5 by qRT-PCR. Subsequently, GMSCs were isolated and cultured under hypoxic conditions (1% O2) to explore the expression of the HIF-1α, NFAT5, and miRNAs. The results showed a significant upregulation of miRNA-20a (p = 0.028), miRNA-30e (p = 0.035), and miRNA-93 (p = 0.026) in periodontitis tissues compared to healthy gingival biopsies. NFAT5 mRNA was downregulated in periodontitis tissues (p = 0.037), but HIF-1α was not affected (p = 0.60). Interestingly, hypoxic GMSCs upregulated the expression of miRNA-20a and HIF-1α, but they downregulated miRNA-93e. In addition, NFAT5 mRNA expression was not affected in hypoxic GMSCs. In conclusion, in periodontitis patients, the expression of miRNA-20a, miRNA-30e, and miRNA-93 increased, but a decreased expression of NFAT5 mRNA was detected. In addition, GMSCs under hypoxic conditions upregulate the HIF-1α and increase miRNA-20a (p = 0.049) expression. This study explores the role of inflammatory and hypoxia-related miRNAs and their target genes in periodontitis and GMSCs. It is crucial to determine the potential therapeutic target of these miRNAs and hypoxia during the periodontal immune–inflammatory response, which should be analyzed in greater depth in future studies.
Collapse
|
4
|
PDSM-LGCN: Prediction of drug sensitivity associated microRNAs via Light Graph Convolution Neural Network. Methods 2022; 205:106-113. [PMID: 35753591 DOI: 10.1016/j.ymeth.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the critical diseases threatening human life and health. The sensitivity difference of cancer drugs has always been a critical cause of the treatment come to nothing. Once drug resistance occurs, it will make the anticancer treatment or even various drugs ineffective. With the deepening of cancer research, a growing number of evidence shows that microRNA has a particular regulatory effect on the sensitivity of cancer drugs, which provides new research ideas. However, using traditional biological experiments to verify and discover the relations of microRNA-drug sensitivity is cumbersome and time-consuming, significantly slowing down cancer drug sensitivity's research progress. Therefore, this paper proposes a computational method (PDSM-LGCN) that spreads information through the high-order connection between cancer drug sensitivity and microRNA. At the same time, the model constructs an optimized-GCN as an embedding propagation layer to obtain the practical embeddings of microRNA and medicines. Finally, based on a collaborative filtering algorithm, the model brings the prediction score between microRNA and drug sensitivity. The results of five-fold cross-validation show that the AUC of PDSM-LGCN is 0.8872, and the AUPR is as high as 0.9026. At the same time, we also reproduced the five latest models of similar problems and compared the results. Our model has the best comprehensive effect among them. In addition, the reliability of PDSM-LGCN was further confirmed through the case study of Cisplatin and Doxorubicin, which can be used as a powerful tool for clinical and biological research. The source code and datasets can be obtained from https://github.com/19990915fzy/PDSM-LGCN/.
