1
|
Papavassiliou KA, Marinos G, Papavassiliou AG. Targeting YAP/TAZ in Combination with PD-L1 Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer (NSCLC). Cells 2023; 12:871. [PMID: 36980211 PMCID: PMC10047112 DOI: 10.3390/cells12060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The survival of non-small cell lung cancer (NSCLC) patients has improved in the last decade as a result of introducing new therapeutics, such as immune checkpoint inhibitors, in the clinic. Still, some NSCLC patients do not benefit from these therapies due to intrinsic resistance or the development of acquired resistance and their malignant disease progresses. Further research on the molecular underpinnings of NSCLC pathobiology is required in order to discover clinically relevant molecular targets that regulate tumor immunity and to develop reasonable therapeutic combinations that will promote the efficacy of immune checkpoint inhibitors. Yes-associated Protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), the final effectors of the Hippo signaling transduction pathway, are emerging as key players in NSCLC development and progression. Herein, we overview studies that have investigated the oncogenic role of YAP/TAZ in NSCLC, focusing on immune evasion, and highlight the therapeutic potential of combining YAP/TAZ inhibitory agents with immune checkpoint inhibitors for the management of NSCLC patients.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, “Sotiria” Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Gulfidan G, Soylu M, Demirel D, Erdonmez HBC, Beklen H, Ozbek Sarica P, Arga KY, Turanli B. Systems biomarkers for papillary thyroid cancer prognosis and treatment through multi-omics networks. Arch Biochem Biophys 2022; 715:109085. [PMID: 34800440 DOI: 10.1016/j.abb.2021.109085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/27/2022]
Abstract
The identification of biomolecules associated with papillary thyroid cancer (PTC) has upmost importance for the elucidation of the disease mechanism and the development of effective diagnostic and treatment strategies. Despite particular findings in this regard, a holistic analysis encompassing molecular data from different biological levels has been lacking. In the present study, a meta-analysis of four transcriptome datasets was performed to identify gene expression signatures in PTC, and reporter molecules were determined by mapping gene expression data onto three major cellular networks, i.e., transcriptional regulatory, protein-protein interaction, and metabolic networks. We identified 282 common genes that were differentially expressed in all PTC datasets. In addition, six proteins (FYN, JUN, LYN, PML, SIN3A, and RARA), two Erb-B2 receptors (ERBB2 and ERBB4), two cyclin-dependent receptors (CDK1 and CDK2), and three histone deacetylase receptors (HDAC1, HDAC2, and HDAC3) came into prominence as proteomic signatures in addition to several metabolites including lactaldehyde and proline at the metabolome level. Significant associations with calcium and MAPK signaling pathways and transcriptional and post-transcriptional activities of 12 TFs and 110 miRNAs were also observed at the regulatory level. Among them, six miRNAs (miR-30b-3p, miR-15b-5p, let-7a-5p, miR-130b-3p, miR-424-5p, and miR-193b-3p) were associated with PTC for the first time in the literature, and the expression levels of miR-30b-3p, miR-15b-5p, and let-7a-5p were found to be predictive of disease prognosis. Drug repositioning and molecular docking simulations revealed that 5 drugs (prochlorperazine, meclizine, rottlerin, cephaeline, and tretinoin) may be useful in the treatment of PTC. Consequently, we report here biomolecule candidates that may be considered as prognostic biomarkers or potential therapeutic targets for further experimental and clinical trials for PTC.
Collapse
Affiliation(s)
- Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Melisa Soylu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Damla Demirel
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | | | - Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Pemra Ozbek Sarica
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.
