1
|
López-Sánchez P, Ávila-Moreno F, Hernández-Lemus E, Kuijjer ML, Espinal-Enríquez J. Patient-specific gene co-expression networks reveal novel subtypes and predictive biomarkers in lung adenocarcinoma. NPJ Syst Biol Appl 2025; 11:44. [PMID: 40346136 PMCID: PMC12064794 DOI: 10.1038/s41540-025-00522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogenous and aggressive form of non-small cell lung cancer (NSCLC). The use of genome-wide gene co-expression networks (GCNs) has been paramount to describe changes in the transcriptional regulatory programs found between diseased and healthy states of LUAD. Recently, studies have shown that multiple cancerous phenotypes share a distinct GCN architecture, suggesting that network topology holds promise for understanding disease pathology. However, conventional GCN inference methods struggle to capture the inherent context-specificity within a patient population, thus flattening its heterogeneity. To address this issue, the use of single-sample network (SSN) modelling has emerged as a promising solution into studying heterogeneous traits of cancer through network-based approaches. Here, we reconstructed patient-specific GCNs (n=334) using the LIONESS equation and mutual information as the network inference method. Unsupervised analysis revealed six novel LUAD subtypes based on inter-patient network similarity, each with distinct network motifs reflecting unique biological programs. Supervised analysis, employing regularized Cox regression, identified 12 genes (CHRDL2, SPP2, VAC14, IRF5, GUCY1B1, NCS1, RRM2B, EIF5A2, CCDC62, CTCFL, XG, and TP53INP2) whose weighted degree in SSNs is predictive of patient survival in LUAD. These findings suggest that topological features of SSNs offer valuable insights into the context-specific nature of LUAD malignancy, highlighting the potential of SSN-based approaches for further research.
Collapse
Affiliation(s)
- Patricio López-Sánchez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Federico Ávila-Moreno
- Facultad de Estudios Superiores-Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCAN), Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Marieke L Kuijjer
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.
| |
Collapse
|
2
|
Li J, Liu Y, Liu C, Xiao P. Potential therapeutic targets for colorectal cancer and its subsites: evidence from the proteome-wide Mendelian randomization analyses. Transl Cancer Res 2025; 14:486-496. [PMID: 39974404 PMCID: PMC11833405 DOI: 10.21037/tcr-24-1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/10/2024] [Indexed: 02/21/2025]
Abstract
Background Colorectal cancer (CRC) is the most common malignant tumor of the digestive tract worldwide, however, the potential targets for CRC and its subsites (colon cancer & rectum cancer) are less known. The aim of this study is to explore potential therapeutic targets for CRC. Methods A proteome-wide genome-wide association studies (GWAS) in 35,559 Icelanders with 4,907 plasma proteins was used as instrumental variables (P value <5×10-8). The discovery stage consisted of the CRC GWAS with the largest sample size (CRC: 14,886 cases; colon: 3,793 cases; rectum: 2,091 cases). The significant proteins were further validated in the FinnGen study with 5,458 CRC cases (3,292 colon + 2,017 rectum). We identified relevant protein loci in CRC by two sample Mendelian randomization (MR) [false discovery rate (FDR) <0.05], colocalization analysis was used to further determine the relevance between CRC and plasma proteins, enrichment analysis and drug prediction were used to predict protein function. Results A total of 31 proteins were found to be in robust causal associations with CRC and the proteins' effects displayed anatomic site-specificity in MR analysis. The subsequent colocalization analysis pinpointed that CHDRL2 had a shared region with CRC and its two subsites, suggesting the importance of targeting it. Besides, IGF2R and ENPEP displayed anatomic site-specificity to colon cancer while ASRGL1 was strongly correlated only with the risk of rectal cancer. Enrichment analysis revealed functions of these proteins in CRC, and DrugBank showed their target drug. Conclusions In summary, our study has identified a common protein, CHDRL2, as the drug targets for CRC and its subsites. Besides, IGF2R and ENPEP displayed anatomic site-specificity to colon cancer while ASRGL1 was strongly correlated only with the risk of rectal cancer.