Collapse
|
5
|
Han J, Sun W, Liu R, Zhou Z, Zhang H, Chen X, Ba Y. Plasma Exosomal miRNA Expression Profile as Oxaliplatin-Based Chemoresistant Biomarkers in Colorectal Adenocarcinoma. Front Oncol 2020; 10:1495. [PMID: 33072545 PMCID: PMC7531016 DOI: 10.3389/fonc.2020.01495] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Chemotherapy is one of the most common therapies used in the treatment of colorectal cancer (CRC), but chemoresistance inevitably occurs. It is challenging to obtain an immediate and accurate diagnosis of chemoresistance. The potential of circulating exosomal miRNAs as oxaliplatin-based chemoresistant biomarkers in CRC patients was investigated in this study. Methods: Plasma exosomal miRNAs in sensitive and resistant patients were analyzed by miRNA microarray analysis, followed by verification with a quantitative reverse-transcription polymerase chain reaction (RT-qPCR) assay in two independent cohorts. The diagnostic accuracy was determined by ROC curve analysis. Logistic regression analysis and Spearman's rank correlation test were also performed. Finally, bioinformatics was used to preliminarily explore the potential molecular mechanism of the selected miRNAs in chemoresistance. Results: miRNA microarray analysis identified four upregulated miRNAs and 20 downregulated miRNAs in chemoresistant patients compared to chemosensitive patients. Twelve markedly dysregulated miRNAs were selected for further investigation, of which six (miR-100, miR-92a, miR-16, miR-30e, miR-144-5p, and let-7i) were verified to be significantly and consistently dysregulated (>1.5-fold, P < 0.05). The combination of the six miRNAs had the highest AUC (0.825, 95% CI, 0.753–0.897). The expression level of these 6 miRNAs was not correlated with tumor location, stage, or chemotherapy program. Only miR-100 was significantly upregulated in low histological grade. GO analysis and KEGG pathway analysis showed that miRNAs were related to RNA polymerase II transcription and enriched in the PI3K-AKT signaling pathway, AMPK signaling pathway, and FoxO signaling pathway. Conclusions: We identified a panel of plasma exosomal miRNAs, containing miR-100, miR-92a, miR-16, miR-30e, miR-144-5p, and let-7i, that could significantly distinguish chemoresistant patients from chemosensitive patients. The detection of circulating exosomal miRNAs may serve as an effective way to monitor CRC patient responses to chemotherapy. Targeting these miRNAs may also be a promising strategy for CRC treatment.
Collapse
Affiliation(s)
- Jiayi Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Wu Sun
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rui Liu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Advanced Institute for Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Haiyang Zhang
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Advanced Institute for Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Yi Ba
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Mishra R, Bhattacharya S, Rawat BS, Kumar A, Kumar A, Niraj K, Chande A, Gandhi P, Khetan D, Aggarwal A, Sato S, Tailor P, Takaoka A, Kumar H. MicroRNA-30e-5p has an Integrated Role in the Regulation of the Innate Immune Response during Virus Infection and Systemic Lupus Erythematosus. iScience 2020; 23:101322. [PMID: 32688283 PMCID: PMC7371751 DOI: 10.1016/j.isci.2020.101322] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 01/02/2023] Open
Abstract
Precise regulation of innate immunity is crucial for development of appropriate host immunity against microbial infections and maintenance of immune homeostasis. MicroRNAs are small non-coding RNAs, post-transcriptional regulator of multiple genes, and act as a rheostat for protein expression. Here, we identified microRNA-30e-5p induced by hepatitis B virus and other viruses that act as a master regulator for innate immunity. Moreover, pegylated interferons treatment of patients with HBV for viral reduction also reduces miRNA. Additionally, we have also shown the immuno-pathological effects of miR-30e in patients with systemic lupus erythematosus (SLE) and mouse model. Mechanistically, miR-30e targets multiple negative regulators of innate immune signaling and enhances immune responses. Furthermore, sequestering of miR-30e in patients with SLE and mouse model significantly reduces type-I interferon and pro-inflammatory cytokines. Collectively, our study demonstrates the novel role of miR-30e in innate immunity and its prognostic and therapeutic potential in infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Sanjana Bhattacharya
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Bhupendra Singh Rawat
- Laboratory of Innate Immunity, National Institute of Immunology (NII), New Delhi 110067, India
| | - Ashish Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Kavita Niraj
- Department of Research (Medical Biotechnology), Bhopal Memorial Hospital & Research Centre (BMHRC), Bhopal, MP 462038, India
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, MP 462066, India
| | - Puneet Gandhi
- Department of Research (Medical Biotechnology), Bhopal Memorial Hospital & Research Centre (BMHRC), Bhopal, MP 462038, India
| | - Dheeraj Khetan
- Department of Transfusion Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP 226014, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP 226014, India
| | - Seiichi Sato
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology (NII), New Delhi 110067, India
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India; WPI Immunology, Frontier Research Centre, Osaka University, Osaka 5650871, Japan.