| |
Collapse
|
3
|
Antioxidant Activity and Cytotoxicity against Cancer Cell Lines of the Extracts from Novel Xylaria Species Associated with Termite Nests and LC-MS Analysis. Antioxidants (Basel) 2021; 10:antiox10101557. [PMID: 34679692 PMCID: PMC8533195 DOI: 10.3390/antiox10101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Xylaria species associated with termite nests or soil have been considered rare species in nature and the few which have been reported upon have been found to act as a rich source of bioactive metabolites. This study evaluated 10 ethyl acetate extracts of five new Xylaria species associated with termite nests or soil for their antioxidant activity, and cytotoxicity against different cancer and normal cell lines. DPPH and ABTS radical scavenging activities of the extracts demonstrated strong capacity with low IC50 values. The highest observed activities belonged to X. vinacea SWUF18-2.3 having IC50 values of 0.194 ± 0.031 mg/mL for DPPH assay and 0.020 ± 0.004 mg/mL for ABTS assay. Total phenolic content ranged from 0.826 ± 0.123 to 3.629 ± 0.381 g GAE/g crude extract which correlated with antioxidant activities. The high total phenolic content could contribute to the high antioxidant activities. Cytotoxicity was recorded against A549, HepG2, HeLa and PNT2 and resulted in broad spectrum to specific activity depending on the cell lines. The highest activities were observed with X. subintraflava SWUF16-11.1 which resulted in 11.15 ± 0.32 to 13.17 ± 2.37% cell viability at a concentration of 100 µg/mL. Moreover, LC-MS fingerprints indicated over 61 peaks from all isolates. There were 18 identified and 43 unidentified compounds compared to mass databases. The identified compounds were from various groups of diterpenoids, diterpenes, cytochalasin, flavones, flavonoids, polyphenols, steroids and derivatives, triterpenoids and tropones. These results indicate that Xylaria spp. has abundant secondary metabolites that could be further explored for their therapeutic properties.
Collapse
|
4
|
Wang M, Dai M, Wang D, Xiong W, Zeng Z, Guo C. The regulatory networks of the Hippo signaling pathway in cancer development. J Cancer 2021; 12:6216-6230. [PMID: 34539895 PMCID: PMC8425214 DOI: 10.7150/jca.62402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023] Open
Abstract
The Hippo signaling pathway is a relatively young tumor-related signaling pathway. Although it was discovered lately, research on it developed rapidly. The Hippo signaling pathway is closely relevant to the occurrence and development of tumors and the maintenance of organ size and other biological processes. This manuscript focuses on YAP, the core molecule of the Hippo signaling pathway, and discussion the upstream and downstream regulatory networks of the Hippo signaling pathway during tumorigenesis and development. It also summarizes the relevant drugs involved in this signaling pathway, which may be helpful to the development of targeted drugs for cancer therapy.
Collapse
Affiliation(s)
- Maonan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Manli Dai
- Hunan Food and Drug Vocational College, Changsha 410036, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Albuquerque C, Manguinhas R, Costa JG, Gil N, Codony-Servat J, Castro M, Miranda JP, Fernandes AS, Rosell R, Oliveira NG. A narrative review of the migration and invasion features of non-small cell lung cancer cells upon xenobiotic exposure: insights from in vitro studies. Transl Lung Cancer Res 2021; 10:2698-2714. [PMID: 34295671 PMCID: PMC8264350 DOI: 10.21037/tlcr-21-121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer deaths worldwide, being non-small lung cancer (NSCLC) sub-types the most prevalent. Since most LC cases are only detected during the last stage of the disease the high mortality rate is strongly associated with metastases. For this reason, the migratory and invasive capacity of these cancer cells as well as the mechanisms involved have long been studied to uncover novel strategies to prevent metastases and improve the patients’ prognosis. This narrative review provides an overview of the main in vitro migration and invasion assays employed in NSCLC research. While several methods have been developed, experiments using conventional cell culture models prevailed, specifically the wound-healing and the transwell migration and invasion assays. Moreover, it is provided herewith a summary of the available information concerning chemical contaminants that may promote the migratory/invasive properties of NSCLC cells in vitro, shedding some light on possible LC risk factors. Most of the reported agents with pro-migration/invasion effects derive from cigarette smoking [e.g., Benzo(a)pyrene and cadmium] and air pollution. This review further presents several studies in which different dietary/plant-derived compounds demonstrated to impair migration/invasion processes in NSCLC cells in vitro. These chemicals that have been proposed as anti-migratory consisted mainly of natural bioactive substances, including polyphenols non-flavonoids, flavonoids, bibenzyls, terpenes, alkaloids, and steroids. Some of these compounds may eventually represent novel therapeutic strategies to be considered in the future to prevent metastasis formation in LC, which highlights the need for additional in vitro methodologies that more closely resemble the in vivo tumor microenvironment and cancer cell interactions. These studies along with adequate in vivo models should be further explored as proof of concept for the most promising compounds.