Collapse
Affiliation(s)
- Jinyi Li
- School of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Yang L, Sadler MC, Altman RB. Genetic association studies using disease liabilities from deep neural networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.01.18.23284383. [PMID: 36712099 PMCID: PMC9882423 DOI: 10.1101/2023.01.18.23284383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The case-control study is a widely used method for investigating the genetic underpinnings of binary traits. However, long-term, prospective cohort studies often grapple with absent or evolving health-related outcomes. Here, we propose two methods, liability and meta, for conducting genome-wide association study (GWAS) that leverage disease liabilities calculated from deep patient phenotyping. Analyzing 38 common traits in ~300,000 UK Biobank participants, we identified an increased number of loci compared to the conventional case-control approach, with high replication rates in larger external GWAS. Further analyses confirmed the disease-specificity of the genetic architecture with the meta method demonstrating higher robustness when phenotypes were imputed with low accuracy. Additionally, polygenic risk scores based on disease liabilities more effectively predicted newly diagnosed cases in the 2022 dataset, which were controls in the earlier 2019 dataset. Our findings demonstrate that integrating high-dimensional phenotypic data into deep neural networks enhances genetic association studies while capturing disease-relevant genetic architecture.
Collapse
Affiliation(s)
- Lu Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Marie C. Sadler
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- University Center for Primary Care and Public Health, Lausanne, 1010, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Russ B. Altman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Huang X, Jie S, Li W, Liu C. CHRDL2 activates the PI3K/AKT pathway to ameliorate glucocorticoid-induced damages to bone microvascular endothelial cells (BMECs). Heliyon 2024; 10:e33867. [PMID: 39050472 PMCID: PMC11268171 DOI: 10.1016/j.heliyon.2024.e33867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Steroid-induced avascular necrosis of the femoral head (ANFH) is characterized by the death of bone tissues, leading to the impairment of normal reparative processes within micro-fractures in the femoral head. Glucocorticoid (GCs)-induced bone microvascular endothelial cell (BMEC) damage has been reported to contribute to ANFH development. In this study, differentially expressed genes (DEGs) between necrosis of the femoral head (NFH) and normal samples were analyzed based on two sets of online expression profiles, GSE74089 and GSE26316. Chordin-like 2 (CHRDL2) was found to be dramatically downregulated in NFH samples. In GCs-stimulated BMECs, cellular damages were observed alongside CHRDL2 down-regulation. GCs-caused cell viability suppression, cell apoptosis promotion, tubule formation suppression, and cell migration suppression were partially abolished by CHRDL2 overexpression but amplified by CHRDL2 knockdown; consistent trends were observed in GCs-caused alterations in the protein levels of VEGFA, VEGFR2, and BMP-9 levels, and the ratios of Bax/Bcl-2 and cleaved-caspase3/Caspase3. GC stimulation significantly inhibited PI3K and Akt phosphorylation in BMECs, whereas the inhibitor effects of GCs on PI3K and Akt phosphorylation were partially attenuated by CHRDL2 overexpression but further amplified by CHRDL2 knockdown. Moreover, CHRDL2 overexpression caused improvement in GCs-induced damages to BMECs that were partially eliminated by PI3K inhibitor LY294002. In conclusion, CHRDL2 is down-regulated in NFH samples and GCs-stimulated BMECs. CHRDL2 overexpression could improve GCs-caused BMEC apoptosis and dysfunctions, possibly via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xianzhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shuo Jie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenzhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
5
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Tan SC, Hushmandi K. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract 2023; 251:154902. [PMID: 37922723 DOI: 10.1016/j.prp.2023.154902] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.