| |
Collapse
|
7
|
Gramantieri L, Pollutri D, Gagliardi M, Giovannini C, Quarta S, Ferracin M, Casadei-Gardini A, Callegari E, De Carolis S, Marinelli S, Benevento F, Vasuri F, Ravaioli M, Cescon M, Piscaglia F, Negrini M, Bolondi L, Fornari F. MiR-30e-3p Influences Tumor Phenotype through MDM2/ TP53 Axis and Predicts Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Res 2020; 80:1720-1734. [PMID: 32015093 DOI: 10.1158/0008-5472.can-19-0472] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/29/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
The molecular background of hepatocellular carcinoma (HCC) is highly heterogeneous, and biomarkers predicting response to treatments are an unmet clinical need. We investigated miR-30e-3p contribution to HCC phenotype and response to sorafenib, as well as the mutual modulation of TP53/MDM2 pathway, in HCC tissues and preclinical models. MiR-30e-3p was downregulated in human and rat HCCs, and its downregulation associated with TP53 mutations. TP53 contributed to miR-30e-3p biogenesis, and MDM2 was identified among its target genes, establishing an miR-30e-3p/TP53/MDM2 feedforward loop and accounting for miR-30e-3p dual role based on TP53 status. EpCAM, PTEN, and p27 were demonstrated as miR-30e-3p additional targets mediating its contribution to stemness and malignant features. In a preliminary cohort of patients with HCC treated with sorafenib, increased miR-30e-3p circulating levels predicted the development of resistance. In conclusion, molecular background dictates miR-30e-3p dual behavior in HCC. Mdm2 targeting plays a predominant tumor suppressor function in wild-type TP53 contexts, whereas other targets such as PTEN, p27, and EpCAM gain relevance and mediate miR-30e-3p oncogenic role in nonfunctional TP53 backgrounds. Increased circulating levels of miR-30e-3p predict the development of sorafenib resistance in a preliminary series of patients with HCC and deserve future investigations. SIGNIFICANCE: The dual role of miR-30e-3p in HCC clarifies how the molecular context dictates the tumor suppressor or oncogenic function played by miRNAs.
Collapse
Affiliation(s)
- Laura Gramantieri
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy.
| | - Daniela Pollutri
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Martina Gagliardi
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Catia Giovannini
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Santina Quarta
- Department of Medicine, University of Padua, Padua, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Andrea Casadei-Gardini
- Division of Oncology, Department of Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Callegari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrina De Carolis
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Sara Marinelli
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Benevento
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Vasuri
- Pathology Unit, St.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Matteo Ravaioli
- General Surgery and Transplant Unit, St.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- General Surgery and Transplant Unit, St.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luigi Bolondi
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Fornari
- Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy.
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Mondal P, Natesh J, Kamal MA, Meeran SM. Non-coding RNAs in Lung Cancer Chemoresistance. Curr Drug Metab 2020; 20:1023-1032. [DOI: 10.2174/1389200221666200106105201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Background:
Lung cancer is the leading cause of cancer-associated death worldwide with limited
treatment options. The major available treatment options are surgery, radiotherapy, chemotherapy and combinations
of these treatments. In chemotherapy, tyrosine kinase inhibitors and taxol are the first lines of chemotherapeutics
used for the treatment of lung cancer. Often drug resistance in the clinical settings hinders the efficiency of the
treatment and intrigues the tumor relapse. Drug-resistance is triggered either by intrinsic factors or due to the
prolonged cycles of chemotherapy as an acquired-resistance. There is an emerging role of non-coding RNAs
(ncRNAs), including notorious microRNAs (miRNAs), proposed to be actively involved in the regulations of various
tumor-suppressor genes and oncogenes.
Result:
The altered gene expression by miRNA is largely mediated either by the degradation or by interfering with
the translation of targeted mRNA. Unlike miRNA, other type of ncRNAs, such as long non-coding RNAs
(lncRNAs), can target the transcriptional activator or the repressor, RNA polymerase, and even DNA-duplex to
regulate the gene expressions. Many studies have confirmed the crucial role of ncRNAs in lung adenocarcinoma
progression and importantly, in the acquisition of chemoresistance. Recently, ncRNAs have become early biomarkers
and therapeutic targets for lung cancer.