Collapse
Affiliation(s)
- Catarina Albuquerque
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - João G Costa
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Nuno Gil
- Lung Cancer Unit, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Jordi Codony-Servat
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Rafael Rosell
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain.,Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias i Pujol (IGTP), Campus Can Ruti, Barcelona, Spain.,Internal Medicine Department, Universitat Autónoma de Barcelona, Campus de la UAB, Barcelona, Spain
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Ietta F, Valacchi G, Benincasa L, Pecorelli A, Cresti L, Maioli E. Multiple mechanisms of Rottlerin toxicity in A375 melanoma cells. Biofactors 2019; 45:920-929. [PMID: 31408224 DOI: 10.1002/biof.1551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
Rottlerin is a cytostatic and cytotoxic drug in a variety of cancer cells. Our previous experience demonstrated that depending upon the genetic/biochemical background of cancer cells, rottlerin is able to induce both apoptotic and autophagic cell death, or dramatically disturb protein homeostasis leading to lethal cellular atrophy. In the current study, we investigated the cytotoxic effects and mechanisms of rottlerin against human amelanotic A375 melanoma cells. In this cell line, rottlerin exhibits its main and newest cytotoxic properties, that is, growth arrest, apoptosis induction, and translation shutoff. In fact, the drug, time-, and dose-dependently, markedly inhibited cell proliferation through cyclin D1 downregulation and induced apoptotic cell death as early as after 18 h treatment. Mechanistically, rottlerin triggered apoptosis by both intrinsic and extrinsic pathways. Both pathways are likely activated by the downregulation of the antiapoptotic B-cell lymphoma 2 (Bcl-2) protein, which simultaneously affects mitochondrial and endoplasmic reticulum (ER) membranes stability. Concomitantly to extrinsic apoptosis induction, the rottlerin-activated ER stress/eukaryotic initiation factor 2 (eIF2) α axis blocked the translational apparatus. The altered proteostasis precluded the complete cells' rescue from death in the presence of apoptosis inhibitors.
Collapse
Affiliation(s)
- Francesca Ietta
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- NC State University, Plants for Human Health Institute, Kannapolis, North Carolina
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Linda Benincasa
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandra Pecorelli
- NC State University, Plants for Human Health Institute, Kannapolis, North Carolina
| | - Laura Cresti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Emanuela Maioli
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
7
|
TAZ sensitizes EGFR wild-type non-small-cell lung cancer to gefitinib by promoting amphiregulin transcription. Cell Death Dis 2019; 10:283. [PMID: 30911072 PMCID: PMC6433914 DOI: 10.1038/s41419-019-1519-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022]
Abstract
Comparatively less toxic and more tolerated, epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are recommendable for advanced non-small-cell lung cancer (NSCLC) patients with EGFR-sensitive mutations. Some EGFR wild-type patients with specific biomarkers also show a response to the drug. TAZ is an oncogene closely associated with the therapeutic effect of EGFR-TKIs. However, this association remains to be clarified. This study aimed to clarify the mechanism through which TAZ sensitizes EGFR wild-type NSCLC to gefitinib. We used CCK-8 assays and in vivo experiments to investigate the influence of TAZ on gefitinib in EGFR wild-type NSCLC. To further validate the tumorigenic role of TAZ, we performed Human umbilical vein endothelial cell (HUVEC) tube formation and migration assays. Luciferase reporter assays, quantitative real-time PCR (qPCR), immunoblotting and Chromatin immunoprecipitation collaborated with qPCR illuminated the mechanism through which TAZ caused those phenotypes. The results showed TAZ promoted the angiogenesis of NSCLC cell lines and improved gefitinib sensitivity in EGFR wild-type NSCLC in vitro and in vivo. Luciferase reporter assays and ChIP-qPCR experiments showed TAZ upregulated AREG by promoting its transcription. EGFR signaling pathway was activated as TAZ was highly expressed. Rescue experiments were conducted to confirm the indispensable role of AREG in tumorigenesis and gefitinib sensitivity regulated by TAZ. Our study concluded that TAZ sensitized EGFR wild-type NSCLC to gefitinib through promoting amphiregulin transcription.