Collapse
Affiliation(s)
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bahonar
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Nakhaee
- Medical School, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Brane A, Arora I, Tollefsbol TO. Peripubertal Nutritional Prevention of Cancer-Associated Gene Expression and Phenotypes. Cancers (Basel) 2023; 15:674. [PMID: 36765634 PMCID: PMC9913820 DOI: 10.3390/cancers15030674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer (BC) is a nearly ubiquitous malignancy that effects the lives of millions worldwide. Recently, nutritional prevention of BC has received increased attention due to its efficacy and ease of application. Chief among chemopreventive compounds are plant-based substances known as dietary phytochemicals. Sulforaphane (SFN), an epigenetically active phytochemical found in cruciferous vegetables, has shown promise in BC prevention. In addition, observational studies suggest that the life stage of phytochemical consumption may influence its anticancer properties. These life stages, called critical periods (CPs), are associated with rapid development and increased susceptibility to cellular damage. Puberty, a CP in which female breast tissue undergoes proliferation and differentiation, is of particular interest for later-life BC development. However, little is known about the importance of nutritional chemoprevention to CPs. We sought to address this by utilizing two estrogen receptor-negative [ER(-)] transgenic mouse models fed SFN-containing broccoli sprout extract during the critical period of puberty. We found that this treatment resulted in a significant decrease in tumor incidence and weight, as well as an increase in tumor latency. Further, we found significant alterations in the long-term expression of cancer-associated genes, including p21, p53, and BRCA2. Additionally, our transcriptomic analyses identified expressional changes in many cancer-associated genes, and bisulfite sequencing revealed that the antiproliferation-associated gene Erich4 was both hypomethylated and overexpressed in our experimental group. Our study indicates that dietary interventions during the CP of puberty may be important for later-life ER(-) BC prevention and highlights potential important genetic and epigenetic targets for treatment and study of the more deadly variants of BC.
Collapse
Affiliation(s)
- Andrew Brane
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Itika Arora
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Wang L, Xu W, Mei Y, Wang X, Liu W, Zhu Z, Ni Z. CHRDL2 promotes cell proliferation by activating the YAP/TAZ signaling pathway in gastric cancer. Free Radic Biol Med 2022; 193:158-170. [PMID: 36206931 DOI: 10.1016/j.freeradbiomed.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022]
Abstract
The encoding product of Chordin-like 2 (CHRDL2) is a member of the chordin family of proteins, which has been shown to be aberrantly expressed in several types of solid tumors. The regulatory underlying mechanisms of CHRDL2, however, remain poorly understood in gastric cancer (GC). In the present study, we determined that CHRDL2 was abnormally upregulated in human gastric cancer tissues compared with adjacent normal tissues. We also showed that CHRDL2 was positively associated with T stage, the pathological stage, distant metastasis, and poor patient prognosis. Furthermore, the serum level of CHRDL2 was obviously higher in GC patients than normal people, and is positively correlated with later TNM stage, deeper T stage, later N stage and poorer differentiation. Moreover, we verified that overexpressing CHRDL2 promoted the proliferation and cell cycle transition of GC cells both in vitro and in vivo, whereas the opposite results were observed in CHRDL2-depleted cells. In addition, the phosphorylation levels of Yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ) and the total levels MST2 were decreased in CHRDL2 overexpressing cells. Consistent with previous findings, we observed the converse results in CHRDL2-silenced GC cells. Additionally, knockdown of YAP and overexpression of STK3 (MST2) could reverse the effects of CHRDL2 overexpression-induced proliferation of GC cells in vitro. Taken together, CHRDL2 plays a key role by activating the YAP/TAZ pathway in gastric cancer. Therefore, CHRDL2 could serve as a potential therapeutic tool for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Lingquan Wang
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Xu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Mei
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xufeng Wang
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wentao Liu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhentian Ni