Conclusion:
Targeting ncRNAs could be an effective approach for the development of novel therapeutics against
lung cancer and to overcome the chemoresistance.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
9
|
Xiong R, Sun XX, Wu HR, Xu GW, Wang GX, Sun XH, Xu MQ, Xie MR. Mechanism research of miR-34a regulates Axl in non-small-cell lung cancer with gefitinib-acquired resistance. Thorac Cancer 2019; 11:156-165. [PMID: 31777195 PMCID: PMC6938762 DOI: 10.1111/1759-7714.13258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 01/15/2023] Open
Abstract
Background To investigate the regulatory mechanism behind miR‐34a‐altered Axl levels in non‐small‐cell lung cancer (NSCLC) with gefitinib‐acquired resistance. Methods The expression of miR‐34a, Axl, Gas6 and related downstream signaling proteins in the EGFR mutant NSCLC cell lines were determined by qRT‐PCR and Western blot; PC9‐Gef‐miR‐34a and HCC827‐Gef‐miR‐34a cells were established by transfecting the parent cells with a miR‐34a overexpressing virus, then the expression of Axl, Gas6 and the downstream channel‐related proteins were also compared in PC9‐Gef‐miR‐34a and HCC827‐Gef‐miR‐34a and drug‐resistant strains. The survival rate of the cells were measured by CCK8 assay. A luciferase reporter detected whether Axl was the target of miR‐34a. Finally, a tumor‐bearing nude mouse model was established to verify the relationship between the expression of miR‐34a, Axl and Gas6 mRNA in vivo. Results The expression levels of Axl mRNA and protein, Gas6 mRNA and protein, and related downstream proteins in PC9‐Gef and HCC827‐Gef cell lines were higher than those in PC9 and HCC827 parental cell lines, while the expression of miR‐34a was lower than it was in the parental cell lines (P < 0.05). The expression of Axl mRNA and protein, Gas6 mRNA and protein, and related downstream signaling proteins in PC9‐Gef and HCC827‐Gef cell lines was higher than the expression in PC9‐Gef‐miR‐34a and HCC827‐Gef‐miR‐34a cells, which overexpressed miR‐34a (P < 0.05). Conclusion The miR‐34a regulation of Axl plays an important role in NSCLC‐acquired gefitinib resistance, and their expression is inversely correlated, which suggests that they can be used as prognostic markers or potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Ran Xiong
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang-Xiang Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Han-Ran Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guang-Wen Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gao-Xiang Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Hui Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mei-Qing Xu
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming-Ran Xie
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Liu Z, He F, OuYang S, Li Y, Ma F, Chang H, Cao D, Wu J. miR-140-5p could suppress tumor proliferation and progression by targeting TGFBRI/SMAD2/3 and IGF-1R/AKT signaling pathways in Wilms' tumor. BMC Cancer 2019; 19:405. [PMID: 31035970 PMCID: PMC6489324 DOI: 10.1186/s12885-019-5609-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background Wilms’ tumor is also called nephroblastoma and is the most common pediatric renal cancer. Several genetic and epigenetic factors have been found to account for the development of Wilms’ tumor. MiRNAs play important roles in this tumorigenic process. In the present study, we aimed to investigate the role of miR-140-5p in nephroblastoma by identifying its targets, as well as its underlying molecular mechanism of action. Methods The miRNA expression profile of nephroblastoma samples was investigated and the targets of miR-140-5p were predicted and validated using the miRNA luciferase reporter method. Moreover, the roles of miR-140-5p in regulating nephroblastoma cell proliferation, migration and cell cycle were analyzed by the CCK8, migration and flow cytometry assays, respectively. The downstream protein of the direct target of miR-140-5p was also identified. Results miR-140-5p was downregulated in Wilms’ tumor tissues, whereas in the nephroblastoma cell lines G401 and WT-CLS1 that exhibited high levels of miRNA-140-5p, inhibition of cellular proliferation and metastasis were noted as well as cell cycle arrest at the G1/S phase. TGFBRI and IGF1R were identified as direct target genes for miRNA-140-5p. In addition, SMAD2/3 and p-AKT were regulated by TGFBRI and IGF1R separately and participated in the miRNA-140-5p regulatory network. Ectopic expression of TGFBR1 and IGF-1R could abrogate the inhibitory effect of miR-140-5p. Conclusion We demonstrated that miRNA-140-5p participates in the progression of Wilms’ tumor by targeting the TGFBRI/SMAD2/3 and the IGF-1R/AKT signaling pathways.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.,Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730, China