Collapse
|
8
|
Zheng N, Wang L, Hou Y, Zhou X, He Y, Wang Z. Rottlerin inhibits cell growth and invasion via down-regulation of EZH2 in prostate cancer. Cell Cycle 2018; 17:2460-2473. [PMID: 30394832 DOI: 10.1080/15384101.2018.1542897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rottlerin as a natural agent, which is isolated from Mallotus philippinensis, has been identified to play a critical role in tumor inhibition. However, the molecular mechanism of rottlerin-mediated anti-tumor activity is still ambiguous. It has been reported that EZH2 exhibits oncogenic functions in a variety of human cancers. Therefore, inhibition of EZH2 could be a promising strategy for the treatment of human cancers. In this study, we aim to explore whether rottlerin could inhibit tumorigenesis via suppression of EZH2 in prostate cancer cells. Multiple approaches such as FACS, Transwell invasion assay, RT-PCR, Western blotting, and transfection were performed to determine our aim. We found that rottlerin treatment led to inhibition of cell growth, migration and invasion, but induction of apoptosis in prostate cancer cells. Importantly, we defined that rottlerin decreased the expression of EZH2 and H3K27me3 in prostate cancer cells. Moreover, overexpression of EZH2 abrogated the rottlerin-induced inhibition of cell growth, migration, and invasion in prostate cancer cells. Consistently, down-regulation of EZH2 enhanced rottlerin-triggered anti-tumor function. Collectively, our work demonstrated that rottlerin exerted its tumor suppressive function via inhibition of EZH2 expression in prostate cancer cells. Our findings indicated that rottlerin might be a potential therapeutic compound for treating patients with prostate cancer.
Collapse
Affiliation(s)
- Nana Zheng
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China
| | - Lixia Wang
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China
| | - Yingying Hou
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China
| | - Xiuxia Zhou
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China
| | - Youhua He
- b Department of Urology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Zhiwei Wang
- a The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University , Suzhou , China.,b Department of Urology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang , China.,c Department of Biochemistry and Molecular Biology , School of Laboratory Medicine, Bengbu Medical College , Anhui , China
| |
Collapse
|
9
|
Ma J, Hou Y, Xia J, Zhu X, Wang ZP. Tumor suppressive role of rottlerin in cancer therapy. Am J Transl Res 2018; 10:3345-3356. [PMID: 30662591 PMCID: PMC6291697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Cancer as a major public health problem is a big trouble to be cured at present in the world. Thus, it is essential to discover better anticancer drugs to treat cancer patients. It has been reported that rottlerin, a natural polyphenolic compound from the mature fruits of Mallotus philippinensis, possesses multiple anti-cancer biological activities. Rottlerin exhibited its antitumor property in a variety of human cancers, suggesting that rottlerin could be a potential agent for treating cancers. In this review we discuss the recent literature regarding the biological functions and tumor suppressive mechanisms of rottlerin in cancers. We hope rottlerin will be further exploited for potential treatment of human cancers.