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Zhou Y, Cao G, Guan Z, Mao C. Chordin-Like 2: A Possible Therapeutic Target for Gastric Cancer by Affecting Cell Cycle and Proliferation. JOURNAL OF ONCOLOGY 2022; 2022:4607715. [PMID: 36397762 PMCID: PMC9666038 DOI: 10.1155/2022/4607715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 08/05/2023]
Abstract
PURPOSE This study aimed to examine the role of chordin-like 2 (CHRDL2) in gastric cancer. METHODS The Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) datasets were screened and the differentially expressed gene CHRDL2 was identified. The CHRDL2 expression was examined in the Human Protein Atlas and TCGA. Clinical data on gastric cancer were evaluated for their association with CHRDL2 by using TCGA and KM-plotter databases. The possible relationship amongst CHRDL2, immune cells, and related genes was investigated via the TIMER database. Enrichment analysis was performed using GO and KEGG pathways to explore the mechanisms. RESULTS Screening of databases revealed that CHRDL2 was a differentially expressed gene. An increase in cytoplasmic CHRDL2 expression was found in cancer tissues compared with the surrounding normal tissues. The data, together with those from TCGA and the KM-plotter databases, showed that patients with gastric cancer with high level of CHRDL2 have worse prognosis than those with low expression. A strong correlation was found between CHRDL2 expression and T stage, race, pathological grade, and pathological type according to clinical data analysis. CHRDL2 expression is linked to immune infiltration, as shown by the TIMER database. The data suggested that CHRDL2 plays a pivotal role in the tumor microenvironment of gastric cancer and might help tumor cells evade the immune system. Gene set enrichment analysis showed that CHRDL2 is involved in the chemokine signaling route, the intestinal immune network, the MAPK pathway, cell cycle, and the PI3K-Akt signaling system that are associated with the pathological processes of gastric cancer. CONCLUSION Patients with gastric cancer with decreased CHRDL2 levels have dramatically improved OS, PFS, and PPS. CHRDL2 plays a pivotal role in enabling tumor cell immune evasion in tumor microenvironment, suggesting a function of this gene in the development of gastric cancer and its immune infiltration. Interfering with CHRDL2 may slow down the development of this malignancy by affecting cell cycle and apoptosis pathways.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Hepatobiliary Surgery, Tumor Hospital Affiliated to Nantong University, Nantong Tumor Hospital, Nantong, China
| | - Guangxin Cao
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, Jiangsu 226300, China
| | - Zhifeng Guan
- Department of Radiotherapy, Tumor Hospital Affiliated to Nantong University, Nantong Tumor Hospital, Nantong, China
| | - Cui Mao
- Department of General Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
9
|
Yu X, Yu B, Fang W, Xiong J, Ma M. Identification hub genes of consensus molecular subtype correlation with immune infiltration and predict prognosis in gastric cancer. Discov Oncol 2021; 12:41. [PMID: 35201473 PMCID: PMC8777542 DOI: 10.1007/s12672-021-00434-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
Gastric cancer (GC) has a great fatality rate, meanwhile, there is still a lack of available biomarkers for prognosis. The goal of the research was to discover key and novel potential biomarkers for GC. We screened for the expression of significantly altered genes based on survival rates from two consensus molecular subtypes (CMS) of GC. Subsequently, functional enrichment analysis showed these genes involved in many cancers. And we picked 6 hub genes that could both secreted in the tumor microenvironment and expression enhanced in immune cells. Then, Kaplan Meier survival and expression detected in the tumor pathological stage were utilized to clarify the prognostic of these 6 hub genes. The results indicated that OGN, CHRDL2, C2orf40, THBS4, CHRDL1, and ANGPTL1, respectively, were significantly associated with poor OS in GC patients. And their expression increased with cancer advanced. Moreover, immune infiltration analysis displayed that those hub genes expression positively with M2 macrophage, CD8+ T Cell, most immune inhibitors, and majority immunostimulators. In summary, our results suggested that OGN, CHRDL2, C2orf40, THBS4, CHRDL1, and ANGPTL1 were all potential biomarkers for GC prognosis and might also be potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Xin Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Weidan Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Mei Ma
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
10
|