| | - Feng He
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Shengrong OuYang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yuanyuan Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Feifei Ma
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Huibo Chang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Dingding Cao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Jianxin Wu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
11
|
Kashyap D, Tuli HS, Garg VK, Goel N, Bishayee A. Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Mol Diagn Ther 2018; 22:179-201. [PMID: 29388067 DOI: 10.1007/s40291-018-0316-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are the non-coding class of minute RNA molecules that negatively control post-transcriptional regulation of various functional genes. These miRNAs are transcribed from the loci present in the introns of functional or protein-coding genes, exons of non-coding genes, or even in the 3'-untranslated region (3'-UTR). They have potential to modulate the stability or translational efficiency of a variety of target RNA [messenger RNA (mRNA)]. The regulatory function of miRNAs has been elucidated in several pathological conditions, including neurological (Alzheimer's disease and Parkinson's disease) and cardiovascular conditions, along with cancer. Importantly, miRNA identification in cancer progression and invasion has evolved as an incipient era in cancer treatment. Several studies have shown the influence of miRNAs on various cancer processes, including apoptosis, invasion, metastasis and angiogenesis. In particular, apoptosis induction in tumor cells through miRNA has been extensively studied. The biphasic mode (up- and down-regulation) of miRNA expression in apoptosis and other cancer processes has already been determined. The findings of these studies could be utilized to develop potential therapeutic strategies for the management of various cancers. The present review critically describes the oncogenic and tumor suppressor role of miRNAs in apoptosis and other cancer processes, therapy resistance, and use of their presence in the body fluids as biomarkers.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, 133207, Haryana, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, 160030, Punjab, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
12
|
Balatti V, Oghumu S, Bottoni A, Maharry K, Cascione L, Fadda P, Parwani A, Croce C, Iwenofu OH. MicroRNA Profiling of Salivary Duct Carcinoma Versus Her2/Neu Overexpressing Breast Carcinoma Identify miR-10a as a Putative Breast Related Oncogene. Head Neck Pathol 2018; 13:344-354. [PMID: 30259272 PMCID: PMC6684709 DOI: 10.1007/s12105-018-0971-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
Salivary duct carcinomas (SDC) and Her2/Neu3-overexpressing invasive breast carcinomas (HNPIBC/IBC) are histologically indistinguishable. We investigated whether common histopathologic and immunophenotypic features of SDC and IBC are mirrored by a similar microRNA (miRNA) profile. MiRNA profiling of 5 SDCs, 6 IBCs Her2/Neu3+, and 5 high-grade ductal breast carcinoma in situ (DCIS) was performed by NanoString platform. Selected miRNAs and HOXA1 gene were validated by RT-PCR. We observed similar miRNA expression profiles between IBC and SDC with the exception of 2 miRNAs, miR-10a and miR-142-3p, which were higher in IBC tumors. DCIS tumors displayed increased expression of miR-10a, miR-99a, miR-331-3p and miR-335, and decreased expression of miR-15a, miR-16 and miR-19b compared to SDC. The normal salivary gland and breast tissues also showed similar expression profiles. Interestingly, miR-10a was selectively increased in both IBC and normal breast tissue compared to SDC and normal salivary gland tissue. Moreover, our NanoString and RT-PCR data confirmed that miR-10a was upregulated in IBC and DCIS compared to SDC. Finally, we show downregulation of HOXA1, a miR-10 target, in IBC tumors compared to normal breast tissue. Taken together, our data demonstrates that, based on miRNA profiling, SDC is closely related to HNPIBC. Our results also suggest that miR-10a is differentially expressed in IBC compared to SDC and may have potential utility as a diagnostic biomarker in synchronous or metachronous malignant epithelial malignancies involving both organs. In addition, miR-10a could be playing an important role as a mammary-specific oncogene, involved in breast cancer initiation (DCIS) and progression (IBC), through mechanisms that include modulation of HOXA1 gene expression.