Collapse
Affiliation(s)
- Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Yingying Hou
- Chinese Academy of Sciences Shanghai Institute of Materia MedicaShanghai 201203, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
10
|
Zhu JY, Lin S, Ye J. YAP and TAZ, the conductors that orchestrate eye development, homeostasis, and disease. J Cell Physiol 2018; 234:246-258. [PMID: 30094836 DOI: 10.1002/jcp.26870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 12/25/2022]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators established as a nexus in numerous signaling pathways, notably in Hippo signaling. Previous research revealed multifarious function of YAP and TAZ in oncology and cardiovasology. Recently, the focus has been laid on their pivotal role in eye morphogenesis and homeostasis. In this review, we synthesize advances of YAP and TAZ function during eye development in different model organisms, introduce their function in different ocular tissues and eye diseases, and highlight the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jing-Yi Zhu
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Song J, Zhou Y, Gong Y, Liu H, Tang L. Rottlerin promotes autophagy and apoptosis in gastric cancer cell lines. Mol Med Rep 2018; 18:2905-2913. [PMID: 30015872 PMCID: PMC6102720 DOI: 10.3892/mmr.2018.9293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that apoptosis is closely associated with cancer cell death. However, whether autophagy induces tumor cell death has not been fully elucidated. Various studies have discussed the antitumor properties of rottlerin in human malignancies. The current study aimed to investigate the effects of rottlerin, a natural product isolated from the kamala tree (Mallotus philipensis), on growth inhibition and autophagy in gastric cancer (GC) cell lines in vitro. The results of the present study demonstrated that rottlerin suppressed cell growth, induced autophagy and apoptosis, and reduced migration and invasion in the SGC-7901 and MGC-803 GC cell lines. Furthermore, rottlerin led to microtubule-associated protein 1 light chain 3β-II augmentation and the enrichment of autophagosomes. In addition, the protein expression levels of mechanistic target of rapamycin kinase and S-phase kinase-associated protein 2 were downregulated in GC cells following rottlerin treatment, which is associated with autophagy. The protein levels of caspase-3, cleaved-caspase-3, total poly (ADP-ribose) polymerase (PARP) and cleaved-PARP exhibited no marked alterations in the GC cells following rottlerin treatment, indicating that caspases were likely not involved in rottlerin-induced GC apoptosis. In summary, the results of the present study indicate that rottlerin may inhibit invasion and promote apoptosis in GC cells, which may be mediated by the activation of autophagy. Therefore, rottlerin may be of value in the treatment of GC.
Collapse
Affiliation(s)
- Jun Song
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yu Gong
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Hanyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
12
|
YAP and TAZ in Lung Cancer: Oncogenic Role and Clinical Targeting. Cancers (Basel) 2018; 10:cancers10050137. [PMID: 29734788 PMCID: PMC5977110 DOI: 10.3390/cancers10050137] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer death in the world and there is no current treatment able to efficiently treat the disease as the tumor is often diagnosed at an advanced stage. Moreover, cancer cells are often resistant or acquire resistance to the treatment. Further knowledge of the mechanisms driving lung tumorigenesis, aggressiveness, metastasization, and resistance to treatments could provide new tools for detecting the disease at an earlier stage and for a better response to therapy. In this scenario, Yes Associated Protein (YAP) and Trascriptional Coactivator with PDZ-binding motif (TAZ), the final effectors of the Hippo signaling transduction pathway, are emerging as promising therapeutic targets. Here, we will discuss the most recent advances made in YAP and TAZ biology in lung cancer and, more importantly, on the newly discovered mechanisms of YAP and TAZ inhibition in lung cancer as well as their clinical implications.
Collapse
|
13
|
Janse van Rensburg HJ, Azad T, Ling M, Hao Y, Snetsinger B, Khanal P, Minassian LM, Graham CH, Rauh MJ, Yang X. The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1. Cancer Res 2018; 78:1457-1470. [PMID: 29339539 DOI: 10.1158/0008-5472.can-17-3139] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/14/2017] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
Abstract
The Hippo pathway component WW domain-containing transcription regulator 1 (TAZ) is a transcriptional coactivator and an oncogene in breast and lung cancer. Transcriptional targets of TAZ that modulate immune cell function in the tumor microenvironment are poorly understood. Here, we perform a comprehensive screen for immune-related genes regulated by TAZ and its paralog YAP using NanoString gene expression profiling. We identify the immune checkpoint molecule PD-L1 as a target of Hippo signaling. The upstream kinases of the Hippo pathway, mammalian STE20-like kinase 1 and 2 (MST1/2), and large tumor suppressor 1 and 2 (LATS1/2), suppress PD-L1 expression while TAZ and YAP enhance PD-L1 levels in breast and lung cancer cell lines. PD-L1 expression in cancer cell lines is determined by TAZ activity and TAZ/YAP/TEAD increase PD-L1 promoter activity. Critically, TAZ-induced PD-L1 upregulation in human cancer cells is sufficient to inhibit T-cell function. The relationship between TAZ and PD-L1 is not conserved in multiple mouse cell lines, likely due to differences between the human and mouse PD-L1 promoters. To explore the extent of divergence in TAZ immune-related targets between human and mouse cells, we performed a second NanoString screen using mouse cell lines. We show that many targets of TAZ may be differentially regulated between these species. These findings highlight the role of Hippo signaling in modifying human/murine physiologic/pathologic immune responses and provide evidence implicating TAZ in human cancer immune evasion.Significance: Human-specific activation of PD-L1 by a novel Hippo signaling pathway in cancer immune evasion may have a significant impact on research in immunotherapy. Cancer Res; 78(6); 1457-70. ©2018 AACR.