Chen H, Pan R, Li H, Zhang W, Ren C, Lu Q, Chen H, Zhang X, Nie Y. CHRDL2 promotes osteosarcoma cell proliferation and metastasis through the BMP-9/PI3K/AKT pathway. Cell Biol Int 2021; 45:623-632. [PMID: 33245175 PMCID: PMC8049056 DOI: 10.1002/cbin.11507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
Abstract
Various studies demonstrated that bone morphogenetic proteins (BMPs) and their antagonists contribute to the development of cancers. Chordin-like 2 (CHRDL2) is a member of BMP antagonists. However, the role and its relative mechanism of CHRDL2 in osteosarcoma remains unclear. In the present study, we demonstrated that the expression of CHRDL2 was significantly upregulated in osteosarcoma tissues and cell lines compared with adjacent tissues and human normal osteoblast. Inhibition of CHRDL2 decreased the proliferation and colony formation of osteosarcoma cells in vitro, as well as the migration and invasion. CHRDL2 overexpression induced the opposite effects. CHRDL2 can bind with BMP-9, thus decreasing BMP-9 expression and the combination to its receptor protein kinase ALK1. It was predicted that BMP-9 regulates PI3K/AKT pathways using gene set enrichment analysis. Inhibition of CHRDL2 decreased the activation of PI3K/AKT pathway, while overexpression of CHRDL2 upregulated the activation. Increasing the expression of BMP-9 reversed the effects of CHRDL2 overexpression on the activation of PI3K/AKT pathway, as well as the proliferation and metastasis of osteosarcoma cells. Take together, our present study revealed that CHRDL2 upregulated in osteosarcoma tissues and cell lines, and promoted osteosarcoma cell proliferation and metastasis through the BMP-9/PI3K/AKT pathway. CHRDL2 maybe an oncogene in osteosarcoma, as well as novel biomarker for the diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Houping Chen
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Runsang Pan
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Hao Li
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Wenguang Zhang
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Chong Ren
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Qiaoying Lu
- Department of Orthopedics, Guiyang Maternal and Child Health-Care Hospital, Guiyang, Guizhou, China
| | - Hui Chen
- Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xiangyan Zhang
- Department of Respiration, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yingjie Nie
- Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Differences in itch and pain behaviors accompanying the irritant and allergic contact dermatitis produced by a contact allergen in mice. Pain Rep 2019; 4:e781. [PMID: 31875186 PMCID: PMC6882579 DOI: 10.1097/pr9.0000000000000781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Introduction: Irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD) are inflammatory skin diseases accompanied by itch and pain. Irritant contact dermatitis is caused by chemical irritants eliciting an innate immune response, whereas ACD is induced by haptens additionally activating an adaptive immune response: After initial exposure (sensitization) to the hapten, a subsequent challenge can lead to a delayed-type hypersensitivity reaction. But, the sensory and inflammatory effects of sensitization (ICD) vs challenge of ACD are insufficiently studied. Therefore, we compared itch- and pain-like behaviors and inflammatory reactions evoked in mice during the sensitization (ICD) vs challenge phase (ACD) of application of the hapten, squaric acid dibutylester (SADBE). Objectives: Our aim was to compare itch- and pain-like behaviors and inflammatory reactions evoked in mice during the sensitization (ICD) vs challenge phase (ACD) of application of the hapten, squaric acid dibutylester (SADBE). Methods: Mice were sensitized on the abdomen with 1% SADBE (ACD) or vehicle treated (ICD, control). Spontaneous and stimulus-evoked itch- and pain-like behaviors were recorded in mice before and after 3 daily challenges of the cheek with 1% SADBE (ACD, ICD). Cutaneous inflammation was evaluated with clinical scoring, ultrasound imaging, skin thickness, histology, and analyses of selected biomarkers for contact dermatitis, IL-1β, TNF-α, CXCL10, and CXCR3. Results: Allergic contact dermatitis vs ICD mice exhibited more spontaneous site-directed scratching (itch) and wiping (pain). Allergic contact dermatitis—but not ICD—mice exhibited allodynia and hyperalgesia to mechanical and heat stimuli. Inflammatory mediators IL-1β and TNF-α were upregulated in both groups as well as the chemokine receptor, CXCR3. CXCL10, a CXCR3 ligand, was upregulated only for ACD. Inflammatory responses were more pronounced in ACD than ICD. Conclusion: These findings provide new information for differentiating the behavioral and inflammatory reactions to hapten-induced ICD and ACD.
Collapse
|