Collapse
Affiliation(s)
- Veronica Balatti
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Steve Oghumu
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, USA
| | - Arianna Bottoni
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Kati Maharry
- Department of Epidemiology, College of Public Health, The Ohio State University, Columbus, USA
| | - Luciano Cascione
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA ,Institute of Oncology Research, Bellinzona, Switzerland
| | - Paolo Fadda
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Anil Parwani
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, USA
| | - Carlo Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - O. Hans Iwenofu
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, USA
| |
Collapse
|
13
|
Ye YY, Mei JW, Xiang SS, Li HF, Ma Q, Song XL, Wang Z, Zhang YC, Liu YC, Jin YP, Hu YP, Jiang L, Liu FT, Zhang YJ, Hao YJ, Liu YB. MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting E2F7. Cell Death Dis 2018; 9:410. [PMID: 29540696 PMCID: PMC5852001 DOI: 10.1038/s41419-018-0444-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Gallbladder carcinoma (GBC), the most common malignant tumour of the bile duct, is highly aggressive and has a poor prognosis. MicroRNA-30a-5p (miR-30a-5p) is an important tumour suppressor that participates in many aspects of carcinogenesis and cancer development. However, the role of miR-30a-5p in GBC development remains to be determined, as do the mechanisms underlying its effects in GBC. Using samples collected from 42 subjects with gallbladder carcinoma (GBC), we showed decreased miR-30a-5p expression in the primary lesions vs. non-tumour adjacent tissues (NATs). Decreased miR-30a-5p was associated with shorter disease-free survival (DFS) and overall survival (OS). Inhibiting miR-30a-5p expression in 2 representative GBC cell lines (GBC-SD and NOZ) increased cell proliferation, migration, invasiveness, as well as β-catenin nuclear translocation, vice versa. In nude mice, NOZ cells transfected with miR-30a-5p mimics grew slower (vs. miR-NC) upon subcutaneous inoculation, and had lower rate of hepatic metastasis upon spleen inoculation. Dual luciferase assay confirmed that E2F transcription factor 7 (E2F7) was a direct target of miR-30a-5p and antagonized the effects induced by miR-30a-5p downregulation in GBC cells. MiR-30a-5p attenuates the EMT and metastasis in GBC cells by targeting E2F7, suggesting miR-30a-5p is a tumour suppressor that may serve as a novel potential prognostic biomarker or molecular therapeutic target for GBC.
Collapse
Affiliation(s)
- Yuan-Yuan Ye
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jia-Wei Mei
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shan-Shan Xiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huai-Feng Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qiang Ma
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Ling Song
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zheng Wang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Chi Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yong-Chen Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yun-Peng Jin
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yun-Ping Hu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lin Jiang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fa-Tao Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Jian Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Ya-Juan Hao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Ying-Bin Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, Shanghai, 200092, China.
- Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
14
|
Andersen GB, Knudsen A, Hager H, Hansen LL, Tost J. miRNA profiling identifies deregulated miRNAs associated with osteosarcoma development and time to metastasis in two large cohorts. Mol Oncol 2017; 12:114-131. [PMID: 29120535 PMCID: PMC5748490 DOI: 10.1002/1878-0261.12154] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is an aggressive bone tumor primarily affecting children and adolescents. The etiology of OS is not fully understood. Thus, there is a great need to obtain a better understanding of OS development and progression. Alterations in miRNA expression contribute to the required molecular alterations for neoplastic initiation and progression. This study is the first to investigate miRNA expression in OS in a large discovery and validation cohort comprising a total of 101 OS samples. We established the signature of altered miRNA expression in OS by profiling the expression level of 752 miRNAs in 23 OS samples using sensitive LNA-enhanced qPCR assays. The identified miRNA expression changes were correlated with gene expression in the same samples. Furthermore, miRNA expression changes were validated in a second independent cohort consisting of 78 OS samples. Analysis of 752 miRNAs in the discovery cohort led to the identification of 33 deregulated miRNAs in OS. Twenty-nine miRNAs were validated with statistical significance in the second cohort comprising 78 OS samples. miRNA/mRNA targets were determined, and 361 genes with an inverse expression of the target miRNA were identified. Both the miRNAs and the identified target genes were associated with multiple pathways related to cancer as well as bone cell biology, thereby correlating the deregulated miRNAs with OS tumorigenesis. An analysis of the prognostic value of the 29 miRNAs identified miR-221/miR-222 to be significantly associated with time to metastasis in both cohorts. This study contributes to a more profound understanding of OS tumorigenesis, by substantiating the importance of miRNA deregulation. We have identified and validated 29 deregulated miRNAs in the - to our knowledge - largest discovery and validation cohorts used so far for miRNA analyses in OS. Two of the miRNAs showed a promising potential as prognostic biomarkers for the aggressiveness of OS.