Collapse
Affiliation(s)
| | - Taha Azad
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Min Ling
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Hao
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Brooke Snetsinger
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Prem Khanal
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Lori M Minassian
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
14
|
Wang Z, Shen GH, Xie JM, Li B, Gao QG. Rottlerin upregulates DDX3 expression in hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 495:1503-1509. [PMID: 29203243 DOI: 10.1016/j.bbrc.2017.11.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Rottlerin has been reported to exert its anti-tumor activity in various types of human cancers. However, the underlying molecular mechanism has not been fully elucidated. In the current study, we explored whether rottlerin exhibits its tumor suppressive function in hepatocellular carcinoma cells. Our MTT assay results showed that rottlerin inhibited cell growth in hepatocellular carcinoma cells. Moreover, we found that rottlerin induced cell apoptosis and caused cell cycle arrest at G1 phase. Furthermore, our wound healing assay result demonstrated that rottlerin retarded cell migration in hepatocellular carcinoma cells. Additionally, rottlerin suppressed cell migration and invasion. Notably, we found that rottlerin upregulated DDX3 expression and subsequently downregulated Cyclin D1 expression and increased p21 level. Importantly, down-regulation of DDX3 abrogated the rottlerin-mediated tumor suppressive function, whereas overexpression of DDX3 promoted the anti-tumor activity of rottlerin. Our study suggests that rottlerin exhibits its anti-cancer activity partly due to upregulation of DDX3 in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Zhong Wang
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China; Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Gen-Hai Shen
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China
| | - Jia-Ming Xie
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China.
| | - Quan-Gen Gao
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China.
| |
Collapse
|
15
|
The suppressive role of miR-542-5p in NSCLC: the evidence from clinical data and in vivo validation using a chick chorioallantoic membrane model. BMC Cancer 2017; 17:655. [PMID: 28927388 PMCID: PMC5606087 DOI: 10.1186/s12885-017-3646-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) has led to the highest cancer-related mortality for decades. To enhance the efficiency of early diagnosis and therapy, more efforts are urgently needed to reveal the origins of NSCLC. In this study, we explored the effect of miR-542-5p in NSCLC with clinical samples and in vivo models and further explored the prospective function of miR-542-5p though bioinformatics methods. Methods A total of 125 NSCLC tissue samples were collected, and the expression of miR-542-5p was detected by qRT-PCR. The relationship between miR-542-5p level and clinicopathological features was analyzed. The effect of miR-542-5p on survival time was also explored with K-M survival curves and Cox’s regression. The effect of miR-542-5p on the tumorigenesis of NSCLC was verified with a chick chorioallantoic membrane (CAM) model. The potential target genes were predicted by bioinformatics tools, and relevant pathways were analyzed by GO and KEGG. Several hub genes were validated by Proteinatlas. Results The expression of miR-542-5p was down-regulated in NSCLC tissues, and consistent results were also found in the subgroups of adenocarcinoma and squamous cell carcinoma. Down-regulation of miR-542-5p was found to be connected with advanced TNM stage, vascular invasion, lymphatic metastasis and EGFR. Survival analyses showed that patients with lower miR-542-5p levels had markedly poorer prognosis. Both tumor growth and angiogenesis were significantly suppressed by miR-542-5p mimic in the CAM model. The potential 457 target genes of miR-542-5p were enriched in several key cancer-related pathways, such as morphine addiction and the cAMP signaling pathway from KEGG. Interestingly, six genes (GABBR1, PDE4B, PDE4C, ADCY6, ADCY1 and GIPR) from the cAMP signaling pathway were confirmed to be overexpressed in NSCLCs tissues. Conclusions This evidence suggests that miR-542-5p is a potential tumor-suppressed miRNA in NSCLC, which has the potential to act as a diagnostic and therapeutic target of NSCLC.