Collapse
Affiliation(s)
- Gitte B. Andersen
- Department of BiomedicineAarhus UniversityDenmark
- Laboratory for Epigenetics and EnvironmentCentre National de la Recherche en Génomique HumaineCEA ‐ Institut de Biologie Francois JaçobEvryFrance
| | | | - Henrik Hager
- Department of PathologyAarhus University HospitalDenmark
- Department of PathologyVejle HospitalDenmark
| | | | - Jörg Tost
- Laboratory for Epigenetics and EnvironmentCentre National de la Recherche en Génomique HumaineCEA ‐ Institut de Biologie Francois JaçobEvryFrance
| |
Collapse
|
15
|
Yu G, Jia B, Cheng Y, Zhou L, Qian B, Liu Z, Wang Y. MicroRNA-429 sensitizes pancreatic cancer cells to gemcitabine through regulation of PDCD4. Am J Transl Res 2017; 9:5048-5055. [PMID: 29218103 PMCID: PMC5714789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
One of the features for pancreatic cancer is that it is often resistant to chemotherapy treatment, which is one of the major hindrances in the treatment of this malignancy. Previous studies indicated that the microRNAs (miRNAs) could mediate resistance of tumor cells to chemotherapy drug in the cancer progression. In the present study, we are aimed to examine whether microRNA-429 was involved in mediating the chemo-resistance of pancreatic cancer cells to gemcitabine. Firstly, a gemcitabine-resistant pancreatic cancer cell line (SW1990/GZ) derived from cell line (SW1990) was constructed and found to possess a decreased expression of miR-429 when it is compared to the original cell line. Ectopic expression of miR-429 in SW1990/GZ increased the cellular sensibility to the treatment of gemcitabine, which is coincided with increased expression of PDCD4. As a tumor suppressor, we found that PDCD4 knockdown in SW1990/GZ cells increased its own chemo-resistance to GZ, which indicates PDCD4 also play a regulative role on the GZ-resistance in the pancreatic cancer. To further confirm the function of miR-429 and PDCD4 in gemcitabine-resistant pancreatic cancer, a xenograft nude mouse model was utilized to examine whether miR-429 can restore treatment response of gemcitabine in gemcitabine-resistant xenografts, while protein levels of PDCD4 were up-regulated. Together with those results, these findings collectively provided that miR-429 could enhancer GZ sensitivity via regulation of PDCD4 expression in pancreatic cancer cells, which may offer a novel therapeutic target for the chemotherapy resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Gang Yu
- Department of General Surgery, The Second Hospital of Anhui Medical UniversityHefei 230601, China
| | - Benli Jia
- Department of General Surgery, The Second Hospital of Anhui Medical UniversityHefei 230601, China
| | - Yunsheng Cheng
- Department of General Surgery, The Second Hospital of Anhui Medical UniversityHefei 230601, China
| | - Lianbang Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical UniversityHefei 230601, China
| | - Bo Qian
- Department of General Surgery, The Second Hospital of Anhui Medical UniversityHefei 230601, China
| | - Zhining Liu
- Department of General Surgery, The Second Hospital of Anhui Medical UniversityHefei 230601, China
| | - Yong Wang
- Department of General Surgery, The Second Hospital of Anhui Medical UniversityHefei 230601, China
| |
Collapse
|