Collapse
|
16
|
Hou Y, Feng S, Wang L, Zhao Z, Su J, Yin X, Zheng N, Zhou X, Xia J, Wang Z. Inhibition of Notch-1 pathway is involved in rottlerin-induced tumor suppressive function in nasopharyngeal carcinoma cells. Oncotarget 2017; 8:62120-62130. [PMID: 28977931 PMCID: PMC5617491 DOI: 10.18632/oncotarget.19097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 12/28/2022] Open
Abstract
Recent studies have revealed that rottlerin is a natural chemical drug to exert its anti-cancer activity. However, the molecular mechanisms of rottlerin-induced tumor suppressive function have not been fully elucidated. Notch signaling pathway has been characterized to play a crucial role in tumorigenesis. Therefore, regulation of Notch pathway could be beneficial for the treatment of human cancer. The aims of our current study were to explore whether rottlerin could suppress Notch-1 expression, which leads to inhibition of cell proliferation, migration and invasion in nasopharyngeal carcinoma cells. We performed several approaches, such as CTG, Flow cytometry, scratch healing assay, transwell and Western blotting. Our results showed that rottlerin treatment inhibited cell growth, migration and invasion, and triggered apoptosis, and arrested cell cycle to G1 phase. Moreover, the expression of Notch-1 was obvious decreased in nasopharyngeal carcinoma cells after rottlerin treatment. Importantly, overexpression of Notch-1 promoted cell growth and invasion, whereas down-regulation of Notch-1 inhibited cell growth and invasion in nasopharyngeal carcinoma cells. Notably, we found the over-expression of Notch-1 could abrogate the anti-cancer function induced by rottlerin. Strikingly, our study implied that Notch-1 could be a useful target of rottlerin for the prevention and treatment of human nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yingying Hou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shaoyan Feng
- Department of Otolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lixia Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhe Zhao
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jingna Su
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xuyuan Yin
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Ge L, Li DS, Chen F, Feng JD, Li B, Wang TJ. TAZ overexpression is associated with epithelial-mesenchymal transition in cisplatin-resistant gastric cancer cells. Int J Oncol 2017; 51:307-315. [PMID: 28534974 DOI: 10.3892/ijo.2017.3998] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is one of the common malignant diseases. The poor treatment outcome is mainly due to chemotherapeutic resistance. Therefore, it is important to determine the molecular mechanism of drug resistance in gastric cancer. To explore the mechanisms of cisplatin resistance in gastric cancer cells, several approaches were performed including MTT assay, real-time RT-PCR, western blot analysis, migration and invasion assays, wound healing assay, and transfection. We found that cisplatin-resistant (CR) gastric cancer cells acquired epithelial-mesenchymal transition (EMT) phenotype. The CR cells with EMT features obtained higher migratory and invasive activities. Moreover, we observed that TAZ was highly expressed in CR cells. Consistently, depletion of TAZ caused partial reversal of EMT to MET in CR cells. Our results suggest that TAZ plays a pivotal role in CR-induced EMT. Targeting TAZ could be a potential therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Liang Ge
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dong-Song Li
- Department of Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fei Chen
- Abdominal Tumor Medical Department, Jilin Provincial Tumor Hospital, Changchun, Jilin 130021, P.R. China
| | - Ji-Dong Feng
- Department of Normal Surgery, Jilin Province Hospital of Traditional Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Bai Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tie-Jun Wang
- Department of Orthopedic Traumatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|